The Muffin Problem

Guangi Cui - Montgomery Blair HS
John Dickerson- University of MD
Naveen Durvasula - Montgomery Blair HS
William Gasarch - University of MD
Erik Metz - University of MD
Jacob Prinz-University of MD
Naveen Raman - Richard Montgomery HS
Daniel Smolyak- University of MD
Sung Hyun Yoo - Bergen County Academies (in NJ)
How it Began

A Recreational Math Conference
(Gathering for Gardner)
May 2016

I found a pamphlet:
The Julia Robinson Mathematics Festival:
A Sample of Mathematical Puzzles
Compiled by Nancy Blachman

which had this problem, proposed by Alan Frank:

How can you divide and distribute 5 muffins to 3 students so that every student gets \(\frac{5}{3} \) where nobody gets a tiny sliver?
Five Muffins, Three Students, Proc by Picture

<table>
<thead>
<tr>
<th>Person</th>
<th>Color</th>
<th>What they Get</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>RED</td>
<td>$1 + \frac{2}{3} = \frac{5}{3}$</td>
</tr>
<tr>
<td>Bob</td>
<td>BLUE</td>
<td>$1 + \frac{2}{3} = \frac{5}{3}$</td>
</tr>
<tr>
<td>Carol</td>
<td>GREEN</td>
<td>$1 + \frac{1}{3} + \frac{1}{3} = \frac{5}{3}$</td>
</tr>
</tbody>
</table>

Smallest Piece: $\frac{1}{3}$
Can We Do Better?

The smallest piece in the above solution is $\frac{1}{3}$.

Is there a procedure with a larger smallest piece?

VOTE
Can We Do Better?

The smallest piece in the above solution is $\frac{1}{3}$.

Is there a procedure with a larger smallest piece?

VOTE

- YES
- NO
Can We Do Better?

The smallest piece in the above solution is $\frac{1}{3}$.

Is there a procedure with a larger smallest piece?

VOTE

- YES
- NO

YES WE CAN!

We use ! since we are excited that we can!
Five Muffins, Three People–Proc by Picture

<table>
<thead>
<tr>
<th>Person</th>
<th>Color</th>
<th>What they Get</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>RED</td>
<td>$\frac{6}{12} + \frac{7}{12} + \frac{7}{12}$</td>
</tr>
<tr>
<td>Bob</td>
<td>BLUE</td>
<td>$\frac{6}{12} + \frac{7}{12} + \frac{7}{12}$</td>
</tr>
<tr>
<td>Carol</td>
<td>GREEN</td>
<td>$\frac{5}{12} + \frac{5}{12} + \frac{5}{12} + \frac{5}{12}$</td>
</tr>
</tbody>
</table>

Smallest Piece: $\frac{5}{12}$
Can We Do Better?

The smallest piece in the above solution is \(\frac{5}{12} \).

Is there a procedure with a larger smallest piece?

VOTE

- **YES**
- **NO**
Can We Do Better?

The smallest piece in the above solution is \(\frac{5}{12} \).

Is there a procedure with a larger smallest piece?

VOTE

- YES
- NO

NO WE CAN’T!

We use ! since we are excited to prove we can’t do better!
Five Muffins, Three People—Can’t Do Better Than $\frac{5}{12}$

There is a procedure for 5 muffins, 3 students where each student gets $\frac{5}{3}$ muffins, smallest piece N. We want $N \leq \frac{5}{12}$.

Case 0: Some muffin is uncut. Cut it $(\frac{1}{2}, \frac{1}{2})$ and give both $\frac{1}{2}$-sized pieces to whoever got the uncut muffin. (Note $\frac{1}{2} > \frac{5}{12}$.) Reduces to other cases.

Henceforth: All muffins are cut into ≥ 2 pieces.)

Case 1: Some muffin is cut into ≥ 3 pieces. Then $N \leq \frac{1}{3} < \frac{5}{12}$.

Henceforth: All muffins are cut into 2 pieces.)

Case 2: All muffins are cut into 2 pieces. 10 pieces, 3 students: **Someone** gets ≥ 4 pieces. He has some piece

$$\leq \frac{5}{3} \times \frac{1}{4} = \frac{5}{12}$$

Great to see $\frac{5}{12}$
1. Procedure for 5 muffins, 3 people, smallest piece \(\frac{5}{12} \).
2. NO Procedure for 5 muffins, 3 people, smallest piece > \(\frac{5}{12} \).

Amazing That Have Exact Result!
Be Amazed Now! And Later!

1. Procedure for 5 muffins, 3 people, smallest piece \(\frac{5}{12} \).
2. NO Procedure for 5 muffins, 3 people, smallest piece \(> \frac{5}{12} \).

Amazing That Have Exact Result!

Prepare To Be More Amazed! On Next Page!
Amazing Results!

1. Procedure for 47 muffins, 9 people, smallest piece $\frac{111}{234}$.
2. NO Procedure for 47 muffins, 9 people, smallest piece $\frac{111}{234}$.

All done by hand, no use of a computer.

Co-author Erik Metz is a muffin savant.
Amazing Results!

1. Procedure for 47 muffins, 9 people, smallest piece $\frac{111}{234}$.
2. NO Procedure for 47 muffins, 9 people, smallest piece $\geq \frac{111}{234}$.

1. Procedure for 52 muffins, 11 people, smallest piece $\frac{83}{176}$.
2. NO Procedure for 52 muffins, 11 people, smallest piece $\geq \frac{83}{176}$.

All done by hand, no use of a computer.

Co-author Erik Metz is a muffin savant.
Amazing Results!

1. Procedure for 47 muffins, 9 people, smallest piece $\frac{111}{234}$.
2. NO Procedure for 47 muffins, 9 people, smallest piece $> \frac{111}{234}$.

1. Procedure for 52 muffins, 11 people, smallest piece $\frac{83}{176}$.
2. NO Procedure for 52 muffins, 11 people, smallest piece $> \frac{83}{176}$.

1. Procedure for 35 muffins, 13 people, smallest piece $\frac{64}{143}$.
2. NO Procedure for 35 muffins, 13 people, smallest piece $> \frac{64}{143}$.

Co-author Erik Metz is a muffin savant.
Amazing Results!

1. Procedure for 47 muffins, 9 people, smallest piece $\frac{111}{234}$.
2. NO Procedure for 47 muffins, 9 people, smallest piece $\geq \frac{111}{234}$.

1. Procedure for 52 muffins, 11 people, smallest piece $\frac{83}{176}$.
2. NO Procedure for 52 muffins, 11 people, smallest piece $\geq \frac{83}{176}$.

1. Procedure for 35 muffins, 13 people, smallest piece $\frac{64}{143}$.
2. NO Procedure for 35 muffins, 13 people, smallest piece $\geq \frac{64}{143}$.

All done by hand, no use of a computer
Amazing Results!

1. Procedure for 47 muffins, 9 people, smallest piece $\frac{111}{234}$.
2. NO Procedure for 47 muffins, 9 people, smallest piece $\frac{111}{234}$.

1. Procedure for 52 muffins, 11 people, smallest piece $\frac{83}{176}$.
2. NO Procedure for 52 muffins, 11 people, smallest piece $\frac{83}{176}$.

1. Procedure for 35 muffins, 13 people, smallest piece $\frac{64}{143}$.
2. NO Procedure for 35 muffins, 13 people, smallest piece $\frac{64}{143}$.

All done by hand, no use of a computer

Co-author Erik Metz is a muffin savant
General Problem

How can you divide and distribute \(m \) muffins to \(s \) students so that each students gets \(\frac{m}{s} \) AND the MIN piece is MAXIMIZED?

An \((m, s)\)-procedure is a way to divide and distribute \(m \) muffins to \(s \) students so that each student gets \(\frac{m}{s} \) muffins.

An \((m, s)\)-procedure is **optimal** if it has the largest smallest piece of any procedure.

\(f(m, s) \) be the smallest piece in an optimal \((m, s)\)-procedure.

We have shown \(f(5, 3) = \frac{5}{12} \).

Note: \(f(m, s) \geq \frac{1}{s} \): divide each muffin into \(s \) pieces of size \(\frac{1}{s} \) and give each student \(m \) of them.
$f(3, 5) \geq ?$

Clearly $f(3, 5) \geq \frac{1}{5}$. Can we get $f(3, 5) > \frac{1}{5}$? Think about it at your desk.
Clearly $f(3, 5) \geq \frac{1}{5}$. Can we get $f(3, 5) > \frac{1}{5}$?

Think about it at your desk.

$f(3, 5) \geq \frac{1}{4}$

1. Divide 2 muffin $[\frac{6}{20}, \frac{7}{20}, \frac{7}{20}]$
2. Divide 1 muffin $[\frac{5}{20}, \frac{5}{20}, \frac{5}{20}, \frac{5}{20}]$
3. Give 4 students $\left(\frac{5}{20}, \frac{7}{20}\right)$
4. Give 1 students $\left(\frac{6}{20}, \frac{6}{20}\right)$

Can we do better? Vote: YES NO UNKNOWN TO SCIENCE NO

Proof on next slide.
$f(3, 5) \geq \frac{1}{5}$\?

Clearly $f(3, 5) \geq \frac{1}{5}$. Can we get $f(3, 5) > \frac{1}{5}$?

Think about it at your desk.

$f(3, 5) \geq \frac{1}{4}$

1. Divide 2 muffin $[\frac{6}{20}, \frac{7}{20}, \frac{7}{20}]$
2. Divide 1 muffin $[\frac{5}{20}, \frac{5}{20}, \frac{5}{20}, \frac{5}{20}]$
3. Give 4 students $\left(\frac{5}{20}, \frac{7}{20}\right)$
4. Give 1 students $\left(\frac{6}{20}, \frac{6}{20}\right)$

Can we do better? Vote:
Clearly $f(3, 5) \geq \frac{1}{5}$. Can we get $f(3, 5) > \frac{1}{5}$?

Think about it at your desk.

$f(3, 5) \geq \frac{1}{4}$

1. Divide 2 muffin $[\frac{6}{20}, \frac{7}{20}, \frac{7}{20}]$
2. Divide 1 muffin $[\frac{5}{20}, \frac{5}{20}, \frac{5}{20}, \frac{5}{20}]$
3. Give 4 students $\left(\frac{5}{20}, \frac{7}{20}\right)$
4. Give 1 students $\left(\frac{6}{20}, \frac{6}{20}\right)$

Can we do better? Vote:

YES

NO

UNKNOWN TO SCIENCE
Clearly \(f(3, 5) \geq \frac{1}{5} \). Can we get \(f(3, 5) > \frac{1}{5} \)?

Think about it at your desk.

\[f(3, 5) \geq \frac{1}{4} \]

1. Divide 2 muffin \([\frac{6}{20}, \frac{7}{20}, \frac{7}{20}] \)
2. Divide 1 muffin \([\frac{5}{20}, \frac{5}{20}, \frac{5}{20}, \frac{5}{20}] \)
3. Give 4 students \((\frac{5}{20}, \frac{7}{20}) \)
4. Give 1 students \((\frac{6}{20}, \frac{6}{20}) \)

Can we do better? Vote:

YES
NO
UNKNOWN TO SCIENCE
NO Proof on next slide.
There is a procedure for 3 muffins, 5 students where each student gets \(\frac{3}{5} \) muffins, smallest piece \(N \). We want \(N \leq \frac{1}{4} \).

Case 0: Some student gets 1 piece, so size \(\frac{3}{5} \). Cut that piece in half and give both \(\frac{3}{10} \)-sized pieces to that student. (Note \(\frac{3}{10} > \frac{1}{4} \).) Reduces to other cases. (Henceforth: All students get \(\geq 2 \) pieces.)

Case 1: Some student gets \(\geq 3 \) pieces. Then \(N \leq \frac{3}{5} \times \frac{1}{3} = \frac{1}{5} < \frac{1}{4} \). (Henceforth: All students get 2 pieces.)

Case 2: All students get 2 pieces. 5 students, so 10 pieces. **Some muffin** gets cut into \(\geq 4 \) pieces. Some piece \(\leq \frac{1}{4} \).
3 People, 5 Muffins VS 5 People, 3 Muffins

\[f(5, 3) \geq \frac{5}{12} \]

1. Divide 4 muffins \([\frac{5}{12}, \frac{7}{12}]\)
2. Divide 1 muffin \([\frac{6}{12}, \frac{6}{12}]\)
3. Give 2 students \((\frac{6}{12}, \frac{7}{12}, \frac{7}{12})\)
4. Give 1 students \((\frac{5}{12}, \frac{5}{12}, \frac{5}{12}, \frac{5}{12})\)
3 People, 5 Muffins VS 5 People, 3 Muffins

\[f(5, 3) \geq \frac{5}{12} \]

1. Divide 4 muffins \([\frac{5}{12}, \frac{7}{12}]\)
2. Divide 1 muffin \([\frac{6}{12}, \frac{6}{12}]\)
3. Give 2 students \((\frac{6}{12}, \frac{7}{12}, \frac{7}{12})\)
4. Give 1 students \((\frac{5}{12}, \frac{5}{12}, \frac{5}{12}, \frac{5}{12})\)

\[f(3, 5) \geq \frac{1}{4} \]

1. Divide 2 muffin \([\frac{6}{20}, \frac{7}{20}, \frac{7}{20}]\)
2. Divide 1 muffin \([\frac{5}{20}, \frac{5}{20}, \frac{5}{20}, \frac{5}{20}]\)
3. Give 4 students \((\frac{5}{20}, \frac{7}{20})\)
4. Give 1 students \((\frac{6}{20}, \frac{6}{20})\)
3 People, 5 Muffins VS 5 People, 3 Muffins

\[f(5, 3) \geq \frac{5}{12} \]

1. Divide 4 muffins \([\frac{5}{12}, \frac{7}{12}]\)
2. Divide 1 muffin \([\frac{6}{12}, \frac{6}{12}]\)
3. Give 2 students \((\frac{6}{12}, \frac{7}{12}, \frac{7}{12})\)
4. Give 1 students \((\frac{5}{12}, \frac{5}{12}, \frac{5}{12}, \frac{5}{12})\)

\[f(3, 5) \geq \frac{1}{4} \]

1. Divide 2 muffin \([\frac{6}{20}, \frac{7}{20}, \frac{7}{20}]\)
2. Divide 1 muffin \([\frac{5}{20}, \frac{5}{20}, \frac{5}{20}, \frac{5}{20}]\)
3. Give 4 students \((\frac{5}{20}, \frac{7}{20})\)
4. Give 1 students \((\frac{6}{20}, \frac{6}{20})\)

\[f(3, 5) \text{ proc is } f(5, 3) \text{ proc but swap Divide/Give and mult by 3/5.} \]
3 People, 5 Muffins VS 5 People, 3 Muffins

\[f(5, 3) \geq \frac{5}{12} \]

1. Divide 4 muffins \([\frac{5}{12}, \frac{7}{12}]\)
2. Divide 1 muffin \([\frac{6}{12}, \frac{6}{12}]\)
3. Give 2 students \((\frac{6}{12}, \frac{7}{12}, \frac{7}{12})\)
4. Give 1 students \((\frac{5}{12}, \frac{5}{12}, \frac{5}{12}, \frac{5}{12})\)

\[f(3, 5) \geq \frac{1}{4} \]

1. Divide 2 muffin \([\frac{6}{20}, \frac{7}{20}, \frac{7}{20}]\)
2. Divide 1 muffin \([\frac{5}{20}, \frac{5}{20}, \frac{5}{20}, \frac{5}{20}]\)
3. Give 4 students \((\frac{5}{20}, \frac{7}{20})\)
4. Give 1 students \((\frac{6}{20}, \frac{6}{20})\)

\(f(3, 5) \) proc is \(f(5, 3) \) proc but swap Divide/Give and mult by 3/5.

Theorem: \(f(m, s) = \frac{m}{s} f(s, m) \).
Floor-Ceiling Theorem (Generalize $f(5, 3) \leq \frac{5}{12}$)

$$f(m, s) \leq \max\left\{\frac{1}{3}, \min\left\{\frac{m}{s\lceil 2m/s \rceil}, 1 - \frac{m}{s\lceil 2m/s \rceil}\right\}\right\}.$$

Case 0: Some muffin is uncut. Cut it ($\frac{1}{2}, \frac{1}{2}$) and give both halves to whoever got the uncut muffin, so reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. Some piece $\leq \frac{1}{3}$.

Case 2: Every muffin is cut into 2 pieces, so $2m$ pieces.

Someone gets $\geq \lceil \frac{2m}{s} \rceil$ pieces. \exists piece $\leq \frac{m}{s} \times \frac{1}{\lceil 2m/s \rceil} = \frac{m}{s\lceil 2m/s \rceil}$.

Someone gets $\leq \lfloor \frac{2m}{s} \rfloor$ pieces. \exists piece $\geq \frac{m}{s} \lfloor 2m/s \rfloor = \frac{m}{s\lfloor 2m/s \rfloor}$.

The other piece from that muffin is of size $\leq 1 - \frac{m}{s\lfloor 2m/s \rfloor}$.
THREE Students

CLEVERNESS, COMP PROGS for the procedure.

Floor-Ceiling Theorem for optimality.

\[f(1, 3) = \frac{1}{3} \]

\[f(3k, 3) = 1. \]

\[f(3k + 1, 3) = \frac{3k-1}{6k}, \quad k \geq 1. \]

\[f(3k + 2, 3) = \frac{3k+2}{6k+6}. \]
FOUR Students

CLEVERNESS, COMP PROGS for procedures.

Floor-Ceiling Theorem for optimality.

\[f(4k, 4) = 1 \text{ (easy)} \]
\[f(1, 4) = \frac{1}{4} \text{ (easy)} \]
\[f(4k + 1, 4) = \frac{4k-1}{8k}, \text{ } k \geq 1. \]
\[f(4k + 2, 4) = \frac{1}{2}. \]
\[f(4k + 3, 4) = \frac{4k+1}{8k+4}. \]

Is FIVE student case a Mod 5 pattern?
VOTE YES or NO
FOUR Students

CLEVERNESS, COMP PROGS for procedures.

Floor-Ceiling Theorem for optimality.

\[f(4k, 4) = 1 \text{ (easy)} \]
\[f(1, 4) = \frac{1}{4} \text{ (easy)} \]
\[f(4k + 1, 4) = \frac{4k - 1}{8k}, \quad k \geq 1. \]
\[f(4k + 2, 4) = \frac{1}{2}. \]
\[f(4k + 3, 4) = \frac{4k + 1}{8k + 4}. \]

Is FIVE student case a Mod 5 pattern?
VOTE YES or NO
YES but with some exceptions
FIVE Students, \(m = 1, \ldots, 11 \)

\[
f(1, 5) = \frac{1}{5} \quad (\text{easy or use } f(1, 5) = \frac{5}{1} f(5, 1).)
\]

\[
f(2, 5) = \frac{1}{5} \quad (\text{easy or use } f(2, 5) = \frac{5}{2} f(5, 2).)
\]

\[
f(3, 5) = \frac{1}{4} \quad (\text{use } f(3, 5) = \frac{3}{5} f(5, 3).)
\]

\[
f(4, 5) = \frac{3}{10} \quad (\text{use } f(4, 5) = \frac{4}{5} f(5, 4).)
\]

\[
f(5, 5) = 1 \quad (\text{Easy and fits pattern})
\]

\[
f(6, 5) = \frac{2}{5} \quad (\text{Use Floor-Ceiling Thm}, \text{ fits pattern})
\]

\[
f(7, 5) = \frac{1}{3} \quad (\text{Use Floor-Ceiling Thm}, \text{ NOT pattern})
\]

\[
f(8, 5) = \frac{2}{5} \quad (\text{Use Floor-Ceiling Thm}, \text{ fits pattern})
\]

\[
f(9, 5) = \frac{2}{5} \quad (\text{Use Floor-Ceiling Thm}, \text{ fits pattern})
\]

\[
f(10, 5) = 1 \quad (\text{Easy and fits pattern})
\]

\[
f(11, 5) = (\text{Will come back to this later})
\]
CLEVERNESS, COMP PROGS for procedures.

Floor-Ceiling Theorem for optimality.

For \(k \geq 1 \), \(f(5k, 5) = 1 \).

For \(k = 1 \) and \(k \geq 3 \), \(f(5k + 1, 5) = \frac{5k+1}{10k+5} \)

For \(k \geq 2 \), \(f(5k + 2, 5) = \frac{5k-2}{10k} \)

For \(k \geq 1 \), \(f(5k + 3, 5) = \frac{5k+3}{10k+10} \)

For \(k \geq 1 \), \(f(5k + 4, 5) = \frac{5k+1}{10k+5} \)
What About FIVE students, ELEVEN muffins?

\[f(11, 5) \geq \frac{13}{30}. \]

Procedure:

1. Divide 8 muffins into \(\left(\frac{13}{30}, \frac{17}{30} \right) \).
2. Divide 2 muffins into \(\left(\frac{14}{30}, \frac{16}{30} \right) \).
3. Divide 1 muffin into \(\left(\frac{15}{30}, \frac{15}{30} \right) \).
4. Give 2 students \(\left[\frac{14}{30}, \frac{13}{30}, \frac{13}{30}, \frac{13}{20}, \frac{13}{20} \right] \).
5. Give 1 student \(\left[\frac{17}{30}, \frac{17}{30}, \frac{16}{30}, \frac{16}{20} \right] \).
6. Give 2 students \(\left[\frac{17}{30}, \frac{17}{30}, \frac{17}{30}, \frac{15}{30} \right] \).
What About FIVE students, ELEVEN muffins?

\[
f(m, s) \leq \max\left\{ \frac{1}{3}, \min\left\{ \frac{m}{s \lceil 2m/s \rceil}, 1 - \frac{m}{s \lfloor 2m/s \rfloor} \right\} \right\} \leq 0.44.\]

So

\[
\frac{13}{30} \leq f(11, 5) \leq \frac{11}{25} \quad \text{Diff} = 0.006666\ldots
\]
What About FIVE students, ELEVEN muffins?

\[
f(m, s) \leq \max \left\{ \frac{1}{3}, \min \left\{ \frac{m}{s \lceil 2m/s \rceil}, 1 - \frac{m}{s \lfloor 2m/s \rfloor} \right\} \right\} \leq 0.44.
\]

So
\[
\frac{13}{30} \leq f(11, 5) \leq \frac{11}{25} \quad \text{Diff} = 0.006666\ldots
\]

VOTE:
1. \(f(11, 5) = \frac{13}{30} \): Needs NEW methods to bound \(f(m, s) \).
2. \(f(11, 5) = \frac{11}{25} \): Needs NEW better procedure.
3. \(f(11, 5) = \alpha \) where \(\frac{13}{30} < \alpha < \frac{11}{25} \). Needs both:
4. **UNKNOWN TO SCIENCE!**
What About FIVE students, ELEVEN muffins?

\[f(m, s) \leq \max \left\{ \frac{1}{3}, \min \left\{ \frac{m}{s \lceil 2m/s \rceil}, 1 - \frac{m}{s \lfloor 2m/s \rfloor} \right\} \right\} \leq 0.44. \]

So

\[\frac{13}{30} \leq f(11, 5) \leq \frac{11}{25} \quad \text{Diff} = 0.006666... \]

VOTE:

1. \(f(11, 5) = \frac{13}{30} \): Needs NEW methods to bound \(f(m, s) \).
2. \(f(11, 5) = \frac{11}{25} \): Needs NEW better procedure.
3. \(f(11, 5) = \alpha \) where \(\frac{13}{30} < \alpha < \frac{11}{25} \). Needs both:
4. **UNKNOWN TO SCIENCE!**

KNOWN: \(f(11, 5) = \frac{13}{30} \)

HAPPY: New opt tech more interesting than new proc.
There is a procedure for 11 muffins, 5 students where each student gets \(\frac{11}{5} \) muffins, smallest piece \(N \). We want \(N \leq \frac{13}{30} \).

Case 0: Some muffin is uncut. Cut it \((\frac{1}{2}, \frac{1}{2}) \) and give both halves to whoever got the uncut muffin. Reduces to other cases.

Case 1: Some muffin is cut into \(\geq 3 \) pieces. \(N \leq \frac{1}{3} < \frac{13}{30} \).

(Negation of Case 0 and Case 1: All muffins cut into 2 pieces.)
$f(11, 5) = \frac{13}{30}$, Easy Case Based on Students

Case 2: Some student gets ≥ 6 pieces.

\[N \leq \frac{11}{5} \times \frac{1}{6} = \frac{11}{30} < \frac{13}{30}. \]

Case 3: Some student gets ≤ 3 pieces.

One of the pieces is

\[\geq \frac{11}{5} \times \frac{1}{3} = \frac{11}{15}. \]

Look at the muffin it came from to find a piece that is

\[\leq 1 - \frac{11}{15} = \frac{4}{15} < \frac{13}{30}. \]

(****Negation of Cases 2 and 3: Every student gets 4 or 5 pieces.****)
Case 4: Every muffin is cut in 2 pieces, every student gets 4 or 5 pieces. Number of pieces: 22. Note \(\leq 11 \) pieces are \(> \frac{1}{2} \).

- \(s_4 \) is number of students who get 4 pieces
- \(s_5 \) is number of students who get 5 pieces

\[
4s_4 + 5s_5 = 22 \\
\quad s_4 + s_5 = 5
\]

\(s_4 = 3 \): There are 3 students who have 4 pieces.
\(s_5 = 2 \): There are 2 students who have 5 pieces.
\[f(11, 5) = \frac{13}{30}, \text{ Fun Cases} \]

\[\begin{align*}
\Diamond & \; (\text{Sums to } 11/5) \\
\Diamond & \; (\text{Sums to } 11/5) \\
\Diamond & \; (\text{Sums to } 11/5) \\
\Diamond & \; (\text{Sums to } 11/5) \\
\Diamond & \; (\text{Sums to } 11/5) \\
\Diamond & \; (\text{Sums to } 11/5) \\
\Diamond & \; (\text{Sums to } 11/5) \\
\Diamond & \; (\text{Sums to } 11/5) \\
\Diamond & \; (\text{Sums to } 11/5) \\
\end{align*} \]

Case 4.1: One of (say)

\[\begin{align*}
\Diamond & \; (\text{Sums to } 11/5) \\
\Diamond & \; (\text{Sums to } 11/5) \\
\Diamond & \; (\text{Sums to } 11/5) \\
\Diamond & \; (\text{Sums to } 11/5) \\
\Diamond & \; (\text{Sums to } 11/5) \\
\Diamond & \; (\text{Sums to } 11/5) \\
\Diamond & \; (\text{Sums to } 11/5) \\
\Diamond & \; (\text{Sums to } 11/5) \\
\end{align*} \]

is \(\leq \frac{1}{2} \). Then there is a piece

\[\geq \frac{(11/5) - (1/2)}{3} = \frac{17}{30}. \]

The other piece from the muffin is

\[\leq 1 - \frac{17}{30} = \frac{13}{30} \quad \text{Great to see } \frac{13}{30}. \]
\(f(11, 5) = \frac{13}{30} \), Fun Cases

Case 4.2: All

\[\circ \circ \circ \circ \circ \] (Sums to 11/5)
\[\circ \circ \circ \circ \circ \] (Sums to 11/5)
\[\circ \circ \circ \circ \circ \] (Sums to 11/5)

are > \(\frac{1}{2} \).
There are \(\geq 12 \) pieces > \(\frac{1}{2} \). Can't occur.
The technique for $f(11, 5) \leq \frac{13}{30}$ has a generalization with a bakers dozen subcases. We do one concrete example:

Definition: Assume we have a protocol where all muffins are cut into two pieces. If x is a piece then the other piece in the muffin it came from is its **buddy**. Note that $B(x) = 1 - x$.
Theorem: \(f(24, 11) \leq \frac{19}{44} \) (≥ also known)

Assume \((24, 11)\)-procedure with smallest piece > \(\frac{19}{44}\).
Can assume all muffin cut in two and all student gets ≥ 2 shares.
We show that there is a piece ≤ \(\frac{19}{44}\).

Case 1: A student gets ≥ 6 shares. Some piece ≤ \(\frac{24}{11 \times 6} < \frac{19}{44}\).

Case 2: A student gets ≤ 3 shares. Some piece ≥ \(\frac{24}{11 \times 3} = \frac{8}{11}\).
Buddy of that piece ≤ \(1 - \frac{8}{11} \leq \frac{3}{11} < \frac{19}{44}\).

Case 3: Every muffin is cut in 2 pieces and every student gets either 4 or 5 shares. Total number of shares is 48.
How many students get 4? 5? Where are the Shares?

Let s_4 (s_5) be the number of 4-students (5-students).

$$4s_4 + 5s_5 = 48$$
$$s_4 + s_5 = 11$$

Get $s_4 = 7$ and $s_5 = 4$

Case 3.1: (\exists) 4-sh $\leq \frac{21}{44}$. Rm. Now: 3 shares $\geq \frac{24}{11} - \frac{21}{44}$. ($\exists$) share

$$\geq \frac{(24/11) - (21/44)}{3} = \frac{25}{44}.$$

Buddy is

$$\leq 1 - \frac{25}{44} = \frac{19}{44}.$$

SO can assume all 4-shares are $> \frac{21}{44}$.

By similar reasoning:

Case 3.2: 4-shares in $\left(\frac{21}{44}, \frac{25}{44} \right)$, 5-shares in $\left(\frac{19}{44}, \frac{20}{44} \right)$.

$$\begin{pmatrix} 19/44 & 20/44 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} \begin{pmatrix} 21/44 & 25/44 \end{pmatrix}$$
More Refined Picture of What is Going On

\[
\begin{pmatrix}
(20 \text{ 5-shs})
\end{pmatrix}[0 \text{ shs}]
(28 \text{ 4-shs})
\]
\[
\begin{pmatrix}
\frac{19}{44} & \frac{20}{44} & \frac{21}{44} & \frac{25}{44}
\end{pmatrix}
\]

Claim 1: There are no shares \(x \in \left[\frac{23}{44}, \frac{24}{44}\right] \).

If there was such a share then \(B(x) \in \left[\frac{20}{44}, \frac{21}{44}\right] \).

The following picture captures what we know so far.

\[
\begin{pmatrix}
(20 \text{ 5-shs})
\end{pmatrix}[8 \text{ S4-shs}][0 \text{ shs}]
(20 \text{ L4-shs})
\]
\[
\begin{pmatrix}
\frac{19}{44} & \frac{20}{44} & \frac{21}{44} & \frac{23}{44} & \frac{24}{44} & \frac{25}{44}
\end{pmatrix}
\]
Claim 2: Every 4-student has at least 3 L4 shares.

If a 4-student had \(\leq 2 \) L4 shares then he has

\[
< 2 \times \left(\frac{23}{44} \right) + 2 \times \left(\frac{25}{44} \right) = \frac{24}{11}.
\]

Contradiction: There are at least \(3 \times s_4 = 3 \times 7 = 21 \) L4 shares. But there are only 20.
What Else do we Have -Concrete

1. Formulas for $f(m, 6)$ and $f(m, 7)$.
2. For $s = 8, \ldots, 100$ conjectures for $f(m, s)$. $f(m, s)$ seems to be a mod s pattern.
3. Formulas for $f(s + 1, s)$, $f(s + 2, s)$, $f(s + 3, s)$, $f(s + 4, s)$. $f(s + d, s)$ seems to have a mod $3d$ pattern.
4. A computer program that, on input m, s uses our theorems to find α with $f(m, s) \leq \alpha$ and then tries to prove $f(m, s) \geq \alpha$ using linear algebra.
5. For $1 \leq m, s \leq 50$ have all $f(m, s)$ (Need to check that.)
6. Mixed integer program that always solves the problem but it is slow and has not been that useful.
1. For fixed s, for $m \geq \frac{s^3 + 2s^2 + s}{2}$ $f(m, s)$ matches the Floor-ceiling bound.

2. $f(m, s)$ always exists and is rational. Provable by compactness argument OR a large number of Linear Programs, OR one MIP. The last two proofs also give that $f(m, s)$ is computable. Nice synergy – applied math tools helping us prove theorems in pure math!
Consider:
Given m, s in binary, compute $f(m, s)$.

1. Is the problem in P? We keep on finding techniques that we think cover all cases (so it would be in P) but then finding a case not covered.
2. Is it in NP? The procedure might be very large compared to the input.
3. Is it NP-complete or NP-hard?
4. Given m, s is there a bound on the denominators of the sizes of shares used?
Open Problems-Misc

1. Show that for all $m \geq s$, $f(m, s) \geq \frac{1}{3}$.
2. Prove that we ALWAYS get mod s pattern for $f(m, s)$ (true for large enough m).
3. Prove that we ALWAYS get mod $3d$ pattern for $f(s + d, s)$.
Accomplishment I Am Most Proud of

Accomplishment I Am Most Proud of:

Convinced 4 High School students (Guang, Naveen, Naveen, Sunny) 3 college student (Erik, Jacob, Daniel) 1 professor (John D) that the most important field of Mathematics is Muffinry.
Accomplishment I Am Most Proud of:

Convinced

- 4 High School students (Guang, Naveen, Naveen, Sunny)
- 3 college student (Erik, Jacob, Daniel)
- 1 professor (John D)

that the most important field of Mathematics is **Muffinry**.