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Five Muffins, Three Students

At
A Recreational Math Conference

(Gathering for Gardner)
May 2016

I found a pamphlet advertising
The Julia Robinson Mathematics Festival

which had this problem, proposed by Alan Frank:

How can you divide and distribute 5 muffins to 3 students so that
every student gets 5

3 where nobody gets a tiny sliver?



Five Muffins, Three Students, Proc by Picture

Person Color What they Get

Alice RED 1 + 2
3 = 5

3

Bob BLUE 1 + 2
3 = 5

3

Carol GREEN 1 + 1
3 + 1

3 = 5
3

Smallest Piece: 1
3



Can We Do Better?

The smallest piece in the above solution is 1
3 .

Is there a procedure with a larger smallest piece?
VOTE

I YES

I NO

YES WE CAN!

We use ! since we are excited that we can!
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Five Muffins, Three People–Proc by Picture

Person Color What they Get

Alice RED 6
12 + 7

12 + 7
12

Bob BLUE 6
12 + 7

12 + 7
12

Carol GREEN 5
12 + 5

12 + 5
12 + 5

12

Smallest Piece: 5
12



Can We Do Better?

The smallest piece in the above solution is 5
12 .

Is there a procedure with a larger smallest piece?
VOTE

I YES

I NO

NO WE CAN’T!

We use ! since we are excited to prove we can’t do better!
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The smallest piece in the above solution is 5
12 .
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VOTE
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Five Muffins, Three People–Can’t Do Better Than 5
12

There is a procedure for 5 muffins,3 students where each student
gets 5

3 muffins, smallest piece N. We want N ≤ 5
12 .

Case 0: Some muffin is uncut. Cut it (12 ,
1
2) and give both 1

2 -sized
pieces to whoever got the uncut muffin. (Note 1

2 >
5
12 .) Reduces

to other cases.
(Henceforth: All muffins are cut into ≥ 2 pieces.)

Case 1: Some muffin is cut into ≥ 3 pieces. Then N ≤ 1
3 <

5
12 .

(Henceforth: All muffins are cut into 2 pieces.)

Case 2: All muffins are cut into 2 pieces. 10 pieces, 3 students:
Someone gets ≥ 4 pieces. He has some piece

≤ 5

3
× 1

4
=

5

12
Great to see

5

12



Be Amazed Now! And Later!

1. Procedure for 5 muffins, 3 people, smallest piece 5
12 .

2. NO Procedure for 5 muffins, 3 people, smallest piece> 5
12 .

Amazing That Have Exact Result!

Prepare To Be More Amazed! On Next Page!
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Amazing Results!

1. Procedure for 47 muffins, 9 people, smallest piece 111
234 .

2. NO Procedure for 47 muffins, 9 people, smallest piece> 111
234 .

1. Procedure for 52 muffins, 11 people, smallest piece 83
176 .

2. NO Procedure for 52 muffins, 11 people, smallest piece> 83
176 .

1. Procedure for 35 muffins, 13 people, smallest piece 64
143 .

2. NO Procedure for 35 muffins, 13 people, smallest piece> 64
143 .

All done by hand, no use of a computer

Co-author Erik Metz is a muffin savant
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General Problem

How can you divide and distribute m muffins to s students so that
each students gets m

s AND the MIN piece is MAXIMIZED?

An (m, s)-procedure is a way to divide and distribute m muffins to
s students so that each student gets m

s muffins.

An (m, s)-procedure is optimal if it has the largest smallest piece
of any procedure.

f (m, s) be the smallest piece in an optimal (m, s)-procedure.

We have shown f (5, 3) = 5
12 .

Note: f (m, s) ≥ 1
s : divide each M into s pieces of size 1

s and give
each S m of them.



f (3, 5) ≥?

Clearly f (3, 5) ≥ 1
5 . Can we get f (3, 5) > 1

5?
Think about it at your desk.

f (3, 5) ≥ 1
4

1. Divide 2 muffin [ 6
20 ,

7
20 ,

7
20 ]

2. Divide 1 muffin [ 5
20 ,

5
20 ,

5
20 ,

5
20 ]

3. Give 4 students ( 5
20 ,

7
20)

4. Give 1 students ( 6
20 ,

6
20)

Can we do better? Vote!
YES
NO
UNKNOWN TO SCIENCE
NO Proof on next slide.
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f (3, 5) ≤ 1
4

There is a procedure for 3 muffins,5 students where each student
gets 3

5 muffins, smallest piece N. We want N ≤ 1
4 .

Case 0: Some student gets 1 piece, so size 3
5 . Cut that piece in

half and give both 3
10 -sized pieces to that student. (Note 3

10 >
1
4 .)

Reduces to other cases.
(Henceforth: All students get ≥ 2 pieces.)

Case 1: Some student gets ≥ 3 pieces. Then N ≤ 3
5 ×

1
3 = 1

5 <
1
4 .

(Henceforth: All students get 2 pieces.)

Case 2: All students get 2 pieces. 5 students, so 10 pieces.
Some muffin gets cut into ≥ 4 pieces. Some piece ≤ 1

4 .



3 People, 5 Muffins VS 5 People, 3 Muffins

f (5, 3) ≥ 5
12

1. Divide 4 muffins [ 5
12 ,

7
12 ]

2. Divide 1 muffin [ 6
12 ,

6
12 ]

3. Give 2 students ( 6
12 ,

7
12 ,

7
12)

4. Give 1 students ( 5
12 ,

5
12 ,

5
12 ,

5
12)
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20 ,
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7
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20 ,

5
20 ,

5
20 ,

5
20 ]

3. Give 4 students ( 5
20 ,

7
20)

4. Give 1 students ( 6
20 ,

6
20)

f (3, 5) proc is f (5, 3) proc but swap Divide/Give and mult by 3/5.
Theorem: f (m, s) = m

s f (s,m).
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Floor-Ceiling Theorem (Generalize f (5, 3) ≤ 5
12)

f (m, s) ≤ max

{
1

3
,min

{
m

s d2m/se
, 1− m

s b2m/sc

}}
.

Case 0: Some muffin is uncut. Cut it (12 ,
1
2) and give both halves

to whoever got the uncut muffin, so reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. Some piece ≤ 1
3 .

Case 2: Every muffin is cut into 2 pieces, so 2m pieces.

Someone gets ≥
⌈
2m
s

⌉
pieces. ∃ piece ≤ m

s ×
1

d2m/se = m
sd2m/se .

Someone gets ≤
⌊
2m
s

⌋
pieces. ∃ piece ≥ m

s
1

b2m/sc = m
sb2m/sc .

The other piece from that muffin is of size ≤ 1− m
sb2m/sc .



THREE Students

CLEVERNESS, COMP PROGS for the procedure.

Floor-Ceiling Theorem for optimality.

f (1, 3) = 1
3

f (3k, 3) = 1.

f (3k + 1, 3) = 3k−1
6k , k ≥ 1.

f (3k + 2, 3) = 3k+2
6k+6 .



FOUR Students

CLEVERNESS, COMP PROGS for procedures.

Floor-Ceiling Theorem for optimality.

f (4k, 4) = 1 (easy)

f (1, 4) = 1
4 (easy)

f (4k + 1, 4) = 4k−1
8k , k ≥ 1.

f (4k + 2, 4) = 1
2 .

f (4k + 3, 4) = 4k+1
8k+4 .

Is FIVE student case a Mod 5 pattern?
VOTE YES or NO

YES but with some exceptions
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FIVE Students, m = 1, . . . , 11
f (1, 5) = 1

5 (easy or use f (1, 5) = 5
1 f (5, 1).)

f (2, 5) = 1
5 (easy or use f (2, 5) = 5

2 f (5, 2).)

f (3, 5) = 1
4 (use f (3, 5) = 3

5 f (5, 3).)

f (4, 5) = 3
10 (use f (4, 5) = 4

5 f (5, 4).)

f (5, 5) = 1 (Easy and fits pattern)

f (6, 5) = 2
5 (Use Floor-Ceiling Thm, fits pattern)

f (7, 5) = 1
3 (Use Floor-Ceiling Thm, NOT pattern)

f (8, 5) = 2
5 (Use Floor-Ceiling Thm, fits pattern)

f (9, 5) = 2
5 (Use Floor-Ceiling Thm, fits pattern )

f (10, 5) = 1 (Easy and fits pattern)

f (11, 5) = (Will come back to this later)



FIVE Students

CLEVERNESS, COMP PROGS for procedures.

Floor-Ceiling Theorem for optimality.

For k ≥ 1, f (5k , 5) = 1.

For k = 1 and k ≥ 3, f (5k + 1, 5) = 5k+1
10k+5

For k ≥ 2, f (5k + 2, 5) = 5k−2
10k

For k ≥ 1, f (5k + 3, 5) = 5k+3
10k+10

For k ≥ 1, f (5k + 4, 5) = 5k+1
10k+5



What About FIVE students, ELEVEN muffins?

Procedure:

Divide the Muffins in to Pieces:

1. Divide 6 muffins into (1330 ,
17
30).

2. Divide 4 muffins into ( 9
20 ,

11
20).

3. Divide 1 muffin into (12 ,
1
2).

Distribute the Shares to Students:

1. Give 2 students [1730 ,
17
30 ,

17
30 ,

1
2 ].

2. Give 2 students [1330 ,
13
30 ,

13
30 ,

9
20 ,

9
20 ]

3. Give 1 student [1120 ,
11
20 ,

11
20 ,

11
20 ]

So

f (11, 5) ≥ 13

30
∼ 0.43333.



What About FIVE students, ELEVEN muffins? Opt

Recall: Floor-Ceiling Theorem:

f (m, s) ≤ max

{
1

3
,min

{
m

s d2m/se
, 1− m

s b2m/sc

}}
.

f (11, 5) ≤ max

{
1

3
,min

{
11

5 d22/5e
, 1− 11

5 b22/5c

}}
.

f (11, 5) ≤ max

{
1

3
,min

{
11

5× 5
, 1− 11

5× 4

}}
.

f (11, 5) ≤ max

{
1

3
,min

{
11

25
,

9

20

}}
.

f (11, 5) ≤ max

{
1

3
,

11

25

}
=

11

25
= 0.44.



Where Are We On FIVE students, ELEVEN muffins?

I By Procedure 13
30 ∼ 0.43333 ≤ f (11, 5)

I By Floor-Ceiling f (11, 5) ≤ 11
25 ∼ .44

So
13

30
≤ f (11, 5) ≤ 11

25
Diff= 0.006666 . . .

Darling: 0.0066666 close enough ?
VOTE:

1. f (11, 5) = 13
30 : Needs NEW technique to show limits on

procedures.

2. f (11, 5) = 11
25 : Needs NEW better procedure.

3. f (11, 5) = α where 13
30 < α < 11

25 . Needs both:

4. UNKNOWN TO SCIENCE!

KNOWN: f(11, 5) =
13

30

HAPPY: New opt tech more interesting than new proc.



Where Are We On FIVE students, ELEVEN muffins?

I By Procedure 13
30 ∼ 0.43333 ≤ f (11, 5)

I By Floor-Ceiling f (11, 5) ≤ 11
25 ∼ .44

So
13

30
≤ f (11, 5) ≤ 11

25
Diff= 0.006666 . . .

Darling: 0.0066666 close enough ?

VOTE:

1. f (11, 5) = 13
30 : Needs NEW technique to show limits on

procedures.

2. f (11, 5) = 11
25 : Needs NEW better procedure.

3. f (11, 5) = α where 13
30 < α < 11

25 . Needs both:

4. UNKNOWN TO SCIENCE!

KNOWN: f(11, 5) =
13

30

HAPPY: New opt tech more interesting than new proc.



Where Are We On FIVE students, ELEVEN muffins?

I By Procedure 13
30 ∼ 0.43333 ≤ f (11, 5)

I By Floor-Ceiling f (11, 5) ≤ 11
25 ∼ .44

So
13

30
≤ f (11, 5) ≤ 11

25
Diff= 0.006666 . . .

Darling: 0.0066666 close enough ?
VOTE:

1. f (11, 5) = 13
30 : Needs NEW technique to show limits on

procedures.

2. f (11, 5) = 11
25 : Needs NEW better procedure.

3. f (11, 5) = α where 13
30 < α < 11

25 . Needs both:

4. UNKNOWN TO SCIENCE!

KNOWN: f(11, 5) =
13

30

HAPPY: New opt tech more interesting than new proc.



Where Are We On FIVE students, ELEVEN muffins?

I By Procedure 13
30 ∼ 0.43333 ≤ f (11, 5)

I By Floor-Ceiling f (11, 5) ≤ 11
25 ∼ .44

So
13

30
≤ f (11, 5) ≤ 11

25
Diff= 0.006666 . . .

Darling: 0.0066666 close enough ?
VOTE:

1. f (11, 5) = 13
30 : Needs NEW technique to show limits on

procedures.

2. f (11, 5) = 11
25 : Needs NEW better procedure.

3. f (11, 5) = α where 13
30 < α < 11

25 . Needs both:

4. UNKNOWN TO SCIENCE!

KNOWN: f(11, 5) =
13

30

HAPPY: New opt tech more interesting than new proc.



f (11, 5) = 13
30 , Easy Case Based on Muffins

There is a procedure for 11 muffins, 5 students where each student
gets 11

5 muffins, smallest piece N. We want N ≤ 13
30 .

Case 0: Some muffin is uncut. Cut it (12 ,
1
2) and give both halves

to whoever got the uncut muffin. Reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. N ≤ 1
3 <

13
30 .

(Negation of Case 0 and Case 1: All muffins cut into 2 pieces.)



f (11, 5) = 13
30 , Easy Case Based on Students

Case 2: Some student gets ≥ 6 pieces.

N ≤ 11

5
× 1

6
=

11

30
<

13

30
.

Case 3: Some student gets ≤ 3 pieces.
One of the pieces is

≥ 11

5
× 1

3
=

11

15
.

Look at the muffin it came from to find a piece that is

≤ 1− 11

15
=

4

15
<

13

30
.

(Negation of Cases 2 and 3: Every student gets 4 or 5 pieces.)



f (11, 5) = 13
30 , Fun Cases

Case 4: Every muffin is cut in 2 pieces, every student gets 4 or 5
pieces. Number of pieces: 22. Note ≤ 11 pieces are > 1

2 .

I s4 is number of students who get 4 pieces

I s5 is number of students who get 5 pieces

4s4 + 5s5 = 22
s4 + s5 = 5

s4 = 3: There are 3 students who have 4 pieces.
s5 = 2: There are 2 students who have 5 pieces.



f (11, 5) = 13
30 , Fun Cases

� � � � � (Sums to 11/5)
� � � � � (Sums to 11/5)

◦ ◦ ◦ ◦ (Sums to 11/5)
◦ ◦ ◦ ◦ (Sums to 11/5)

◦ ◦ ◦ ◦ (Sums to 11/5)

Case 4.1: One of (say)

◦ ◦ ◦ ◦ (Sums to 11/5)

is ≤ 1
2 . Then there is a piece

≥ (11/5)− (1/2)

3
=

17

30
.

The other piece from the muffin is

≤ 1− 17

30
=

13

30
Great to see

13

30
.



f (11, 5) = 13
30 , Fun Cases

Case 4.2: All

◦ ◦ ◦ ◦ (Sums to 11/5)
◦ ◦ ◦ ◦ (Sums to 11/5)

◦ ◦ ◦ ◦ (Sums to 11/5)

are > 1
2 .

There are ≥ 12 pieces > 1
2 . Can’t occur.



The Techniques Generalizes!

Good News!
The technique used to get f (11, 5) ≤ 13

30 lead to a theorem that
apply to other cases! We call it The Interval Theorem

Bad News!
Interval Theorem is hard to state, so you don’t get to see it.

Good News!
Interval Theorem is hard to state, so you don’t have to see it.



For Fixed Num of Students s do get a Mod Pattern?

Known: (Empirical) For 1 ≤ s ≤ 100, f (m, s) has mod-s pattern
with a finite number of exceptions.
Exceptions!

1. f (s + 1, s)

2. f (m, s) = 1
3

3. f (m, s) used Interval Theorem



The Number of Exceptions (1-10)

s (s + 1, s)/excep 1
3/excep INT/excep

1 1/0 0/0 0/0
2 1/0 0/0 0/0
3 1/0 0/0 0/0
4 1/0 0/0 0/0
5 1/0 1/1 1/1
6 1/1 0/0 0/0
7 1/1 1/1 1/1
8 1/0 1/1 0/0
9 1/1 1/1 4/4

10 1/1 0/0 0/0



The Number of Exceptions (11-20)

s (s + 1, s)/excep 1
3/excep INT/excep

11 1/0 2/2 5/5
12 1/1 1/1 0/0
13 1/1 2/2 9/9
14 1/1 1/1 3/3
15 1/0 1/1 8/8
16 1/1 1/1 2/2
17 1/1 3/3 12/12
18 1/0 1/1 2/2
19 1/1 3/3 15/15
20 1/1 2/2 2/2



Does f (m, s) Always Exist?

Plausible:

1. There is a protocol showing f (m, s) ≥ 1
5

2. There is a protocol showing f (m, s) ≥ 1
5 + 1

52

3. There is a protocol showing f (m, s) ≥ 1
5 + 1

52
+ 1

53

4.
...

But NO protocol shows f (m, s) ≥ 1
5 + 1

52
+ · · · = 1

4 .

But never happens. Will show f (m, s) always exists.

Plausible: f (m, s) = 1
π (so π is key to muffins!)

But never happens. Will show f (m, s) always rational.

Plausible: f (m, s) is not computable.
But no. Will show f (m, s) is computable.
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f (m, s) Exist, Rational, Computable
Let xij be the fraction of Muffin i that Student j gets.
Each Muffin adds to 1:

(∀i)[
s∑

j=1

xij = 1].

Each Student gets m
s :

(∀j)[
m∑
i=1

xij =
m

s
].

Each Piece is of size between 0 and 1:

(∀i , j)[0 ≤ xij ≤ 1].

Maximize min
1≤i≤m,1≤j≤s

xij

relative to the constraints above.



Rephrase the Problem

Maximize z
Relative to constraints:

(∀i)[
s∑

j=1

xij = 1]

(∀j)[
m∑
i=1

xij =
m

s
]

(∀i , j)[z ≤ xij ≤ 1]

This is a standard Linear Programming Problem!
There are very fast packages for it!
And Linear Programming is in P.

Does not work. Could have some xij = 0.
If NONE of Muffin 1’s goes to Student 3, so x13 = 0.
Get z = 0. Not what we want.
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Plan for Correct Version of the Problem

For each i , j introduce variable yij ∈ {0, 1} (0 OR 1).
Plan:

1. Will ensure that xij = 0 =⇒ yij = 1

2. Will ensure that xij > 0 =⇒ yij = 0

3. Will constrain z by z ≤ xij + yij
3.1 If xij = 0 then constraint is z ≤ 1, NO EFFECT.
3.2 If xij > 0 then constraint is z ≤ xij . WHAT WE WANT.



Correct Version of he Problem

Add to the constraints:

1. Add variable yij which is in {0, 1}.
2. Add the constraint xij + yij ≤ 1. Note that

I xij = 0 =⇒ xij + yij ≤ 1 (no constraint on yij)
I xij > 0 =⇒ yij < 1 =⇒ yij = 0

3. Add the constraint xij + yij ≥ 1
s . Note that

I xij = 0 =⇒ yij ≥ 1
s =⇒ yij = 1 =⇒ xij + yij = 1

I xij > 0 =⇒ xij ≥ 1
s =⇒ xij + yij ≥ 1

s (no constraint on yij)

4. Replace the constraint z ≤ xij with z ≤ xij + yij .



f (m, s) Rational! f (m, s) Computable!

Definition: A Mixed Integer Problem is defined by

1. linear constraints on the variables,

2. want to maximize (or minimize) a linear function,

3. some of the variables are constrained to be integers, the rest
reals.

Known:

1. All MIP’s with integer coefficients have rational solutions.

2. There is an algorithm to FIND the solutions to an MIP.

3. The problem is NP-complete (so thought to be hard to
compute).

We have an MIP for f (m, s) hence f (m, s) is exists!, rational!
computable!
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Not Just Theoretical

Good News: f (m, s) exists, is rational and computable!

Bad News: Proof uses MIP’s which are NP-complete
Good News: There are packages for MIP’s that are . . . okay.
Bad News: There is no more bad news which breaks the
symmetry of good/bad/good/bad.
Good News: We HAVE coded it up and we HAVE gotten some
results this way.
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The Synergy Between Fields

One often hears:
Pure Math done without an application in mind often ends
up being Applied!
(Number theory and Cryptography is a great example.)

One seldom hears (though its true):
Applied Math done for a real world applications often ends
up being used for Pure Math!
(MIP and Muffins is a ‘great’ example.)

Pure Math, Applied Math, Computer Science, Physics, all
play off each other! None of the four has moral superiority!



The Synergy Between Fields

One often hears:
Pure Math done without an application in mind often ends
up being Applied!
(Number theory and Cryptography is a great example.)

One seldom hears (though its true):
Applied Math done for a real world applications often ends
up being used for Pure Math!
(MIP and Muffins is a ‘great’ example.)

Pure Math, Applied Math, Computer Science, Physics, all
play off each other! None of the four has moral superiority!



The Synergy Between Fields

One often hears:
Pure Math done without an application in mind often ends
up being Applied!
(Number theory and Cryptography is a great example.)

One seldom hears (though its true):
Applied Math done for a real world applications often ends
up being used for Pure Math!
(MIP and Muffins is a ‘great’ example.)

Pure Math, Applied Math, Computer Science, Physics, all
play off each other! None of the four has moral superiority!



How Research Works

1. Obtain particular results.

2. Prove a general theorem based on those results.

3. Run into a case we cannot solve (e.g., (11,5) and (35,13)).

4. Lather, Rinse, Repeat.



What Else Have We Accomplished?

1. A formula for f (s + 1, s).

2. A computer program that helps us get procedures- used MIP

3. For 1 ≤ s ≤ 12, for all m, know f (m, s). Follows Mod Pattern.

4. Fix s. For large m f (m, s) is Floor-Ceiling bound. (Proven
June 21, 2017).



Conjectures I

Conjecture: For all s, f (m, s) has a mod pattern. For s = 5 mod
is 30, for s = 6 mod is 18, for all all other s, mod is s.

If Conjecture is true then:
Computing f (m, s) NP-hard =⇒ Σp

2 = Πp
2

Hence: We do not think that f (m, s) is NP-hard.



Conjectures II

FC (m, s) is the upper bound provided by Floor-Ceiling Thm.
IN(m, s) is the upper bound provided by INterval Thm.
SP(s + 1, s) is the exact answer provided by f (s + 1, s) Thm.

Conjecture: The following program computes f (m, s) for m > s.

I If d = gcd(m, s) 6= 1 then call f (m/d , s/d).

I If m = s + 1 output SP(s + 1, s).

I If s = 1 then output 1.

I Otherwise output the MIN of FC (m, s) and IN(m, s) (Also
conjecture that for fixed s, IN(m, s) will be the answer only
finitely often.)

Empirically true for 1 ≤ s ≤ 20, 1 ≤ m ≤ 100.
If True: Then computing f (m, s) would be in P and would not
need MIP to do so.
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Accomplishment I Am Most Proud of

Accomplishment I Am Most Proud of:

Convinced

I 4 High School students (Guang, Naveen, Naveen, Sunny)

I 1 college student (Erik)

I 1 professor (John D.)

that the most important field of Mathematics is Muffinry.



Accomplishment I Am Most Proud of

Accomplishment I Am Most Proud of:

Convinced

I 4 High School students (Guang, Naveen, Naveen, Sunny)

I 1 college student (Erik)

I 1 professor (John D.)

that the most important field of Mathematics is Muffinry.


