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1 This Issues Column!

This issue’s Open Problem Column is by Stephen Fenner, Fred Green, and Steven Homer. It is
titled: Fixed-Parameter Extrapolation and Aperiodic Order: Open Problems. It is not on fixed-
paramter tractability. It is on a generalization of the geometric notion of convexity.

2 Request for Columns!

I invite any reader who has knowledge of some area to contact me and arrange to write a column
about open problems in that area. That area can be (1) broad or narrow or anywhere inbetween,
and (2) really important or really unimportant or anywhere inbetween.
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3 Background

For a number of years we have been investigating the geometric and algebraic properties of a family
of discrete sets of points in Euclidean space generated by a simple binary operation: pairwise affine
combination by a fixed parameter, which we call fixed-parameter extrapolation. By varying the
parameter and the set of initial points, a large variety of point sets emerge. To our surprise, many of
these sets display aperiodic order and share properties of so-called “quasicrystals” or “quasilattices.”
Such sets display some ordered crystal-like properties (e.g., generation by a regular set of local rules,
such as a finite set of tiles, and possessing a kind of repetitivity), but are “aperiodic” in the sense
that they have no translational symmetry. The most famous of such systems are Penrose’s aperiodic
tilings of the plane [?]. Mathematically, a widely accepted way of capturing the idea of aperiodic
order is via the notion of Meyer sets, which we define later. Our goal is to classify the sets generated
by fixed-parameter extrapolation in terms of a number of these properties, including but not limited
to aperiodicity, uniform discreteness, and relative density. We also seek to determine exactly which
parameter values lead to which types of sets.

In this column, we set down the basic definitions, and highlight some of the main results obtained
so far. Results are stated without proof, and we present just enough to convey an overall sense of
the work, towards the goal of formulating some of our many open problems. For all details and
proofs, we refer the reader to our paper at https://arxiv.org/abs/1212.2889. This work falls
mainly in the area of discrete geometry, but we present several computational questions as well.

We begin with our main definition, which generalizes the notion of convexity. We usually work
with the complex numbers C, although we occasionally consider other fields F such as R. In the
standard definition, a set A ⊆ C is said to be convex iff, for any a, b ∈ A, for any real number
λ ∈ [0, 1], we have (1−λ)a+λb ∈ A. It is not hard to see that the definition still holds if we fix the
parameter λ to be some real number strictly between 0 and 1, provided we take the (topological)
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closure of the resulting set. E.g., in the case of λ = 1/2, we say that if a topologically closed
set A is “closed under taking midpoints,” then it is convex; the converse also holds. Thus in our
main definition (which follows), we consider the case in which we fix λ (hence fixed parameter).
However, we go a step further and relax the condition that λ is between 0 and 1, or even real (hence
extrapolation).

Definition 3.1. (Fixed-parameter extrapolation): Fix a number λ ∈ C. For any a, b ∈ C define
a ?λ b := (1 − λ)a + λb. Then for any set A ⊆ C, we say that A is λ-convex iff for every a, b ∈ A,
the point a ?λ b is in A. We say that A is nontrivial if A contains at least two distinct elements.

Thus, as explained above, by the usual definition of convexity, a set A ⊆ C is convex if and
only if, for all λ ∈ (0, 1), A is λ-convex. Also, if A is a (topologically) closed set, then for any fixed
λ ∈ (0, 1), we have that A is convex if and only if A is λ-convex. We are generally interested in
λ-convexity for λ /∈ [0, 1], especially λ /∈ R, and we are particularly interested in minimal nontrivial
λ-convex sets. Here is what the ?λ operation looks like geometrically, for a typical nonreal λ:

0 1

λ

b

a ?λ b

a

The two triangles are similar and oriented the same way.

Definition 3.2. For any λ ∈ C and any set S ⊆ C, we define the λ-closure of S, denoted Qλ(S), to
be the ⊆-minimum λ-convex superset of S. We let Qλ be shorthand for Qλ({0, 1}), the λ-closure
of {0, 1}.

Qλ is a minimal nontrivial λ-convex set because it is generated by just two distinct points.
Furthermore, properties of sets Qλ(S) for |S| > 2 can often be inferred from Qλ. The points 0
and 1 are often chosen for convenience as well, but since λ-convexity is invariant under C-affine
transformations, any two initial points would yield a set with the same essential properties.

After obtaining the results we discuss here, we discovered that fixed-parameter extrapolation
(under various names, including, for example, s-convexity, quasicrystal addition, quasiaddition,
and τ -inflation) had previously been investigated in the literature, and has quite a long history,
especially in the context of the study of quasicrystals. The earliest to investigate the operation were
Calvert [?] and, a few years later, Pinch [?], who proved a number of properties of λ-convex subsets
of R for real λ. Berman & Moody [?] were the first to apply the idea to the study of quasicrystals,
specifically in the case λ = 1 + ϕ (where ϕ is the golden ratio, encountered again below). This
value of λ is significant, because it gives the simplest example where Qλ is discrete and aperiodic.
Subsequently, other authors have looked at other values of λ that result in quasicrystal structures
(most relevant to our work are [?], [?], and [?]). However, as far as we know, all work up to this
point has dealt exclusively with λ ∈ R. Ours is the first in-depth study that considers non-real λ,
introduces the idea of strong PV numbers (which generalize the subset of real irrationals considered
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in [?]), and furthermore, is applied to domains other than R and C. Most of the generalizations to
complex λ are far from trivial. We indicate, in the course of our discussion of specific results, how
our work relates to or generalizes prior work.

3.1 Basic results

We begin this survey of our results with a few basic observations. First, owing to the continuity of
the ?λ operation, one can easily show that if A is any λ-convex set, then its (topological) closure,
denoted A, is also λ-convex. Second, if Qλ is convex (by the standard definition of convexity), then
there are only three possibilities: It is the unit interval, the real line, or the entire complex plane.

Theorem 3.3. Suppose Qλ is convex.

1. If λ ∈ [0, 1], then Qλ = [0, 1].

2. If λ ∈ R \ [0, 1], then Qλ = R (essentially proved in [?, Proposition 7]).

3. If λ ∈ C \ R, then Qλ = C.

In light of this theorem, most of our work concentrates on determining, for various λ ∈ C,
whether or not Qλ is convex, and if not, characterizing Qλ. To this end, we can begin by broadly
categorizing Qλ as either having convex closure (λ ∈ C) or being discrete (λ ∈ D).

Definition 3.4. Let C := {λ ∈ C : Qλ is convex}. Let D := C \ C.

Highlights of this characterization include the following:

1. There are several equivalent ways to characterize convexity for Qλ. It turns out that Qλ is
convex (i.e., λ ∈ C), iff it is path-connected, iff it contains a path, iff it has an accumulation
point, iff it contains two points less than a unit distance apart. (The accumulation point
characterization was proved by Pinch for real λ [?, Proposition 7].) Thus either Qλ is convex
or else Qλ is discrete (and Qλ = Qλ).

2. So far to a limited extent, we can carve out regions in C where Qλ is convex. E.g.,

(a) Qλ is convex for all λ = x + iy where 0 < x < 1 and −1 ≤ y ≤ 1, except for the two
points eiπ/3 and e−iπ/3.

(b) If Re(λ) = 1/2 (so λ makes an isosceles triangle with 0 and 1) and |λ| ≤
√

3, then Qλ
is convex if and only if |λ| /∈ {1,

√
2,
√

3}. (Qλ is discrete if |λ| =
√
n for any positive

integer n, but we don’t know if the converse holds beyond
√

3.)

3. C is a big set: It is open and includes all transcendental numbers. Hence D is countable.
Furthermore, D has no accumulation points in C. (This was proved by Pinch for real λ [?,
Theorem 8, Propositions 9 & 11].)

4. D consists only of algebraic integers. (Again, proved by Pinch in the real case [?, Proposition
12].)

Thus our primary interest is in λ ∈ D. The simplest case to consider is that in which λ is an integer.
Even here, our characterization of which integers are in Qλ is partial, and this easy-to-prove result
leads to one of our conjectures (Conjecture ??).
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Proposition 3.5. For all λ ∈ Z such that λ ≥ 2 and all n ∈ Qλ, n ≡ d (mod λ(λ− 1)) for some
d ∈ {0, 1, λ, 1− λ}. More compactly,

Qλ ⊆ λ(λ− 1)Z + {0, 1, λ, 1− λ} = (λZ + {0, 1}) ∩ ((λ− 1)Z + {0, 1}) .

(The second equality is by the Chinese remainder theorem.)
The most intriguing results are for certain algebraic integers λ, especially those (e.g., 1 + ϕ,

where ϕ is the Golden Ratio) not belonging to any discrete subring of C. In fact, all cases we
currently know of where Qλ is discrete follow from a single result (Theorem ??, given below). We
require some further algebraic and geometric background to state that theorem and explain its
significance.

3.2 sPV Numbers, Delone sets, and Meyer sets

A Pisot-Vijayaraghavan number (or PV number for short)1 is an algebraic integer α > 1 whose
Galois conjugates α′ (other than α) all lie inside the unit disk in C, i.e., satisfy |α′| < 1. PV
numbers arise naturally in the study of aperiodic order. The notion can be relaxed to allow for
non-real α by excluding both α and its complex conjugate α∗ from the norm requirement. For our
work, we need a stronger definition.

Definition 3.6. We call an algebraic integer α ∈ C a strong PV number iff its conjugates, other
than α and α∗, all lie in the open unit interval (0, 1). In this case, we also say that α is sPV.
We say that a strong PV number α is trivial if it has no conjugates other than α and α∗ (i.e., no
conjugates in (0, 1)). Otherwise, α is nontrivial.

Nontrivial strong PV numbers include 1 + ϕ and 2 +
√

2, and there are infinitely many real,
irrational—hence nontrivial—strong PV numbers. Every strong PV number greater than 1 is a PV
number, but not conversely; for example, ϕ and 1 +

√
2 are PV numbers but not sPV. Theorem ??

below implies that Qλ is discrete for all strong PV numbers λ. This result does not extend to all
PV numbers; for example, Qϕ = Q1+

√
2 = R.

The geometric context for Theorem ?? derives from discrete geometry, particularly concepts
relating to ordered but aperiodic point sets in Euclidean space. The theory of such sets gained much
impetus following the experimental discovery of so-called “quasicrystals”—materials whose atomic
arrangements share many properties of crystals (e.g., sharp spikes in X-ray diffraction patterns),
but—unlike true crystals—lack translational symmetry. Much of the mathematical theory of the
corresponding point sets came well before this experimental discovery, and is due to Yves Meyer [?,
?]. The theory also relates closely to aperiodic tilings of the plane [?, ?, ?]. This section draws
somewhat from the recent exposition of Baake & Grimm [?] as well as papers by Moody [?,?], and
related papers by Lagarias [?,?]. We need not present the concepts in their full generality.

Definition 3.7. Let X be any metric space (think Rn), and let A be any subset of X with at least
two elements.

• A is uniformly discrete iff there exists an r > 0 such that |x− y| > r for all distinct x, y ∈ A.

• A is relatively dense (in X) iff there exists an R > 0 such that, for all x ∈ X there exists
y ∈ A such that |x− y| < R.

1These numbers are also called Pisot numbers in much of the literature.
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• A is a Delone set (in X) iff it is both uniformly discrete and relatively dense (in X).

As we mentioned before, one can show that if Qλ is discrete, then points in Qλ are at least unit
distance apart, thus Qλ is uniformly discrete. This was shown by Pinch for real λ [?, Proposition 10],
but the generalization to complex λ is not straightforward.

One way to define point sets in Euclidean space with “aperiodic order” is via so-called “Meyer
sets” (Definition ??, below), in particular those which lack any translational symmetry. It turns
out that many Meyer sets are of the form Qλ(S) for certain λ and S. There are many equivalent
characterizations of Meyer sets; see, for example, Moody [?, Theorem 9.1]. All Meyer sets are
Delone sets, but Meyer sets have additional properties, such as finite local complexity, not shared
by all Delone sets.2

One way of producing aperiodic Meyer sets is through a construction called a cut-and-project
scheme (and this was Meyer’s original approach). We do not define this concept here, except to
say that it gives rise to the notion of a “model set’—also called a “cut-and-project set,” a certain
kind of Delone set—and Meyer sets are relatively dense subsets of these sets. (We give an example
of a cut-and-project set below.)

Luckily for us, citing work of Meyer [?] and Lagarias [?] as well as his own work, Moody [?]
characterizes Meyer sets in various ways, some of which do not require knowledge of cut-and-project
schemes. We will take one of these characterizations as our “definition” of a Meyer set:

Definition 3.8 (Lagarias, Moody [?, ?]). Let A be a relatively dense subset of Rn. Then A is a
Meyer set if and only if A − A is uniformly discrete, where A − A = {x − y | x, y ∈ A} is the
Minkowski difference of A with itself.

We can now state our main mechanism for obtaining discrete Qλ(S).

Theorem 3.9. If λ is sPV, then Qλ(S) is uniformly discrete for any finite set S ⊆ Q(λ). In fact,
Qλ(S)−Qλ(S) is uniformly discrete for all such S.

Remark. Note that we do not show that Qλ(S) is relatively dense. If true, then it would be a
Meyer set. This is one of our primary open problems. See Open Question ??, below. �

Pinch proved the special case of Theorem ?? where λ ∈ R and S = {0, 1} [?, Proposition 12].
Our proof of this theorem essentially shows that Qλ(S) is a subset of a model or cut-and-project
set. Thus, for example, the right-hand side of Eq. (??) below is a cut-and-project set. Although it
would then follow directly from previous results of Meyer [?] (also see [?]) that Qλ(S) is uniformly
discrete, our paper includes a self-contained proof for the sake of completeness. (The case where λ
is not real and S = {0, 1} was proved by Rohit Gurjar [?].) Probably our most important conjecture
is that the converse of this theorem holds (Conjecture ??).

To illustrate this with one specific case—where S = {0, 1}—the proof of Theorem ?? gives the
following containment for all algebraic integers λ (letting d be the degree of λ):

Qλ ⊆ {p(λ) | p ∈ Z[x] & deg(p) < d & 0 ≤ p(µ) ≤ 1 for all µ ∈ (0, 1) and conjugate to λ} . (1)

When λ is sPV, then the right-hand side of (??) is uniformly discrete. As an example, equality
holds in (??) for λ = 1 +ϕ, and we get that Q1+ϕ = {1}∪ {dn/ϕe+nϕ | n ∈ Z}. This set contains

2Other properties of interest include repetivity, diffractivity, and aperiodicity. A Meyer set may or may not possess
any of these additional properties. For definitions, see [?,?].
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Figure 1: Plots of Qλ for two nonreal values of λ. The left plot is of Qλ, where λ is the root of the
polynomial x3 + x2 − 1 closest to −0.877 + 0.745i. The right plot is of Qµ, where µ is the root of
the polynomial x3 − x2 + 2x− 1 closest to −0.341 + 1.162i. One can show that Qλ = Qλ2 = Qλ3 .

no infinite arithmetic progressions and hence has no translational symmetry. Except for 0 and 1,
any two adjacent points in Q1+ϕ differ either by ϕ or by 1 + ϕ.

The degree requirement on p can be dropped in (??), since any polynomial with degree ≥ d can
be reduced modulo the minimal polynomial of λ without affecting its value on λ or any of the µ.

A question intimately related to Conjecture ??, is this: For which sPV λ does equality hold
in (??) (as well as other more general cases, e.g., for S 6= {0, 1})? To get a better sense of this
question, compare the right-hand side of Eq. (??) with that of Eq. (??) below, which holds for all
λ:

Qλ = {0, 1} ∪ {p(λ) | p ∈ Z[x] & 0 < p(µ) < 1 for all µ ∈ (0, 1) } . (2)

Figure ?? shows plots of Qλ for two nonreal values of λ. The dots appear regularly spaced, but
neither of these sets is periodic. We conjecture that equality holds in (??) for both these sets.

3.3 Higher Dimensions

It is interesting to study the λ-closure of regular polygons in the complex plane, where λ is real,
but the points in S are complex. Letting Pn denote the regular n-gon and defining

λn :=
1

2(1− cos(π/n))
,

we have determined for certain n that the λn-closures of Pn and P2n are aperiodic discrete sets. For
example, Figure ?? displays a number of such sets. We include Q1+ϕ(P5) (noting that 1 +ϕ = λ5),
as well as the λ7-closures of P7 (the 7-sided “heptagon”) and P14. The (1+ϕ)-closures of P5 and P10

were also displayed by Berman & Moody [?], who concentrated their work on this particular value
of λ. The values λ4 = 2 +

√
2 and λ6 = 2 +

√
3 are associated with 8- and 12-fold symmetry [?]. It
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is fairly easy to show, using the main theorem, that these sets are discrete. Our definition of λn,
which is based on a geometric construction using Pn, yields other sets like these. These sets are
discrete for only a finite number of odd values of n, namely n = 3, 5, 7, 9, 15, but are discrete for
some even n as well. For example, Figure ?? includes the λ6-closure of the duodecagon P12.

We have also investigated similar constructions in three dimensions.

4 Open Problems

We have many more questions than we can investigate in any reasonable length of time. We only
give a sampling in this section. Some may be easy, but we have just not looked at them in depth.

Recall the set C (Definition ??) and its complement D := C \ C. We know that D is closed,
discrete, and contains only algebraic integers. We also know that D contains all strong PV numbers
(Theorem ??), but we know of no other elements of D than these.

Conjecture 4.1. Qλ is discrete if and only if λ is a strong PV number.

To make progress towards this conjecture, we can use various constructions we have developed
to carve out more territory for C in the complex plane. This approach was started in our paper.
But beyond the fact that D consists only of algebraic integers, we know little about C and D.

There are a number of open questions about Qλ when λ belongs to a discrete subring of D. For
example, we conjecture that equality holds in Proposition ??.

Conjecture 4.2. For all λ ∈ Z such that λ ≥ 2,

Qλ = λ(λ− 1)Z + {0, 1, λ, 1− λ} . (3)

Eq. (??) is true if and only if λ(λ−1) ∈ Qλ, which remains to be proved in general. Membership
has been verified by computer for all λ into the hundreds.

The next open question (and its generalizations) is one of the most interesting.

Open Question 4.3. For which sPV λ does set equality hold in (??)?

When equality holds, Qλ is a model set and relative density of Qλ follows immediately. We
have proved that equality holds for λ = 1 + ϕ, as well as λ = 2 +

√
2 and 2 +

√
3. Our proof

technique depends on specific algebraic properties of λ and fails for (e.g.) λ = (5+
√

13)/2. In fact,
Masáková et al. [?] prove more strongly, via a different proof, that 1 + ϕ, 2 +

√
2, and 2 +

√
3 are

the only “quadratic unitary Pisot” numbers3 that lead to model sets in this way. Thus we know
that equality (which implies that Qλ is a model set) does not hold for the quadratic unitary Pisot
number λ = (5 +

√
13)/2. Indeed, an extensive computer run finding points in Qλ fails to produce

the value 2λ− 1 = 4 +
√

13 ≈ 7.60555. We nevertheless conjecture that relative density holds; see
Open Question ?? below. The resulting sets could be Meyer or Delone, but not model sets.

Research Plan 4.4. Prove that 4 +
√

13 /∈ Q(5+
√
13)/2.

All this leads to a general open question:

Open Question 4.5. For F being either R or C, is Qλ relatively dense in F for all λ ∈ F \ [0, 1]?
(If not, then for which λ?)

3These are quadratic PV numbers λ such that λλ′ = ±1, where λ′ is the conjugate of λ.
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Figure 2: Top left: Q1+ϕ(P5), the (1 + ϕ)-closure of a regular pentagon. Top right: Qλ7(P7),
the λ7-closure of a regular heptagon. λ7 ≈ 5.049 and has minimal polynomial x3 − 6x2 + 5x − 1.
Bottom left: Qλ6(P12), the λ6-closure of a regular 12-gon. Bottom right: Qλ7(P14), the λ7-closure
of a regular 14-gon
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If true, then the discrete Qλ are all Meyer sets. We conjecture that this is indeed true, but
so far we can only prove relative density in a small number of special cases, as enumerated in
the discussion following Open Question ??. Proving relative density apparently will require new
techniques. There are some indications that it could be false, however: a computer plot of Qλ15(P6)
reveals what looks like self-similar, hierarchical structures consisting of clusters of points separated
from each other but which collect to form new clusters when viewed at larger and larger scales.

4.1 Higher Dimensions

There are some very significant open questions regarding discrete sets generated by regular poly-
gons. For example, we know that Q1+ϕ(P5) is both uniformly discrete and relatively dense; it is
a Delone set (originally proved in [?]). This is also the case for the λ5-closure of the decagon P10.
But we know nothing about the relative density of sets generated by the heptagon and other larger
polygons.

Open Question 4.6. For all n such that λn is sPV, are the sets Qλn(Pn) relatively dense (and
hence Delone)?

Our technique for proving relative density for the three sPV values enumerated above amounts
to showing that Qλ is a model set. For quadratic unitary sPV numbers other than those, we know
we won’t get model sets by [?], although we still might get Delone or Meyer sets. The situation
becomes much more complicated for higher degrees. For example, we have compiled compelling
evidence that Qλ7(P7), the set depicted in the upper right of Figure ??, is relatively dense. This
includes a framework for a very unwieldy (and hence incomplete) proof, which nevertheless enables
us to perform substantial computation and formulate a precise conjecture. λ7 is the sPV number
that is the largest magnitude root of the polynomial x3−6x2 +5x−1. Denote the other roots by µ
and ν (both in (0, 1)). Let β = µ+ ν − µν, and define n(m) := bm/λ7c and `(m) := dβme+ n(m)
for m ∈ Z. For any m ∈ Z, write p(m) := −n(m) + `(m) · λ7 −m · (λ7)2.

Conjecture 4.7. For all m, p(m) ∈ Qλ7.

This is sufficient for proving that Qλ7(P7) is relatively dense. The conjecture has been verified
for m up to 1, 000, 000. We note in this case that Eq. ?? is apparently a proper containment, and
we also know that Qλ7 is not contained in {p(m) | m ∈ Z}.

4.2 L-convex, auto-convex, and λ-semiconvex sets

Definition 4.8. Let L and S be any subsets of C.

• S is L-convex iff S is λ-convex for all λ ∈ L.

• Let QL(S) be the least L-convex superset of S.

• S is auto-convex iff S is S-convex.

All the Qλ sets are auto-convex by the following result:4

4Pinch proved a more general result for real λ: If S ⊆ R is auto-convex, then Qλ(S) is auto-convex [?]. The proof
generalizes trivially to the complex numbers.
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Proposition 4.9. For any λ, µ ∈ C, if µ ∈ Qλ, then Qλ is µ-convex, and consequently, Qµ ⊆ Qλ.

The same goes for all Qλ. We conjecture the converse.

Conjecture 4.10. If S ⊆ C contains 0 and 1, is topologically closed, and is auto-convex, then
S = Qλ for some λ ∈ C.

This conjecture implies that the set {Qλ | λ ∈ C} is closed under arbitrary intersections, because
the intersection of any family of closed, auto-convex sets is clearly auto-convex (and closed).

Definition 4.11. Fixing λ ∈ C, we will say that a set S ⊆ C is λ-semiconvex iff, for every a, b ∈ S,
at least one of the points a ?λ b and b ?λ a is in S.

Clearly, if S is λ-semiconvex, then S is also (1 − λ)-semiconvex. Note that the intersection of
two λ-semiconvex sets need not be λ-semiconvex.

Research Plan 4.12. For which λ ∈ C do there exist nontrivial, bounded λ-semiconvex sets?

It is not too hard to see that if |λ− 1/2| ≤ 1/2, then any disk (closed or open) is λ-semiconvex.
There are at least two values of λ outside this range where bounded λ-semiconvex sets exist: if
λ = (1± i

√
3)/2, then the vertices of any equilateral triangle form a λ-semiconvex set. What other

such λ are there?

4.3 Computational Questions

Questions such as Research Plan ?? lead us to the following line of inquiry. If Qλ is discrete, then
each element of Qλ can be expressed as a polynomial in λ, of fixed degree, with integer coefficients.
Qλ is countably infinite. Furthermore, it is computably enumerable: If x ∈ Qλ, by enumerating all
extrapolations beginning with {0, 1}, we will eventually obtain x. It is possible by similar reasoning
that Qλ is in NP; however it is not at all obvious that a succinct proof that x ∈ Qλ (to say nothing
of x 6∈ Qλ) can always be found, and its computational complexity is wide open. For those λ that
satisfy Open Question ??, we have an effective procedure to determine if any x is in Qλ. For other
λ, however, especially if λ is not a strong PV number but Qλ is nevertheless discrete, we do not
know if Qλ is decidable (although we do know that Q[x], defined in the next section, is decidable).

Open Question 4.13. If Qλ is discrete, is it decidable? Uniformly in λ? If it is decidable, what
is its computational complexity? When is it true that Qλ ∈ NP, and how does this depend on λ?

Note that if Conjecture ?? is false, it’s possible that the answer depends on whether or not λ is
a strong PV number. We conjecture that Qλ is always decidable, but have no intuition regarding
its containment in NP, to say nothing of P.

4.4 Miscellaneous Open Problems

It would be interesting to pin down C ∩R and C ∩ {z ∈ C | Re(z) = 1/2}. These two cases may be
easier than the general case, as they present symmetries not shared by all λ.

Research Plan 4.14. Determine which λ > 3 yield Qλ = R. Determine which λ with Re(λ) = 1/2
yield Qλ = C.
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Research Plan 4.15. Get a reasonably good graphical picture of D.

By Q[x] we denote the set of polynomials in Z[x] generated by the constant polynomials 0 and
1, and by repeated applications of ?x; that is, Q[x] is the smallest set of polynomials containing 0, 1
and closed under the binary operation (p, q) 7→ (1− x)p+ xq.

Q[x] has some interesting properties. Any element of Qλ can be written as p(λ) where p ∈ Q[x],
and conversely. Pinch showed [?, Corollary 4.1] that an integer polynomial p is in Q[x] if and only
if there exist n ≥ 0 and integers b0, . . . , bn such that p(x) =

∑n
i=0 bix

i(1 − x)n−i and 0 ≤ bi ≤
(
n
i

)
for all 0 ≤ i ≤ n. We have an alternate characterization of Q[x]: an integer polynomial p is in Q[x]

if and only if either p ∈ {0, 1} or 0 < p(µ) < 1 for all 0 < µ < 1. This latter characterization can be
used to computably enumerate the integer polynomials not in Q[x], leading to a decision procedure
for Q[x]. What, then, is the complexity of deciding Q[x]?

There are other interesting (though noncomputational) questions regarding Q[x]. We can list all
14 polynomials in Q[x] of degree ≤ 2, and get a finite upper bound on the number of polynomials
in Q[x] of any given degree bound. However, we don’t even know how many polynomials there are
in Q[x] of degree 3.

Open Question 4.16. How many elements of Q[x] are there of degree 3?

Our techniques give an upper bound of 717, and an extensive computer search finds only 90.
Perhaps the following fact can reduce the upper bound:

Fact 4.17. Let p ∈ R[x] be any polynomial in R[x] such that {p(0), p(1)} ⊆ {0, 1}. Then 0 <
p(µ) < 1 for all 0 < µ < 1 if and only if 0 < p(r) < 1 for every root r of p′ (the derivative of p)
such that 0 < r < 1.

Other open problems include the following:

Call the triangle with vertices (0, 1, λ) the fundamental triangle. George McNulty offers the
following conjecture [?]:

Conjecture 4.18 (McNulty). If Qλ contains a point in the interior of the fundamental triangle,
then Qλ is convex.

Definition 4.19. We will call a discrete set Qλ maximal if it is not a proper subset of any other
discrete Qµ.

Open Question 4.20. Do maximal Qλ exist? Is there an easy way to characterize the λ such that
Qλ is maximal? Is there an interesting notion of minimal Qλ?

Open Question 4.21. Is there an easy way to characterize the minimum polynomials of strong
PV numbers? Short of that, find such polynomials of higher and higher degree. (We currently can
characterize all such polynomials of degree ≤ 4.)

Open Question 4.22. We say that a λ-convex set A is cohesive if A = Qλ(A \ T ) for any finite
set T . We can show that the right-hand side of (??) is cohesive for all unitary quadratic sPV λ—if
you remove 0 and 1. This implies that if Research Plan ?? is true, then there are infinitely many
points “missing” from Q(5+

√
13)/2. For which λ is Qλ \{0, 1} cohesive? All sPV numbers, perhaps?
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Open Question 4.23. Let A be λ-convex as in the previous question. An essential point of A is
some x ∈ A such that A \ {x} is λ-convex5. For example, 0 and 1 are both essential points of Qλ
for all sPV λ. The question is: if Qλ \{0, 1} is not cohesive, must it have an essential point? More
generally, what is the smallest size of a set you can remove from a noncohesive set that leaves a
λ-convex set?
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