The Muffin Problem

Guangi Cui - Montgomery Blair HS (in MD)
Naveen Durvasula - Montgomery Blair HS (in MD)
William Gasarch - University of MD
Naveen Raman - Richard Montgomery HS (in MD)
Sung Hyun Yoo - Bergen County Academies (in NJ)
Cake Cutting

1. **Proportional Cake Cutting:** \(n \) people divide and distribute a cake so that everyone has \(\frac{1}{n} \) in their opinion. Exists \(O(n \log n) \) cuts discrete protocols. Optimal. **Crumbs!**

2. **Envy Free Cake Cutting:** \(n \) people divide and distribute a cake so that everyone has biggest (or tied) piece in their opinion. Exists \(O(n^n \ldots) \) (six \(n \)'s) cuts discrete protocols. No lower bounds known. **Crumbs!!!!** (Prior result had been unbounded protocol. This result was a surprise.)

3. **Cake Cutting** is a long studied problems. **Many** paper in Theory (Okay) and AI (What?).

4. **This Talk** is not about traditional cake cutting.
Our “Motivation”

1. Want to avoid crumbs.
2. All people will have uniform tastes. α of a cake is of value α.
3. We use muffins rather than cakes.
4. Honesty: This is motivation after the fact.
At

Gathering for Gardner Conference

I found a pamphlet advertising

The Julia Robinson Mathematics Festival

which had this problem, proposed by Alan Frank:

How can you divide and distribute 5 muffins to 3 students so that every student gets $\frac{5}{3}$ where nobody gets a tiny sliver?
Five Muffins, Three Students, Proc by Picture

<table>
<thead>
<tr>
<th>Person</th>
<th>Color</th>
<th>What they Get</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>RED</td>
<td>$1 + \frac{2}{3} = \frac{5}{3}$</td>
</tr>
<tr>
<td>Bob</td>
<td>BLUE</td>
<td>$1 + \frac{2}{3} = \frac{5}{3}$</td>
</tr>
<tr>
<td>Carol</td>
<td>GREEN</td>
<td>$1 + \frac{1}{3} + \frac{1}{3} = \frac{5}{3}$</td>
</tr>
</tbody>
</table>

Smallest Piece: $\frac{1}{3}$
Can We Do Better?

The smallest piece in the above solution is \(\frac{1}{3} \).

Is there a procedure with a larger smallest piece?

VOTE
Can We Do Better?

The smallest piece in the above solution is $\frac{1}{3}$.

Is there a procedure with a larger smallest piece?

VOTE

- YES
- NO
Can We Do Better?

The smallest piece in the above solution is $\frac{1}{3}$.

Is there a procedure with a larger smallest piece?

VOTE

- YES
- NO

YES WE CAN!

We use ! since we are excited that we can!
Five Muffins, Three People—Proc by Picture

<table>
<thead>
<tr>
<th>Person</th>
<th>Color</th>
<th>What they Get</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>RED</td>
<td>$\frac{6}{12} + \frac{7}{12} + \frac{7}{12}$</td>
</tr>
<tr>
<td>Bob</td>
<td>BLUE</td>
<td>$\frac{6}{12} + \frac{7}{12} + \frac{7}{12}$</td>
</tr>
<tr>
<td>Carol</td>
<td>GREEN</td>
<td>$\frac{5}{12} + \frac{5}{12} + \frac{5}{12} + \frac{5}{12}$</td>
</tr>
</tbody>
</table>

Smallest Piece: $\frac{5}{12}$
Can We Do Better?

The smallest piece in the above solution is $\frac{5}{12}$. Is there a procedure with a larger smallest piece?

VOTE

- YES
- NO
Can We Do Better?

The smallest piece in the above solution is $\frac{5}{12}$.

Is there a procedure with a larger smallest piece?

VOTE

- YES
- NO

NO WE CAN’T! We use ! since we are excited to prove we can’t do better!
Assumption We Can Make

There is a procedure for 5 muffins, 3 students where each student gets \(\frac{5}{3}\) muffins, smallest piece \(N\). We want \(N \leq \frac{5}{12}\).

We **ASSUME** each muffin cut into at least 2 pieces: If not then cut that muffin \((\frac{1}{2}, \frac{1}{2})\).

THIS TALK ALL proofs will be about opt being \(\leq 1/2\). We assume each muffin is cut into at least 2 pieces.

PIECES VS SHARES: They are the same.

- **PIECE** is muffin-view,
- **SHARE** is student-view.
Muffin Principle

If a muffin is cut into $\geq u$ pieces then there is a piece $\leq \frac{1}{u}$.

Example: If a Muffin is cut into 3 pieces:

some piece is $\leq \frac{1}{3}$.
Student Principle (not Principal)

If a student gets $\geq u$ shares then there is a share $\leq \frac{m}{s} \times \frac{1}{u}$

Example: 5 muffins, 3 students. All student gets $\frac{5}{3}$.
If some student gets ≥ 4 shares:

Then one of these pieces is $\leq \frac{5}{3} \times \frac{1}{4}$
Pieces Principle

If there are P pieces then:

Some student gets $\geq \left\lceil \frac{P}{s} \right\rceil$
Some student gets $\leq \left\lfloor \frac{P}{s} \right\rfloor$

Example: 5 muffins, 3 people. If there are 10 pieces:

Some student gets $\geq \left\lceil \frac{10}{3} \right\rceil = 4$
Some student gets $\leq \left\lfloor \frac{10}{3} \right\rfloor = 3$
There is a procedure for 5 muffins, 3 students where each student gets $\frac{5}{3}$ muffins, smallest piece N. We want $N \leq \frac{5}{12}$.

Case 1: Some muffin is cut into ≥ 3 pieces. Then $N \leq \frac{1}{3} < \frac{5}{12}$.
(Negation: All muffins are cut into 2 pieces.)

Case 2: All muffins are cut into 2 pieces. 10 pieces, 3 students: **Someone** gets ≥ 4 pieces. He has some piece

$$\leq \frac{5}{3} \times \frac{1}{4} = \frac{5}{12}$$

Great to see $\frac{5}{12}$
Be Amazed Now! And Later!

1. Procedure for 5 muffins, 3 people, smallest piece $\frac{5}{12}$.
2. NO Procedure for 5 muffins, 3 people, smallest piece $\geq \frac{5}{12}$.

Amazing That Have Exact Result!

Prepare To Be More Amazed!

We show many results like this!
General Problem

How can you divide and distribute \(m \) muffins to \(s \) students so that each student gets \(\frac{m}{s} \) AND the MIN piece is MAXIMIZED?

Let \(m, s \in \mathbb{N} \).

An \((m, s)\)-procedure is a way to divide and distribute \(m \) muffins to \(s \) students so that each student gets \(\frac{m}{s} \) muffins.

An \((m, s)\)-procedure is optimal if it has the largest smallest piece of any procedure.

\(f(m, s) \) be the smallest piece in an optimal \((m, s)\)-procedure. (\(f(m, s) \) exists. Compactness argument by Douglas Ulrich.)

We have shown \(f(5, 3) = \frac{5}{12} \).
Terminology Issue

Let $m, s \in \mathbb{N}$.
m is the number of muffins.
s is the number of students.

1. $f(m, s) \geq \alpha$ means that there is a procedure with smallest piece α. We call this A Procedure.
2. $f(m, s) \leq \alpha$ means that there is NO procedure with smallest piece $> \alpha$. We call this An Optimality Result or An Opt Result.

DO NOT use terms upper bound and lower bounds:

1. Procedures are lower bounds, opposite of usual terminology.
2. Opt results are upper bounds, opposite of usual terminology.
Floor-Ceiling Theorem

\[f(m, s) \leq \max \left\{ \frac{1}{3}, \min \left\{ \frac{m}{s \lceil 2m/s \rceil}, 1 - \frac{m}{s \lceil 2m/s \rceil} \right\} \right\}. \]

Proof:

Case 1: Some muffin is cut into \(\geq 3 \) pieces. Some piece \(\leq \frac{1}{3} \).

Case 2: Every muffin is cut into 2 pieces, so \(2m \) pieces.

Someone gets \(\geq \lceil \frac{2m}{s} \rceil \) pieces. Some piece is \(\leq \frac{(m/s)}{\lceil 2m/s \rceil} = \frac{m}{s \lceil 2m/s \rceil} \).

Someone gets \(\leq \lfloor \frac{2m}{s} \rfloor \) pieces. Some piece is \(\geq \frac{(m/s)}{\lfloor 2m/s \rfloor} = \frac{m}{s \lfloor 2m/s \rfloor} \).

The other piece from that muffin is of size \(\leq 1 - \frac{m}{s \lfloor 2m/s \rfloor} \).
CLEVERNESS, COMP PROGS for the procedure.

Floor-Ceiling Theorem for optimality.

\[f(1, 3) = \frac{1}{3} \]

\[f(3k, 3) = 1. \]

\[f(3k + 1, 3) = \frac{3k-1}{6k}, \ k \geq 1. \]

\[f(3k + 2, 3) = \frac{3k+2}{6k+6}. \]
FOUR Students

CLEVERNESS, COMP PROGS for procedures.

Floor-Ceiling Theorem for optimality.

\[f(4k, 4) = 1 \] (easy)

\[f(1, 4) = \frac{1}{4} \] (easy)

\[f(4k + 1, 4) = \frac{4k-1}{8k}, \quad k \geq 1. \]

\[f(4k + 2, 4) = \frac{1}{2}. \]

\[f(4k + 3, 4) = \frac{4k+1}{8k+4}. \]

Is FIVE student case a Mod 5 pattern?

VOTE YES or NO
FOUR Students

CLEVERNESS, COMP PROGS for procedures.

Floor-Ceiling Theorem for optimality.

\[f(4k, 4) = 1 \text{ (easy)} \]

\[f(1, 4) = \frac{1}{4} \text{ (easy)} \]

\[f(4k + 1, 4) = \frac{4k - 1}{8k}, \quad k \geq 1. \]

\[f(4k + 2, 4) = \frac{1}{2}. \]

\[f(4k + 3, 4) = \frac{4k + 1}{8k + 4}. \]

Is FIVE student case a Mod 5 pattern?

VOTE YES or NO

NO! (excited because YES would be boring)
FIVE Students, \(m = 1, 2, 3, 4, 7, 11, 10k \)

\[
\begin{align*}
f(1, 5) &= \frac{1}{5} \text{ (easy)} \\
f(2, 5) &= \frac{1}{5} \text{ (easy)} \\
f(3, 5) &= \frac{1}{4} \text{ (Like } f(5, 3) = \frac{5}{12} \text{ but Muffins/Students reversed)} \\
f(4, 5) &= \frac{3}{10} \text{ (Will discuss briefly later)} \\
f(7, 5) &= \frac{1}{3} \text{ (use Floor-Ceiling Thm)} \\
f(11, 5) &= \text{ (Will come back to this later)} \\
f(10k, 5) &= 1 \text{ (Trivial)}
\end{align*}
\]
FIVE Students

Results on the next few slides:

CLEVERNESS, COMP PROGS for the procedure.

Floor-Ceiling Theorem for optimality.
FIVE Students $m = 10k + 1, 10k + 2, 10k + 3$

If k not specified then $k \geq 0$.

$m = 10k + 1$:

\[
f(30k + 1, 5) = \frac{30k+1}{60k+5}
\]

\[
f(30k + 11, 5) = \frac{30k+11}{60k+25} \quad (k \geq 1)
\]

\[
f(30k + 21, 5) = \frac{10k+7}{20k+15}
\]

\[
f(10k + 2, 5) = \frac{10k-2}{20k} \quad (k \geq 1)
\]

\[
f(10k + 3, 5) = \frac{10k+3}{20k+10} \quad (k \geq 1)
\]
FIVE Students $m = 10k + 4, 10k + 5, 10k + 6$

$m = 10k + 4$

$f(30k + 4, 5) = \frac{30k+1}{60k+5}$

$f(30k + 14, 5) = \frac{30k+11}{60k+25}$

$f(30k + 24, 5) = \frac{10k+7}{20k+15}$

$f(10k + 5, 5) = 1$

$m = 10k + 6$:

$f(30k + 6, 5) = \frac{10k+2}{20k+5}$

$f(30k + 16, 5) = \frac{30k+16}{60k+35}$

$f(30k + 26, 5) = \frac{30k+26}{60k+55}$
FIVE Students $m = 10k + 7, 10k + 8, 10k + 9$

\[f(10k + 7, 5) = \frac{10k+3}{20k+10} \]

\[f(10k + 8, 5) = \frac{5k+4}{10k+10} \]

$m = 10k + 9$

\[f(30k + 9, 5) = \frac{10k+2}{20k+5} \]

\[f(30k + 19, 5) = \frac{30k+16}{60k+35} \]

\[f(30k + 29, 5) = \frac{30k+26}{60k+55} \]
What About FIVE students, ELEVEN muffins?

Procedure:

Divide the Muffins in to Pieces:

1. Divide 6 muffins into \(\left(\frac{13}{30}, \frac{17}{30} \right) \).
2. Divide 4 muffins into \(\left(\frac{9}{20}, \frac{11}{20} \right) \).
3. Divide 1 muffin into \(\left(\frac{1}{2}, \frac{1}{2} \right) \).

Distribute the Shares to Students:

1. Give 2 students \(\left[\frac{17}{30}, \frac{17}{30}, \frac{17}{30}, \frac{1}{2} \right] \).
2. Give 2 students \(\left[\frac{13}{30}, \frac{13}{30}, \frac{13}{30}, \frac{9}{20}, \frac{9}{20} \right] \).
3. Give 1 student \(\left[\frac{11}{20}, \frac{11}{20}, \frac{11}{20}, \frac{11}{20} \right] \).

So

\[f(11, 5) \geq \frac{13}{30} \]
What About FIVE students, ELEVEN muffins? Opt

Recall: Floor-Ceiling Theorem:

\[f(m, s) \leq \max \left\{ \frac{1}{3}, \min \left\{ \frac{m}{s \left\lceil 2m/s \right\rceil}, 1 - \frac{m}{s \left\lfloor 2m/s \right\rfloor} \right\} \right\}. \]

\[f(11, 5) \leq \max \left\{ \frac{1}{3}, \min \left\{ \frac{11}{5 \left\lceil 22/5 \right\rceil}, 1 - \frac{11}{5 \left\lfloor 22/5 \right\rfloor} \right\} \right\}. \]

\[f(11, 5) \leq \max \left\{ \frac{1}{3}, \min \left\{ \frac{11}{5 \times 5}, 1 - \frac{11}{5 \times 4} \right\} \right\}. \]

\[f(11, 5) \leq \max \left\{ \frac{1}{3}, \min \left\{ \frac{11}{25}, \frac{9}{20} \right\} \right\}. \]

\[f(11, 5) \leq \max \left\{ \frac{1}{3}, \frac{11}{25} \right\} = \frac{11}{25}. \]
Where Are We On FIVE students, ELEVEN muffins?

- By **Procedure** $\frac{13}{30} \leq f(11, 5)$.
- By **Floor-Ceiling** $f(11, 5) \leq \frac{11}{25}$.

So

$$\frac{13}{30} \leq f(11, 5) \leq \frac{11}{25} \quad \text{Diff} = 0.006666\ldots$$
Where Are We On FIVE students, ELEVEN muffins?

- By Procedure $\frac{13}{30} \leq f(11, 5)$.
- By Floor-Ceiling $f(11, 5) \leq \frac{11}{25}$.

So

$$\frac{13}{30} \leq f(11, 5) \leq \frac{11}{25} \quad \text{Diff} = 0.006666\ldots$$

VOTE:

1. **KNOWN:** $f(11, 5) = \frac{13}{30}$: New opt technique.
2. **KNOWN:** $f(11, 5) = \frac{11}{25}$: New procedure.
3. **KNOWN:** $\frac{13}{30} < f(11, 5) < \frac{11}{25}$: New opt and new proc.
4. **UNKNOWN TO SCIENCE!**
5. **HARAMBE THE GORILLA!**
 (In Poll of Discrete Math Students 3 wrote in Harambe.)
Where Are We On Five students, Eleven muffins?

- By **Procedure** \(\frac{13}{30} \leq f(11, 5) \).
- By **Floor-Ceiling** \(f(11, 5) \leq \frac{11}{25} \).

So

\[
\frac{13}{30} \leq f(11, 5) \leq \frac{11}{25}
\]

\[\text{Diff} = 0.006666\ldots\]

VOTE:

1. **KNOWN:** \(f(11, 5) = \frac{13}{30} \): New opt technique.
2. **KNOWN:** \(f(11, 5) = \frac{11}{25} \): New procedure.
3. **KNOWN:** \(\frac{13}{30} < f(11, 5) < \frac{11}{25} \): New opt and new proc.
4. **UNKNOWN TO SCIENCE!**
5. **HARAMBE THE GORILLA!**
 (In Poll of Discrete Math Students 3 wrote in Harambe.)

KNOWN: \(f(11, 5) = \frac{13}{30} \)

HAPPY: New opt tech more interesting than new proc.
$f(11, 5) = \frac{13}{30}$, Easy Case Based on Muffins

N is smallest piece.

Case 1: Some muffin is cut into ≥ 3 pieces. $N \leq \frac{1}{3} < \frac{13}{30}$.

(Negation: All muffins cut into 2 pieces.)
\(f(11, 5) = \frac{13}{30}, \) Easy Case Based on Students

Case 2: Some student gets \(\geq 6 \) pieces.

\[
N \leq \frac{11}{5} \times \frac{1}{6} = \frac{11}{30} < \frac{13}{30}.
\]

Case 3: Some student gets \(\leq 3 \) pieces.

One of the shares is

\[
\geq \frac{11}{5} \times \frac{1}{3} = \frac{11}{15}.
\]

Look at the muffin it came from to find a piece that is

\[
\leq 1 - \frac{11}{15} = \frac{4}{15} < \frac{13}{30}.
\]

(Negation of Cases 2 and 3: Every student gets 4 or 5 shares.)
Case 3: Every muffin is cut in 2 pieces, every student gets 4 or 5 pieces. Number of pieces: 22. Note ≤ 11 pieces are $> \frac{1}{2}$.

- s_4 is number of students who get 4 shares
- s_5 is number of students who get 5 shares

\[
4s_4 + 5s_5 = 22 \\
\quad \quad \quad \quad s_4 + s_5 = 5
\]

$s_4 = 3$: There are 3 students who have 4 shares.
$s_5 = 2$: There are 2 students who have 5 shares.
\(f(11, 5) = \frac{13}{30}, \) Fun Cases

\(\diamond \) and \(\circ \) are shares.

\[\begin{array}{ccccccc}
\diamond & \diamond & \diamond & \diamond & \diamond & \diamond & \quad (\text{Sums to } 11/5) \\
\diamond & \diamond & \diamond & \diamond & \diamond & \diamond & \quad (\text{Sums to } 11/5) \\
\end{array} \]

\[\begin{array}{ccccccc}
\circ & \circ & \circ & \circ & \circ & \circ & \quad (\text{Sums to } 11/5) \\
\circ & \circ & \circ & \circ & \circ & \circ & \quad (\text{Sums to } 11/5) \\
\circ & \circ & \circ & \circ & \circ & \circ & \quad (\text{Sums to } 11/5) \\
\end{array} \]

Case 3.1: One of (say)

\[\begin{array}{ccccccc}
\circ & \circ & \circ & \circ & \circ & \circ & \quad (\text{Sums to } 11/5) \\
\end{array} \]

is \(\leq \frac{1}{2} \). Then there is a share

\[\geq \frac{(11/5) - (1/2)}{3} = \frac{17}{30} . \]

The other piece from the muffin is

\[\leq 1 - \frac{17}{30} = \frac{13}{30} \quad \text{Great to see } \frac{13}{30} . \]
$f(11, 5) = \frac{13}{30}$, Fun Cases

Case 3.2: All

- ○ ○ ○ ○ ○ (Sums to $11/5$)
- ○ ○ ○ ○ ○ ○ (Sums to $11/5$)
- ○ ○ ○ ○ ○ ○ ○ (Sums to $11/5$)

are $> \frac{1}{2}$.

There are ≥ 12 shares $> \frac{1}{2}$. Can’t occur.
The Techniques Generalizes!

Good News!
The technique used to get $f(11, 5) \leq \frac{13}{30}$ lead to a theorem that apply to other cases!

Bad News!
The theorem is hard to state, so you don’t *get* to see it.

Good News!
The theorem is hard to state, so you don’t *have* to see it.
What Else Have We Accomplished?

1. 13 theorems to help get us opt results.
 ▶ Intricate arguments!-Harder than what you’ve seen here.
 ▶ Amazing that so many optimal procedures are known.

2. A computer program that helps us get procedures.

3. For $1 \leq s \leq 15$, for almost all m, know $f(m, s)$.

4. Convinced 4 High School students that the most important field of Mathematics is **Muffinry**.
How Many Open Problems With $s \leq 15$?

For $1 \leq s \leq 15$, for almost all m, know $f(m, s)$. How many $f(m, s)$ with $1 \leq s \leq 15$ are unknown?

VOTE:

1. Between 1 and 10
2. Between 11 and 100
3. Between 101 and 1000
4. Over 1001
How Many Open Problems With $s \leq 15$?

For $1 \leq s \leq 15$, for almost all m, know $f(m,s)$. How many $f(m,s)$ with $1 \leq s \leq 15$ are unknown?

VOTE:

1. Between 1 and 10
2. Between 11 and 100
3. Between 101 and 1000
4. Over 1001

Answer: 4, so Between 1 and 10.
Open Problems With $s \leq 15$

<table>
<thead>
<tr>
<th>Proc $\leq f(m, s) \leq$ Opt</th>
<th>Diff \sim</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{59}{126} \leq f(47, 9) \leq \frac{77}{162}$</td>
<td>0.00705</td>
</tr>
<tr>
<td>$\frac{5}{11} \leq f(52, 11) \leq \frac{83}{176}$</td>
<td>0.01704</td>
</tr>
<tr>
<td>$\frac{15}{39} \leq f(23, 13) \leq \frac{16}{39}$</td>
<td>0.02564</td>
</tr>
<tr>
<td>$\frac{33}{78} \leq f(35, 13) \leq \frac{431}{962}$</td>
<td>0.02494</td>
</tr>
</tbody>
</table>
Conjectures on those Four Problems

Consider:

\[
\begin{array}{cccc}
\text{Proc} & \leq & f(m, s) & \leq \text{Opt} \\
\frac{59}{126} & \leq & f(47, 9) & \leq \frac{77}{162} \\
\text{Diff} & \sim & 0.00705
\end{array}
\]

We can imagine a new procedure.
We can’t imagine a new opt technique.
Conjectures on those Four Problems

Consider:

\[
\begin{array}{|c|c|c|c|}
\hline
\text{Proc} & \leq & f(m,s) & \leq \text{Opt} \\
\hline
\frac{59}{126} & \leq & f(47,9) & \leq \frac{77}{162} \\
\hline
\text{Diff} & \sim & 0.00705 \\
\hline
\end{array}
\]

We can imagine a new procedure.
We can’t imagine a new opt technique.
We’ve said that 10 times before with a hard particular case

- 5 times we found a new procedure.
- 5 times we found a new opt technique (including \(f(4,5)\)).

Our Conjecture: The opt results are the truth.
Our Confidence: 4 on a scale of 1 to 10.
“Important” Open Questions

Conjectures:

1. \(f(m, s) \) is always rational.
2. \(f(m, s) \) is computable.
3. For all \(s \), there is a mod \(t \) pattern where \(s \) divides \(t \), that holds for almost all \(m \).
History and Hope

History:
1. Obtain particular results.
2. Prove a general theorem based on those results.
3. Run into a case we cannot solve (e.g., (4,5) and (11,5)).
4. Lather, Rinse, Repeat.

Hope: A *finite* set of theorems that settle all cases.

Likely?
1. I think *No*, but

2. was *surprised* by the n-person $O(n^n)$ cuts envy free cake cutting algorithm, so I could be *surprised* again!