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1 Introduction

This column is a collection of open problem that were either by or inspired by Juris Hart-
manis. There are many authors.

2 Extremely Sparse Sets

by Eric Allender

In a paper by Hartmanis, Immerman, Sewelson [HIS85] they raised the following question:
If determinism and nondeterminism coincide for doubly-exponential time, can

there be extremely sparse sets in NP−P?
They proved the answer was no. But there was a bug in the proof [All91]. In fact

Allender showed that there exists an oracle where the answer is yes. Hence techniques that
relativize will not suffice to resolve the question.

In the mean time, some non-relativizing techniques have been developed, as well as
investigations into the limitations of those techniques. This suggests three possible directions:

1. Prove that the answer is no, though this will require techniques that do not relativize.

2. Prove that the result algebraizes, as defined by Aaronson and Wigderson [AW09a] and
hence may be hard to resolve.

3. Prove that the answer is yes. We doubt such a proof will be found soon.
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3 Algebraic and Transcendental Numbers

3.1 The Complexity of Algebraic Numbers

by William Gasarch

In Hartmanis & Stearns’s classic paper [HS65] they defined DTIME(T (n)). This is that
part of the paper people usually point to. We will point to a different part: the complexity
of real numbers.

Let α ∈ R. We want to know the complexity of α. We say α ∈ DTIME(T (n)) if there is
a Turing machine that will, on input an empty tape, run forever and print the first n digits
of α in time O(T (n)).

A number is algebraic if it is the root of some polynomial in Z[x]. A number is tran-
scendental if it is not algebraic. We only deal with real numbers in this section (and the
next).

Hartmanis & Stearns did the following:

• Observed that every rational is in DTIME(n).

• Proved that every algebraic number is in DTIME(n2).

• Proved that there exists a transcendental number that is in DTIME(n).

They asked the question
Is there an algebraic number that requires Ω(n2) time?

They noted that if there is then there would be an algebraic number that is more com-
plicated than a transcendental number.

We list their question and a few more:

1. Does there exist an algebraic number that requires DTIME(n2)? DTIME(n2−δ) for
some 0 < δ < 1?

2. Is there any relation between the degree of an algebraic number (the min degree of a
polynomial over Z that it satisfies) and its complexity? We suspect not.

3. By an easy diagonalization one can show the following: for all computable T (n), there
exists an α that requires time T (n). The α is unnatural. Find concrete examples for
such with T (n) = n2 or T (n) = n3 or whatever your favorite function is.

4. There is a vast literature on computing either the first n digits (or bits) of π or just
the nth bit. This is another direction to go.

There has been little progress on their original question or our additions; however,
Freivalds [Fre12] has a survey of the work that HAS been done.
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3.2 Real Time Computability and Transcendental Numbers

by Jin-Yi Cai

A real number r is said to be real-time computable if there exists a multitape Turing
machine (TM) which on blank input, prints the binary expansion of r and gives the first
n bits in O(n) steps. P. Fischer, A. Meyer and A. Rosenberg [FMR70] showed that this is
equivalent to the following: Some TM on input 1n outputs the first n bits in O(n) steps.
The trick is to run two parallel subroutines which take turns to print the first n = 2k bits
for increasing k; when one prints (part of) the first 2k bits, the other prepares the (second
half of) 2k+1 bits.

Every rational number is real-time computable, as its expansion is eventually periodic—
one can use a finite automaton. A more interesting example is the (decimal) Champernowne’s
number

C10 = 0.12345678910111213141516171819202122 . . . .

A TM M can print the decimal values k = 1, 2, 3, . . . successively as follows: M uses two
tapes holding a counter k on one tape and its head scanning left to right, and a second tape
holding k − 1, to be updated to k + 1 with its head going right to left. More interestingly,
the following numbers are real-time computable:∑

n≥1

1

2n2 ,
∑
n≥1

1

2n3 ,
∑
n≥1

1

2n!
.

These numbers are real-time computable because their nonzero bits occur very sparsely. This
latter property implies that they have very good binary rational approximations.

A number is algebraic if it is a root of a polynomial in Z[x]. It is transcendental if it is not
algebraic. Proving specific numbers transcendental is a hard problem, and historically it is
intimately related to how close a number can be approximated by rational numbers. Liouville
pioneered this line of inquiry and showed that a non-rational algebraic number cannot have
rational approximations that are too close. This was used by Liouville, in the 1850’s, to
prove that transcendental numbers exist, and numbers such as

∑
n≥1

1
2n! are transcendental.

This method led to the proofs by (1) Hermite, in 1873, that e is transcendental, and (2)
Lindemann, in 1882, that π is transcendental. The latter of course was the negative solution
to the ancient Greek problem of squaring the circle. Mahler, in 1937, proved that C10 is
transcendental. The transcendence of

∑
n≥1

1

2n2 was only proved in 1996, by Bertrand [Ber97]

and Duverney et al. [DNNS96] (independently). The result required deep results about
algebraic independence of values of Eisenstein’s series. The transcendence of

∑
n≥1

1

2n3 is
still open. Contrast this with Cantor’s proof that transcendental numbers exist because the
algebraic numbers are countable.

The question on how well an algebraic number can be rationally approximated culminated
in Roth’s theorem, from 1955, that a non-rational algebraic number cannot be approximated
better than the order cϵ/q

2+ϵ by rational numbers of the form p
q
, for every ϵ > 0. (Every real

number has such approximations to the order c/q2.)
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In their Turing award-winning paper introducing time complexity classes in 1965, Hart-
manis and Stearns proposed the following open problem:

Is every real-time computable number either rational or transcendental?

This has become known as the Hartmanis-Stearns Conjecture. If it is true, it would imply
a deep connection between transcendental numbers and computational complexity.

The Hartmanis-Stearns Conjecture is true for finite automata (FA), and in fact true for
deterministic pushdown automata (see the paper by Adamczewski-Cassigne-Gonidec [ACG20]
and the references therein).

A sequence is b-automatic if there is a FA, when given n in base b expansion, produces
the n-th term at the end. They prove that irrational automatic numbers are transcendental.
Their work uses a generalization of Roth’s theorem, and introduced a new criterion for
transcendence. On the other hand, the work by Bailey-J. Borwein-Plouffe [BBP97] (see also
J. Borwein & J. Borwein [BB87]) show that some transcendental numbers have surprisingly
fast computable approximations. E.g., formulae such as

π =
∑
k≥0

1

16k

(
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)
can lead to quasi-linear time computation of the bits of π. Yap [Yap10] (also see [LR13,
Chapter 31] or [LR10]) showed that the digits of π can be computed in logspace. Allender
et al. [ABDPar] improved this by showing that the digits of π can be computed in TC0.

Concerning transcendental numbers, mystery persists. E.g., it is still unknown whether
e + π, eπ and πe are transcendental, but eπ is. Hilbert’s 7th problem asks for a proof
that if α ̸= 0, 1 and non-rational β are both algebraic, then αβ is transcendental. This
was proved by Gel’fond and Schneider (independently in 1934). It was generalized to the
famous Baker’s theorem (1966): If α1, . . . , αk, β1, . . . , βk are nonzero algebraic numbers such
that there are no non-trivial relations of the form αn1

1 · · ·αnk
k = 1, then log(αβ1

1 · · ·αβk

k ) is
transcendental. Relations of the form above also have connections to complexity theory
lately, e.g., such relations—called lattice conditions—are used in the proof of dichotomy
theorems for counting problems by Cai, Guo and Williams [CGW16].

4 Sizes of DPDA’s and PDA’s

by William Gasarch

Convention 4.1 A device will either be a recognizer (e.g., a DFA) or a generator (e.g., a
regular expression). We will use M to denote a set of devices (e.g., DFAs). We will refer
to an element of M as an M-device. If P is an M-device then let L(P ) be the language
recognized or generated by P . Let L(M) = {L(P ) : P ∈ M}.
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Def 4.2 Let M and M′ be two sets of devices such that L(M) ⊆ L(M′). (e.g., DFAs and
DPDAs). A bounding function for (M,M′) is a function f such that for all A ∈ L(M), if
A ∈ L(M′) via an M′-device of size n, then A ∈ L(M) via an M-device of size ≤ f(n).

Valiant [Val76], and later Hartmanis [Har80] with an easier proof, showed the following:

Theorem 4.3 If f is a bounding function for (DPDA,PDA), then HALT ≤T f .

Theorem 4.3 shows that there is a large difference between sizes of DPDA’s and PDA’s
for the same language. However, the theorem does not give us a concrete example of a
DPDA language which has a much smaller PDA than DPDA.

Beigel & Gasarch [BG16], drawing heavily on Filmus [Fil11], showed the following.

Def 4.4

1. Wn = {ww : |w| = n}.

2. An = Wn.

Theorem 4.5 For almost all n:

1. There is a PDA of size O(n) for An.

2. Any DPDA that recognizes An requires size ≥ 22
Ω(n)

.

Hence we have a double-exp gap between DPDA’s and PDA’s. Can we do better? Yes and
No. Beigel & Gasarch [BG16] proved the following, drawing heavily on Hartmanis [Har80].

Def 4.6 INF is the set of all Turing machines (actually their indices) M such that M halts
on an infinite number of inputs.

Theorem 4.7 Let f be such that INF ̸≤T f . For infinitely many n there exists a language
Bn such that:

1. There is a PDA of size n that accepts Bn.

2. Any DPDA that accepts Bn is of size ≥ f(n).

(The set Bn is contrived. It involves Turing machines.)

Realize that for any computable f , including (say) Ackerman’s function, INF ̸≤T f . So
Theorem 4.7 seems like a much bigger separation than Theorem 4.5. But wait! Theorem 4.5
is an almost-all-n result, whereas Theorem 4.7 is an infinitely-many-n result. So they are
actually incomparable. We would like to have the best of both worlds.
Open Question: For some f such that 22

n ≪ f(n) show the following:
For almost all n there exists a language Cn such that:

1. There is a PDA of size O(n) for Cn.

2. Any DPDA that recognizes Cn requires size ≥ f(n).

3. Bonus points if Cn is not constructed by diagonalization and does not involve Turing
machines.

5



5 The Berman-Hartmanis Conjecture

5.1 The Berman-Hartmanis Isomorphism Conjecture: Origins

by Stuart A. Kurtz and James S. Royer

The Berman-Hartmanis Isomorphism Conjecture [BH77] posits that allNP-complete sets
are isomorphic under polynomial-time isomorphisms.1 As evidence for their conjecture, they
showed that SAT is paddable,2 and isomorphic to all paddable NP-complete sets, including
all of the then-known “natural” NP-complete sets.

Analogs to the Berman-Hartmanis Conjecture include the Cantor-Bernstein Theorem of
set theory3 and Myhill’s Theorem of computability theory4, which are both true, and indeed
the proof of Myhill’s theorem can be adapted to the complexity-theoretic context, albeit at
the cost of a slightly weaker result, which we’ll call
Theorem A: If f : A → B and g : B → A are polynomial-time computable, 1-1, invertible,
and length-increasing, then A and B are polynomial-time isomorphic.

Deborah Joseph and Paul Young observed that the gap between Theorem A and the Iso-
morphism Conjecture is uncomfortably large. In particular, if f is a polynomial-time 1-way
function (in this case, meaning a function such that the only polynomial-time computable
sets contained in its range are sparse), then f(SAT) will be NP-complete, but non-paddable,
and so not isomorphic to SAT, contracting the conjecture.

The Isomorphism Conjecture and related work were a strong drivers in the emergence of
structural complexity, which emphasized reductions and degree structure as an approach to
studying complexity theory. There are oracles known relative to which the conjecture holds,
relative to which it fails, and (perhaps most surprisingly) relative to which it holds, even
though certain sorts of 1-way functions exist.

5.2 The Cylinder Conjecture

by Lance Fortnow

Suppose we wanted to find a counterexample to the Berman-Hartmanis Isomorphism
Conjecture [BH77]. Consider the following family of languages:

{f(SAT): f : Σ∗ → Σ∗} ,

where f(SAT) = {f(x) : x ∈ SAT}.
If f is polynomial-time computable, injective and length non-decreasing then f(SAT)

is NP-complete. For the rest of this section we will limit ourselves to f that have these
properties.

1Polynomial-time computable 1-1 and onto functions whose inverse is also polynomial-time computable
2There is a polynomial-time computable and invertible pairing function p such that p(x, y) ∈ A ⇐⇒ x ∈

A.
3If f : A → B and g : B → A are 1-1, then there exists a bijective h : A → B.
4If A and B are c.e.-complete under computable 1-reductions, then A and B are computably isomorphic.
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The idea is to find an f complicated enough so that f(SAT) is not isomorphic to SAT.
Deborah Joseph and Paul Young [JY85] first considered this approach in their study of
k-creative sets.

In 1995 Stuart Kurtz, Steve Mahaney and Jim Royer [KMR95] define the notion of a
scrambling function, a function f such that the range of f does not contain a non-empty
paddable language, i.e, where there is a polynomial-time computable and invertible injective
function g such that for all strings x and y, x is in L if and only if g(x, y) is in L. They show

1. For any scrambling function f , f(SAT) is not isomorphic to SAT.

2. Relative to a random oracle, scrambling functions exist.

As an immediate corollary, the Berman-Hartmanis conjecture fails relative to a random
oracle.

Based on this work, the Berman-Hartmanis conjecture was generally considered likely
false as scrambling or other similar functions seemed reasonably likely to exist in the unrel-
ativized world. Or so we thought until 2009 when Manindra Agrawal and Osamu Watan-
abe [AW09b] showed that for the known one-way function candidates f , f(SAT) is isomorphic
to SAT, at least non-uniformly.

Intuitively, Agrawal and Watanabe show that if f has an easy cylinder than f(SAT)
is isomorphic to SAT. A cylinder is a way to embed Σ∗ into an invertible range of f ,
informally, two easy-to-compute functions e and g such that for all x, g(f(e(x))) = x. The
formal definition they need is a bit more technical [AW09b, Definition 3]. Agrawal and
Watanabe made the following conjecture:
Conjecture (Cylinder Conjecture) If f is easy to compute then f has a non-uniform easy
cylinder.

Shortly after Agrawal and Watanabe made their conjecture, Oded Goldreich published
a potential counterexample one-way function based on expander graphs [Gol11]. Gold-
reich’s function composes a function with itself several times depending on the input length.
Agrawal and Watanabe counter that if one iterates a function with an easy cylinder in this
manner, the iterated function should also have an easy cylinder, though they can’t prove
this point.

The cylinder conjecture remains open and is likely the key to whether the isomorphism
conjecture is true in the unrelativized world. While it can’t be settled with a relativizing
proof, more evidence of the conjecture holding such as a proof that Goldreich’s function
has an easy cylinder, or a more convincing counterexample would help us better conjecture
whether the isomorphism conjecture may be true.

5.3 The BH Conjecture with Weaker Reductions

by Neil Immerman
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Hartmanis and his student, Len Berman, considered the question of whether all NP-
complete problems are the same or if they vary. Myhill had proved that all r.e. complete
problems are recursively isomorphic [Myh55]. Berman and Hartmanis made the following
conjecture:
Berman-Hartmanis Isomorphism Conjecture [BH77]: If A,B are NP-complete via
ptime many-one reductions, then A and B are ptime isomorphic (A ∼=p B).

The Berman-Hartmanis Isomorphism Conjecture remains open. In particular, it implies
that P ̸=NP, but even the weaker conjecture — If P ̸=NP Then the Berman-Hartmanis Iso-
morphism Conjecture holds — is open.

In the late 1970’s, when Steve Mahaney and I were his grad students, Hartmanis was
very interested in proving structural properties of NP-complete sets. Mahaney succeeded in
doing just that, proving
Mahaney’s Theorem [Mah82]: If P ̸=NP then all NP-complete problems are dense.

Reductions

Hartmanis was also interested in the fact that complete problems seem to remain complete
via surprisingly weak reductions. Initially, Cook proved that SAT is NP-complete via ptime
Turing reductions [Coo71]. When Karp produced many other important NP-complete prob-
lems, he used ptime, many-one reductions [Kar72]. Jones showed that they stay complete
via logspace reductions [Jon75]. Hartmanis, Immerman and Mahaney showed that one-way
logspace reductions suffice [HIM78]; in this model the transducer reads its input once from
left to right.

When I introduced Descriptive Complexity, I was pleased to see that first-order reductions
— which are the natural way to translate one logical problem to another — preserve the
completeness properties for all natural complete problems for all complexity classes [Imm99].
When I mentioned this to Mike Sipser, he pointed out that Valiant’s projections are weaker
and still preserve natural complete problems [Val82]. Projections are non-uniform reductions
which perform no computations: the ith output bit is either always 0 or always 1, or it is a
fixed bit, bf(i), of the input, or the negation of a fixed bit, ¬bf(i).

I was pleased to observe that there is a natural restriction of first-order reductions making
them (first-order uniform) projections. I call these first-order projections (fops) and observe
that natural problems stay complete via fops [Imm99]. A bonus is that fops are so well-
behaved that we can prove an isomorphism theorem:
Fops Isomorphism Theorem [ABI97] For all important complexity classes C, (this in-
cludes L, NL, P, NP, PSPACE, EXPTIME) every two problems complete for C via fops are
first-order isomorphic.

I felt that this was a positive answer to the Berman-Hartmanis Conjecture, and Hartmanis
agreed with me. Later, Agrawal strengthened our theorem to the following:
First-Order Isomorphism Theorem [Agr01] For all important complexity classes, C,
every two problems complete for C via first order reductions are first-order isomorphic.
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Dichotomy Phenomenon

We are familiar with the fact that “natural” computational problems tend to be complete
(and in fact complete via fops) for one of our favorite complexity classes. Furthermore, from
the Fops Isomorphism Theorem, we can conclude that these natural problems are really a
very small number of problems — only one for each of our favorite complexity classes.
Open Problem: Understand, explain and make use of this phenomenon.

A related and equally hard problem was frequently proposed by Hartmanis: separate
complexity classes by proving that certain weak reductions do not exist. Here is one example.
The problem REACHd is the set of directed graphs of outdegree one having a path from s
to t. A quantifier-free projection (qfp) is a fop that happens to be quantifier-free.
Theorem [Imm99] REACHd is complete for DSPACE[log n] via qfps.
Corollary (NP = DSPACE[log n]) ⇔ 3-COLOR ≤qfp REACHd

Open problem: Develop techniques towards proving that there is no qfp from 3-COLOR
to REACHd.

6 Amplification/Magnification/Bootstrapping for SAT

by Ryan Williams

Juris and I discussed many problems, but one stands out for me as particularly prescient,
given about 20 years of hindsight. We start with the following curious observation.
Theorem. There exists a fixed constant c such that P = NP if and only if SAT is in O(nc)
time.

The proof is trivial but nastily non-constructive. There are two cases. First, if P = NP
then SAT is in O(nk) time for some k, so we may set c = k. Second, if P ̸= NP then the
statement is true for every c.
Open Problem: Find an explicit constant c for which the above theorem holds. (For
example, does the theorem hold for c = 10?)

Juris told me a result like this would truly convince him that we’ve made progress on
P ̸= NP: from (say) an n10-time lower bound for SAT, we could conclude a super-polynomial
time lower bound. This came up while we were discussing Fortnow’s journal paper on time-
space tradeoffs for SAT [For00], and the possibility of improving the time lower bound beyond
the golden ratio exponent established by Fortnow and Van Melkebeek in CCC’00 [FLvMV00],
which I eventually did [Wil08].5

I had forgotten about this conversation with Juris until recently. At the time, it felt
like an impossible problem to me. However, several years after our discussion, Allender and
Koucky [AK10] released their paper on Amplifying lower bounds by means of self-reducibility,
showing how n1+ε-type TC0 lower bounds on (for example) Formula Evaluation would
imply NC1 ̸= TC0 outright (you cannot compute Formula Evaluation on TC0 circuits

5Sometimes when I’m feeling blue, I pull out an old email from Juris, documenting his response: My very
sincere congratulations!!! This is GREAT !! May he rest in peace.
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of any polynomial size). It is possible that he was also aware of Aravind Srinivasan’s STOC
2000 paper [Sri00] showing that weak-looking time lower bounds on approximating CLIQUE
would imply P ̸= NP (I was unaware of it, at the time).

There are now many amplification results of a similar flavor, sometimes also called hard-
ness magnification or bootstrapping, where one shows that a fixed-polynomial lower bound for
one problem implies a super-polynomial lower bound (for possibly a different problem), by
taking advantage of problem structure [AAW10, LW10, OS18, OPS19, CILM18, MMW19,
CT19, CMMW19, CJW19, Hir20, MP20, CJW20, Fu20, CHO+22, CLY22]. (I have tried to
be exhaustive, but there are many recent papers! I hope I didn’t leave yours out.)

Maybe now, this open problem is not quite as impossible as it used to be. Variants of the
problem are also just as interesting. Could it be that SAT is not solvable by an algorithm
running in both cubic time and logspace if and only if NP ̸= LOGSPACE? That would
partially explain why it seems so difficult to prove a super-quadratic time lower bound for
SAT against logspace machines (for both the decision version of SAT, and the search version).
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