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1 Request for Columns!

I invite any reader who has knowledge of some area to contact me and arrange to write a column
about open problems in that area. That area can be (1) broad or narrow or anywhere inbetween,
and (2) really important or really unimportant or anywhere inbetween.

2 The Set Up

BILL: I have a nice problem to tell you about. First, the setup. Say you have a finite coloring

of Rn. A mono unit square is a set of four points that are (a) all the same color, and (b) form a
square of side 1. The square does not need to be parallel to any of the axes.
DARLING: Okay. What is the problem?

BILL: It is known that for all 2-colorings of R6 there is a mono unit square.

DARLING: R6? Really! Thats hilarious! Surely, better is known.

BILL: Yes better is known. And stop calling me Shirley.

DARLING: Okay, so what else is known.

BILL: An observation about the R6 result gives us the result for R5. (The R5 result also follows

from a different technique.) Then a much harder proof gives us the result for R4. It is easy to show
a coloring of R2 without a mono unit square. The problem for R3 is open.
DARLING: That’s to bad. We live in R3.
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3 Introduction

Notation 3.1 Let a, n ∈ N.

1. [n] = {1, . . . , n}.

2. If A is a set then
(
A
a

)
is the set of all a-subsets of A. Henceforth, let

(
[n]
2

)
be the complete

graph on n vertices.

3. Cn is the cycle on n vertices, defined by:
Cn = (V,E) where V = [n] and E = {(i, i+ 1 (mod n)) : 1 ≤ i ≤ n}.

Definition 3.2 Let c, d ≥ 2. Let k ≥ 3.

1. Let COL: Rd → [c] be a given coloring. A monochromatic unit square (henceforth mono unit
square) is a square in Rd whose vertices are all the same color and sides all have length 1.

2. d(c) is the least d such that the following is true: For all COL: Rd → [c] there is a mono unit
square.

3. Rc(Ck) is the least n such that, for all COL:
(
[n]
2

)
→ [c] there exists a monochromatic (hence-

forth mono) cycle of length k.

The following are known:

1. Burr proved that d(2) ≤ 6. He did not publish the result; however, it appears (crediting
him) in a paper by Erdős et al. [3]. The proof uses the following theorem: R2(C4) = 6. The
accounts of Burr’s result that we have seen say that R2(C4) = 6 is either well-known or easy
and do not give a reference, which is Chvátal & Harary [2]. It may be well-known and easy
for some people; however, for others it can be inaccessible.

2. Cantwell [1] claims that a trivial change in the d(2) ≤ 6 proof yields d(2) ≤ 5. No reference
or proof is given. We note that the change may be trivial for some, and is perhaps trivial
once you see it.

3. Cantwell [1] showed d(2) ≤ 4. This proof is very different from the proofs of d(2) ≤ 6 and
d(2) ≤ 5.

In this article, we do the following:

1. Present the complete proof that R2(C4) = 6. Our presentation includes pictures that will
make it easier to follow than the Chvátal & Harary paper.

2. Present the complete proof of d(2) ≤ 6 and d(2) ≤ 5 including the parts that are allegedly
easy.

3. Present bounds on d(c). These results appear to be new.

4. Present Cantwell’s proof that d(2) ≤ 4. Our presentation includes pictures that will make it
easier to follow than Cantwell’s paper.
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Figure 1: R2(C4) ≥ 6

5. Present some open problems.

Convention 3.3 We use RED and BLUE for the actual colors. So we might say COL(1, 2) =
RED. We use the terms red and blue in prose. So we might say Since COL(1, 2) = BLUE we
have a blue C4. The symbol RED (BLUE) will appear red (blue) if you are reading this paper in
color and in normal font (black) if you are not.

4 A Lemma Needed To Prove d(2) ≤ 6

In the figures in this section, a dotted line is a blue line. That is only important if you are reading
this paper in black and white.

The following is due to Chvátal & Harary [2].

Theorem 4.1 R2(C4) = 6.

Proof:
1) R2(C4) ≥ 6:

We present a COL:
(
[5]
2

)
→ [2] with no mono C4. Figure 1 is a 2-coloring of

(
[5]
2

)
with no mono

C4. (If you are reading this in black and white instead of color, then the coloring is that the cycle
1− 2− 3− 4− 5 is all red edges and the rest of the edges are blue.)

Note 4.2 The coloring in Figure 1 has a mono C5 but not a mono C4. The study of Rc(Ck) is
very different from the study of the usual Ramsey numbers. While a graph with a mono Kn also
has a mono Kn−1, a graph that has a mono Cn does not guarantee the existence of a mono Cn−1.

2) R2(C4) ≤ 6:
Let COL:

(
[6]
2

)
→ [2]. By standard Ramsey Theory there is a mono K3. We assume that it is

red on the vertices {1, 2, 3}. See Figure 2a.

We view {1, 2, 3} and {4, 5, 6} as the sides of a bipartite graph.

Notation 4.3

1. If a ∈ {1, 2, 3} then degRED(a) is the number of red edges between a and {4, 5, 6}.

2. If a ∈ {4, 5, 6}, then degRED(a) is the number of red edges between a and {1, 2, 3}.
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(a) Red Triangle

1

2

3

4 5 6

(b) degRED(v) ≥ 2 yields a mono C4

Figure 2
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(a) degBLUE(4) = 3
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(b) degRED(v) ≥ 2 yields a mono C4

Figure 3

There are several cases. Each case assumes the negation of the prior ones.

Case 1 (∃v ∈ {4, 5, 6})[degBLUE(v) ≤ 1]. The situation is pictured in Figure 2b where v with
degBLUE(v) ≤ 1 is vertex 4. Note that 1− 4− 2− 3− 1 is a mono C4.

Case 2 (∃v ∈ {4, 5, 6})[degBLUE(v) = 3]. The situation is pictured in Figure 3a with the relevant
vertex being vertex 4.

From the negation of Case 1, degBLUE(5) ≥ 2. If COL(5, 1) = COL(5, 2) = BLUE then there
is a blue C4: 5 − 1 − 4 − 2 − 5. The cases of COL(5, 2) = COL(5, 3) and COL(5, 1) = COL(5, 3)
are symmetric.

By the negation of Case 1 and Case 2 we have that, for all v ∈ {4, 5, 6}, degBLUE(v) = 2, hence
degRED(v) = 1. We will use this in Case 4.

Case 3 (∃v ∈ {1, 2, 3})[degRED(v) ≥ 2]. We can assume v = 2. The situation is pictured in
Figure 3b. From the negation of Case 2 we also know that degBLUE(4) = degBLUE(6) = 2. Hence
there is a blue C4: 4-1-6-3-4.

Case 4 Negation of Cases 1,2,3. So we have the following.

1. (∀v ∈ {1, 2, 3}[degRED(v) = 1].
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2. (∀v ∈ {4, 5, 6}[degRED(v) = 1].

3. Hence we can assume

(a) COL(1, 4) = COL(2, 5) = COL(3, 6) = RED.

(b) All other edges between {1, 2, 3} and {4, 5, 6} are blue. (We will find some other edges
that must be blue.)

The situation is pictured in Figure 4. If any of (4, 5), (5, 6), or (4, 6) is RED then there will be
a red C4. This implies that those three are blue, creating a blue C4: 4− 5− 6− 2− 4.

1

2

3

4 5 6

Figure 4: Negation of Cases 1,2,3,4

Open Problem 4.4 The proof of Theorem 4.1 took four cases. Some of the cases had sub-cases.
Is there a proof with fewer cases. Perhaps we begin with the fact that any 2-coloring of the edges
of K6 has two mono triangles. That result is possibly folklore; however, a general theorem from
which it follows is Goodman [5]. An easier proof was obtained by Schwenk [10]. Also see an open
problems column on Ramsey multiplicity by Gasarch [4].

5 d(2) ≤ 6 and d(2) ≤ 5

The following result is due to Burr (unpublished but credited by Erdős et al. [3]).

Theorem 5.1

1. d(2) ≤ 6.

2. d(2) ≤ 5.

Proof:
1) d(2| ≤ 6.

Let COL: R6 → [2]. We form a coloring COL′ :
(
[6]
2

)
→ [2].

Let
p1,2 = ( 1√

2
, 1√

2
, 0, 0, 0, 0).

p1,3 = ( 1√
2
, 0, 1√

2
, 0, 0, 0).
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...
...

...
p5,6 = (0, 0, 0, 0, 1√

2
, 1√

2
).

Define COL′(i, j) = COL(pi,j).
By Theorem 4.1 there exists a mono C4. Let the vertices be a, b, c, d and the color be red. Then

COL′(a, b) = COL′(b, c) = COL′(c, d) = COL′(d, a) = RED

hence

COL(pa,b) = COL(pb,c) = COL(pc,d) = COL(pd,a) = RED.

It it easy to see that

d(pa,b, pb,c) = d(pb,c, pc,d) = d(pc,d, pd,a) = d(pd,a, pa,b) = 1.

It is also easy to see that the lines formed by consecutive pairs are orthogonal as the dot product
of the induced vectors is 0. Hence we have a mono unit square.

2) d(2) ≤ 5
This follows from the proof of Part 1 since all of the pi,j are on a hyperplane which is R5.

Tóth [11] has proven a theorem that implies Theorem 5.1.

Theorem 5.2 Let T be rectangle and c ∈ N.

1. For all 2-colorings of R5 there is a mono rectangle that is congruent to T .

2. For all c-colorings of Rc2+3c3/2 there is a mono rectangle that is congruent to T . (Tóth stated

the result as Rc2+o(c2) but the proof clearly shows Rc2+3c3/2

Tóth’s proof restricted to unit mono squares is very different from the proof of Theorem 5.1.

6 d(2) ≤ 4

The following theorem was proven by Kent Cantwell [1].

Theorem 6.1 For all COL: R4 → [2] there exists a mono unit square.

We present his proof.
We defer the proof of Theorem 6.1 until after we prove many lemmas.
We make the following assumptions throughout the proofs of the lemmas.

1. There is a given coloring COL: R4 → [2]. If we refer to a color of a point in R4, we are
referring to COL.

6



2. We define
(
[5]
2

)
points in R5, however, we will soon see that they fall on a R4 hyperplane.

p1,2 = ( 1√
2
, 1√

2
, 0, 0, 0).

p1,3 = ( 1√
2
, 0, 1√

2
, 0, 0).

...
...

...

p4,5 = (0, 0, 0, 1√
2
, 1√

2
).

These are a subset of the points in R5 such that x1 + x2 + x3 + x4 + x5 =
√

2, hence we will
regard these point as being in R4.

3. We define COL′ :
(
[5]
2

)
→ [2] by COL′(i, j) = COL(pi,j). We will refer to this graph as K5. If

we refer to the color of an edge, we are referring to COL′.

Definition 6.2 A mono unit tetrahedron are four points in R4 that (a) are the same color, (b)
form a tetrahedron where each edge is length 1.

We start with the following observation (without proof) that has no relation to COL or COL′.

Lemma 6.3 There are exactly two 2-colorings of the edges of K5 that do not have a mono C4.
(They are shown in Figure 5).

(a) (b)

Figure 5: The two colorings on 5 vertices with no mono C4.

Lemma 6.4 If there are four mono points (with respect to COL) that form a unit tetrahedron,
then in the K5 graph mapped on top of those four points, there is a vertex that has four mono edges
coming out of it (with respect to COL’).

Proof: We can view the four mono points as being pa,b, pa,c, pa,d, pa,e.
Since

COL(pa,b) = COL(pa,c) = COL(pa,d) = COL(pa,e),

This maps onto the K5 graph where

COL′(a, b) = COL′(a, c) = COL′(a, d) = COL′(a, e).

(see Figure 6).
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Figure 6: The tetrahedron formed by a vertex incident to 4 mono edges on the standard configu-
ration (All 4 points are equidistant to each other since they share a vertex on the graph).

Now we are ready to make the following observation.

Lemma 6.5 If the K5 graph has four mono edges coming out of a single vertex, then there exists
a mono unit square.

Proof: We start with a K5 graph and renumber such that

COL′(a, b) = COL′(a, c) = COL′(a, d) = COL′(a, e).

Lemma 6.3 gives the only two ways that the edges of K5 can be colored and not have a mono
C4. Neither of those colorings has a vertex with 4 mono edges that use it. Hence the coloring of
K5 has a mono C4. With renumbering (using numbers intentionally in order to separate from the
letters assigned above):

COL′(1, 2) = COL′(2, 3) = COL′(3, 4) = COL′(4, 1).

Therefore

COL(p1,2) = COL(p2,3) = COL(p3,4) = COL(p4,1).

Clearly p1,2, p2,3, p3,4, p4,1 form a mono unit square.

Figure 7: Neither graph in Lemma 6.3 can be constructed if a vertex has four mono edges.

Now that we know that we cannot have a mono tetrahedron, we can further eliminate situations
in which we get a mono square.

Lemma 6.6 If there exists a mono unit tetrahedron, then there exists a mono unit square.
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Proof: We start with a mono unit tetrahedron. As stated in Lemma 6.4, this tetrahedron can
be represented by a K5 graph with four mono edges coming from a single vertex.

In Lemma 6.5, we show that this graph implies the existence of a mono unit square.

As such, the existence of a mono unit tetrahedron implies that there is a mono unit square

Lemma 6.7 Given two differently colored mono triangles (vertices), T1 and T2 in R4, which exist
in two different R2 planes that are parallel to each other and orthogonal to each other with respect
to the line-segment connecting their centroids (they can be reflected), their distance must be greater
than 2

√
2/
√

3 apart.

(b) (c)(a)

Figure 8: (a) A tetrahedron with a monochromatic triangle base, (b) Representation of parallelism
as described in Lemma 6.7, (c) No matter how the center point is colored, a mono tetrahedron is
formed. Note, these figures are not geometrically accurate.

Proof: Suppose we are given two triangles T1, T2 ⊂ R4, such that both lie in parallel planes to
each other (see Figure 8 b). Then there exists a circle C1 centered at the center of T1 in a plane
perpendicular to it and a circle C2 centered at the center of T2 in a plane perpendicular to it such
that C1 is equidistant to all the vertices of T1, and C2 to the vertices of T2.

We proceed by calculating the radii of these circles. Since the centers of the circles are necessarily
the centroids of the triangles, it suffices to calculate the height of the tetrahedron formed by adding
a point in R3 to one of these triangles, 1 away from the triangles vertices (see Figure 8 (a)). This
point must necessarily lie on the circle. The height of a unit tetrahedron is

√
2/
√

3.
If the triangles are closer than 2

√
2/
√

3 then these circles intersect at least 1 point. No matter
how this point is colored, a monochrome tetrahedron can be formed by connecting it to the vertices
of one of the triangles (see Figure 8 (c)). By Lemma 6.6, this necessitates a mono unit square.

We now briefly describe the set of points equidistant from two parallel line segments. This will
let us address when we have two parallel triangles with a pair of vertices of opposite colors.

Lemma 6.8 Given two unit segments in R4 that exist in parallel planes and are translates of each
other by some distance d in an orthogonal direction, for sufficiently small d, there exists a circle of
points that are 1 away from the vertices of both segments.
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Proof: If we confine the segments above to the R2 plane they lie in, we have a single point,
p, that is equidistant to the vertices of both segments see Figure 9 (a). When we add a third
dimension, we now have a line of points through p (see Figure 9 (b)) all equidistant to the vertices.
Adding a fourth spatial dimension creates a plane such that any point on the plane is equidistant
to the vertices. Given a specific distance, the points on the plane equidistant to the vertices form
a circle (see Figure 9 (c)).

(a) (b) (c)

Figure 9: (a)) Equidistant point between two vertices in 2D, (b) Equidistant line between two ver-
tices in 3D, (c) Circle of equidistant points to the segments at a specific distance (not geometrically
accurate)

Lemma 6.9 The radius of the circle described in Lemma 6.8. is
√

3/4− d2/4, where d is the
distance between the segments.

Proof: To compute the radius of the circle described in Lemma 6.8., it suffices to compute the
height of the rectangular pyramid generated by the point 1 away from the endpoint of the segments
in R3 (see Figure 10 (a)). Computing the distance from a corner of the rectangular base to the
center of the base is

√
1/4 + d2/4 (see Figure 10 (b)). Using that, we can compute the height of

the pyramid since the length of its edges are 1. Using the pythagorean theorem, we therefore get
the radius of the circle is

√
3/4− d2/4 (see Figure 10 (d)).

(b)(a)

d
2

1
2

√
1
4 + d2

4

(c)

√
1
4 + d2

4

1

√
3
4 − d2

4

Figure 10: (a) The rectangular pyramid, (b) center of the base of the pyramid, (c) the height of
the pyramid (not geometrically accurate).
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Using this, we can determine that there is a dense set of distances between two mono parallel
line segments of different colors such that if those segments are that distance apart, there is a mono
square

Lemma 6.10 There exists a dense set S, so that if two parallel unit mono segments of different
colors are a distance d ∈ S apart, there is a mono unit square.

Proof: By Lemma 6.8., given a distance in d ∈ (0,
√

3), there exists a circle of points 1 away
from the vertices of both segments. By Lemma 6.9., the radius of this circle is:√

3/4− d2/4.

If d <
√

2, There is some angle θ, such that if we take a point on the circle and rotate it by θ, the
point is 1 away from the original. The length of a chord in this circle with a given angle θ is:

2 ∗ r ∗ sin (θ/2),

where r is the radius. Solving for θ gives us:

θ = 2 arcsin

((
2
√

3/4− d2/4
)−1)

.

Whenever θ is a rational multiple of π, rotating a point around the circle at that angle will
return us to our original position in a finite number of rotations. If the base of the fraction is an
odd number, it returns to the original position after an odd number of rotations. In this situation,
we have a set of points of odd length that are two colored, and so two adjacent ones are the same
color. This implies that two points on the circle 1 apart are the same color (see Figure 11).

Since all the points on the circle are 1 away from the vertices of the segments, we necessarily
have 4 points of the same color all one away from each-other. This gives us a mono tetrahedron,
and by Lemma 6.6 this gives a mono square. Hence d ∈ (0,

√
2) since we need the radius to be

large enough for the chord to exist. We call this set of distances S.

Figure 11: An odd rotation of a point around a circle, resulting in adjacent vertices the same color.

Lemma 6.11 Given a pair of unit triangles in parallel planes that are translates in some direction
orthogonal to the planes they lie on and a distance s ∈ S apart, the triangles cannot each have 2
or more vertices of opposite colors without creating a mono unit square.
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Proof: If this is true, then we have two parallel segments that fit the criterion of 6.10.

Lemma 6.12 If two parallel mono equilateral unit triangles that are translates in some direction
orthogonal the planes they lie on of the same color are closer than

√
2 to each other, there is a

mono unit square.

Proof:
Consider two parallel mono unit triangles A1 and A2 with centroids a1 and a2 respectively (see

Figure 12 (a)). Suppose the distance from a1 to a2 is less than
√

2. Consider the circle C2, the unit
radius circle around a2 in a plane perpendicular to the plane of A2. Let C1 be a circle centered at
a1 in a plane perpendicular to A1 whose radius is in S that intersects C2. Let an intersection point
of the circles be q. Consider the triangle that is a translate of A2 centered (centroid) at q parallel
to A1 and A2. This triangle is a unit translate of A2 in a direction perpendicular to the plane it is
on, thus if any pair of vertices of this triangle are the same color as A2 they will form a mono unit
square with the corresponding vertices of A2 (see Figure 12 (b)).

Now suppose they don’t, then we have two vertices of opposite colors to the vertices of A1 and
A2. So, if we look at our new triangle and A1 we see that we have two distinctly colored mono
segments with distance d ∈ S, leading to a square monochromatic unit according to Lemma 6.11
(see Figure 12 (c)).

(a) (b) (c)

a1

q
a1

a2
a2

a1

q

a2

d ∈ S

Figure 12: (a) The two triangles, (b) The mono unit square formed with the vertices of A2, (c) A1
and the triangle centered at q are a distance d ∈ S (not geometrically accurate).

We now quickly introduce the concept of a unit cross-polytope. The unit cross polytope in Rd

is the polytope defined by going 1/
√

2 on every axis and connecting them (see Figure 13.).

Lemma 6.13 In an R4 space without a mono unit square, the four-dimensional unit cross-polytope
will have 32 equilateral unit triangular faces, 4 of which will be mono (as seen in Figure 14. (b)).

Proof:
The graph of a 4-dimensional unit cross-polytope is represented by 8 nodes, where each node is
connected to every node other than its opposite (the vertex on the same coordinate axis as itself).
Each axis contributes a mono or dichromatic pair. We show that the only way to color this with-
out getting a mono unit square uses 2 dichromatic pairs of opposite vertices and 2 mono pairs of
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(a) (b) (c)(b)

Figure 13: (a) A R2 cross-polytope (b) A R3 cross-polytope (c) The R4 cross-polytopes graph.

opposite vertices of differing color to each other by using a variety of cases. Each case represents a
state that leads to a mono unit square.

Case 1: Number of mono pairs ≥ 3
In the event that there are 3 or more mono pairs, you are guaranteed to have two mono pairs that
are the same color. This forms a mono unit square as seen in Figure 14(c).

Case 2: Number of dichromatic pairs ≥ 3
If there are three or more dichromatic pairs, it will form two equilateral unit triangles on paral-
lel planes of distance

√
2, which is less than the required 2

√
2/
√

3 from Lemma 6.7 (see Figure 14d).

Case 3: Number of mono pairs = 2 and they share the same color.
Same situation as Case 1, where they form the square.

Therefore, the graph must be made up of 2 dichromatic pairs and 2 distinct mono pairs as seen
in Figure 14b. This gives us the 4 mono equilateral unit triangular faces.

Theorem 6.14 For every COL R4 → [2], there exists a mono unit square.

Proof: Consider the hyper-cube [0,
√

2]4 in R4. We subdivide each of the axis of the hyper-cube
into intervals of size

√
2/m. This gives us the following lattice (see Figure 15 (a) and (b)):(
m1

√
2

m
,
m2

√
2

m
,
m3

√
2

m
,
m4

√
2

m

)
,when 0 ≤ mi ≤ m.

At each of our m4 lattice points, center a unit cross-polytope. By Lemma 6.13, if there are no
mono unit squares, each of these must have 4 mono unit triangular faces. Hence, we have at least
4m4 mono unit triangles in our hypercube.

Notice that there are 32 possible types of these mono unit triangles up to translation. We claim
that each type of triangle can only appear at mostO(m3) times without creating a mono unit square.
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(a) (b)

(c) (d)

Figure 14: (a) Graph of a 4D Cross-Polytope (b) The 4 equilateral triangles (c) Square formed by
>1 mono pair of same color (d) Triangles formed by ≥ 3 mono pairs

This is because if two of our triangles are parallel and translates in a direction perpendicular to
the planes they are on we have a monochromatic unit square by Lemma 6.12.

However this would necessitate that we have at most 32 ∗O(m3) = O(m3) mono unit triangles
which is not true for all m as we have O(m4) mono unit triangles. Hence, we must have a mono
unit square.

Open Problem 6.15 Find an easier proof that d(2) ≤ 4. Here are some possible directions:

1. Find a proof that is more graph-theoretic (like the proof of Theorem 5.1) and less geometric.

2. Recall that we had a proof that d(2) ≤ 6 and used it to easily get a proof that d(2) ≤ 5. Find
a different proof of d(2) ≤ 5 from which you can get a proof that d(2) ≤ 4.

3. Recall that Tóth [11] has a proof that d(2) ≤ 5 that was very different from the proof of
Theorem 5.1. Perhaps this proof could be modified to get an proof that d(2) ≤ 4 which is
easier than Cantwell’s proof.

We state the open problem suggested at the beginning of this paper and name it.

Open Problem 6.16 1. The Darling Problem: We know that d(2) ∈ {3, 4}. Determine d(2).
We do not have a conjecture as to whether d(2) = 3 or d(2) = 4.

2. The More Colors Darling Problem Find he value of c such that the following both hold:

14



(a) (b)

Figure 15: (a) An illustration of a lattice of cross-polytopes in 3D (b) Coloring the vertices of
cross-polytopes on a 3D lattice.

• There exist COL: R3 → [c] with no mono unit square.

• For all COL: R3 → [c− 1] there is a mono unit square.

7 If χ = 7 Then d(2) ≤ 4 with an Easy Proof

The Theorem and proof in this section were emailed to us by Dömötör Pálvölgyi.

Notation 7.1 χ is the chromatic number of the following graph:
V − R2

E = {(p, q) : |p− q| = 1}. χ is called the chromatic number of the plane.

It is known that 5 ≤ χ ≤ 7. A popular conjecture is that χ = 7.

Theorem 7.2 If χ = 7, then d(2) ≤ 4.

Proof:
Let COL: R4 → [2]. Let t1 = (0, 0), t2 = (1, 0), and t3 = (12 ,

√
3
2 ). Note that t1, t2, t3 is a unit

equilateral triangle. If p ∈ R2, and i ∈ {1, 2, 3}, then (p, ti) is the obvious point in R4.
We create a coloring COL′ : R2 → [6] as follows:
Take a point p ∈ R2. Look at COL(p, t1), COL(p, t2), COL(p, t3). Let i < j and c be such that

COL(p, ti) = COL(p, tj) = c (if all three are equal, take i = 1,j = 2). Then COL′(p) = (i, j, c).
Since we are assuming χ = 7, there exists p, q ∈ R2 and i, j, c such that p and q are a unit apart

and COL′(p) = COL′(q) = (i, j, c). Then (p, ti), (p, tj), (q, ti), (q, tj) form a mono unit square.

Open Problem 7.3 Prove from χ = 7, or some other reasonable hypothesis, that d(2) = 3.

8 What If We Use More Colors?

Theorem 8.1
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1. d(c) ≤ Rc(C4).

2. d(c) ≤ Rc(C4)− 1.

Proof:
1) d(c) ≤ Rc(C4). Let d = Rc(C4).

Let COL: Rd → [c]. We form a coloring COL′ :
(
[d]
2

)
→ [c].

We define
(
[d]
2

)
points in Rd.

p1,2 = ( 1√
2
, 1√

2
, 0, . . . , 0).

p1,3 = ( 1√
2
, 0, 1√

2
, 0, . . . , 0).

...
...

...
pd−1,d = (0, . . . , 0, 1√

2
, 1√

2
).

Define COL′(i, j) = COL(pi,j).
Since d = Rc(4) there exists a mono C4. The rest of the proof is identical to the proof of

Theorem 5.1.

2) This follows from the proof of Part 1 since all of the pi,j are on a hyperplane which is Rd−1.

To use Theorem 8.1 we need to know upper bounds on Rc(C4). The following lemma is obtained
from a variety of results, which are stated without proof in Section 6.3.2 of Radziszowski’s survey
of small Ramsey numbers [9]. References to papers with proofs are in that survey.

Lemma 8.2

1. R3(C4) = 11.

2. R4(C4) = 18.

3. For all c ≥ 1, Rc(C4) ≤ c2 + c+ 1.

4. For all c ≥ 2, c even, Rc(C4) ≤ c2 + c.

By combining Theorem 8.1 and Lemma 8.2 we obtain the following:

Theorem 8.3

1. d(3) ≤ 10.

2. d(4) ≤ 17.

3. For c ≥ 5, d(c) ≤ c2 + c.

4. For c ≥ 6, c even, d(c) ≤ c2 + c− 1.

Open Problem 8.4

1. Find better upper bounds on d(c). This may require proofs similar to that of Theorem 6.1.

2. Find lower bounds on d(c) by finding colorings with no mono unit square.
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9 What About Other Polygons

We have discussed unit squares. What about other regular polygons with all sides of length 1? The
following results are known:

1. Erdős et al. [3] showed that (1) (Page 342) there is a 2-coloring of R2 with no mono equilateral
triangle, (2) (Page 344, Theorem 6) for all 2-colorings of R3 there is a mono equilateral
triangle, (3) (Page 347) for all c-colorings of R2c there is a mono equilateral triangle with side
1. By points (1) and (2), the result in point (3) is not optimal in the case of c = 2. For c ≥ 3
is it open to determine the minimum value of d such that for all c-colorings of Rd there exists
a mono equilateral triangle.

2. Kř́ıž [7] (see also Graham [6]) showed that, for all c, s, there exists d = d(s, c) such that, for
all c-colorings of Rd, there is a mono unit regular s-gon. No bounds on d are given though
they could be derived from the proof. Obtaining the optimal value of d is open in most cases.

3. Kupavskii-Sagdeev-Zakharov [8] showed that, the d(s, c) is logarithmic in c (they used a
different terminology).

Open Problem 9.1

1. Determine some values d(s, c) for small values of s, c.

2. The proofs in the literature about d(s, c) are actually about more general sets and are some-
what difficult. Obtain proofs about d(s, c) that are easier and perhaps less general.
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