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Abstract
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Fig. 1. Answer Inference Machine

1 Introduction

When scientists examine data, they may be trying to answer a question about
the data (e.g. “Is the shape of the earth’s orbit around the sun a circle?” 2 )
or, they may be trying to find a function that fits the data (e.g. “We seek an
equation that describes the earth’s orbit.”). In the former case we will restrict
to boolean questions and hence we can think of the scientist as wondering
whether a certain property holds. In the latter case we think of the scientist
as trying to learn a program for the function. Note that even if the scientist has
a program he might not know much about particular questions. For example,
when one’s looking at a program it is not decidable if it is the program for a
circle.

Traditionally, an inductive inference machine [22,6] learns programs for com-
putable functions. In this work we introduce a new machine model that an-
swers logical queries about computable functions. Informally, we consider a
total algorithmic device such that, when given as input a query φ about a
function f , and an initial segment

{(0, f(0)), . . . , (n, f(n))}

of f , tries to answer φ. We say that the machine can infer the answer to φ if
it converges to the correct answer as n approaches infinity (See Figure 1).

In this model, the queries are boolean queries formulated using a logical lan-
guage L. Given a language L and a concept class C (i.e. a collection of com-
putable functions in our case), the collection of queries about the members of
C that can be inferred by a machine M represents a class of properties of C
that can be learned by M . The answer inference type, QAN (L), contains all
concept classes such that boolean queries formulated in L can be inferred by
such machines.

What is the difference between the learning of answers and the learning of

2 In physics we see that Kepler’s law is easier to derive than the equations of
motions of the planets. Prior work motivated by these observations can be found in
[7,4].
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programs? In this work we show that they are strongly incomparable. We in-
troduce variants of answer inference types from the machine model. They vary
in their learning power. We then demonstrate the incomparability by consid-
ering the extreme cases (by comparing answer inference types with standard
inference types such as PEX0 and [1, n]QBCa (L)). Another theme of this
paper is to demonstrate how answer inference types can be used as a tech-
nical tool in the study of query inference [19]. By examining the complexity
of queries made by query inference machines, we show that separation results
for many standard inference types remains true for their query counterparts.
This settles a number of conjectures in query inference [19,17].

There has been some related work on this problem. Smith and Wiehagen [33]
introduced a model of classification, called the classification machine. Given
n collections of computable functions S1, S2, . . . , Sn, a classification machine
M tries to classify the function f in the limit by converging to some i such
that f ∈ Si. Note that a classification machine may be able to answer a single
question in the limit but not all the questions in a given language. In their
model, the Si’s are not required to be pairwise disjoint. Ben-David [5], Gasarch,
Pleszkoch, Stephan and Velauthapillai [21], and Kelly [24] had studied the
model where there is no limits on computational power. Kelly’s work [24]
includes the case when there are limits on computational power. In [21], the
models consider all inputs that are elements of Nω, including those that are
not computable. Other works in computable classification includes [31,8]. We
refer interested readers to these papers and the references cited therein on
computable classification and other related topics.

The arrangement of this paper is as follows. In Section 2 we define our nota-
tions and the basic terms used in the study of answer inference types. We also
state relevant definitions from Büchi automata, query languages and related
concepts there. In Section 3 we summarize our technical results. Structural
properties of answer inference types are discussed from Section 4 to Section 6.
In Section 7 we demonstrate that the learning of programs and the learning of
properties are incomparable by presenting two extreme cases. In Section 8 we
further apply our techniques to prove a lifting lemma. It sharpens the compar-
ison result in the previous section. It also enables us to obtain results about
query inference [19] immediately from their passive versions. Concluding re-
marks and open problems will be stated in the last section.

2 Notations and Definitions
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2.1 Standard Notations

We assume familiarity with standard definitions and notations from logic [16],
computability theory [34,32] and inductive inference [3,9,23]. Throughout this
work N = {0, 1, . . .} denotes the set of all natural numbers. Given a finite set
A, |A| denotes the cardinality of A and Aω denotes the set of infinite strings
of length ω formed by the elements in A. f [n] denotes the initial segment
{(0, f(0)), . . . , (n, f(n))} of the graph of f . We use the symbol DEC to denote
the collection of all computable functions from N to N. DEC0,1 denotes the
set of all decidable subsets of N. We often think of subsets of N as {0, 1}-
valued functions and interpret DEC0,1 as a subset of DEC. Subsets of DEC
and DEC0,1 are referred as concept classes and EX, [1, n]BC and etc. (resp.
QEX (L), [1, n]QBC (L) . . .) are referred as passive (resp. query) inference
types.

2.2 Query Languages

A First Order Query Language ([19,17]) L consists of the usual logical symbols
(including equality), symbols for number variables, symbols for every element
of N, a special function symbol F denoting a function we wish to learn, and
symbols for additional functions and relations on N. We will assume that
these additional functions and relations are computable. L may be denoted
by the symbols for the additional functions and relations (e.g. [+, <] denotes
the language with additional symbols for + and <; [∅] denotes the language
with no additional symbols). A well-formed formula over L is defined in the
usual manner. Throughout this work, L denotes a reasonable query language.
That is, all the symbols in L represent computable operations. The language
that omits the symbol F from L is called the base language of L. We say
that the base language is decidable if the truth of any sentences in the base
language is decidable. The truth value of any sentence is either 1 (TRUE)
or 0 (FALSE). We define query about functions. They are boolean questions
that can be formulated in L. The analogous notions for sets can be defined
similarly.

Definition 2.1 A query φ about f is a closed well-formed formula in L with
the function symbol F . φ(f) denotes both the question (when F is interpreted
as f) and the correct answer (∈ {0, 1}) of the question.

Note that ‘∀φ ∈ L’ denotes the phrase “for every query formulated in the
language L”. Some examples of queries in various languages are listed in Fig-
ure 2.
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L Example

[∅] query: (∀y)(∃x)[F(x) = y]

interpretation: ‘Is the function surjective?’

[<] query :(∃x)(∀y)[(x < y)→ F(x) = 0]

interpretation: ‘Does the function has finite support?’

[+, <] query: (∃x)(∃p)(∀y)[(x < y) ∧ (p > 0)→ F(y) = F(y + p)]

interpretation: ‘Is the function eventually periodic?’

Fig. 2. Examples of queries in different languages

Consider the query language [+,×]. It is known that questions to the HALT-
ING PROBLEM can be asked in this language [14,25,13,26]. Hence the set of
all computable functions can be inferred with [+,×]. These questions are not
about the function F and not really in the spirit of our inquiry. Unless oth-
erwise stated, our primary concern will be query languages with a decidable
base language.

We also use the following predicate and function symbols in some query lan-
guages.

Notation 2.2 Let b ≥ 2. The following symbols will be used in some of our
query languages:

a) Succ denotes the successor function Succ(x)=x+ 1.
b) POWb is the unary predicate that determines if a number is in the set
{bn : n ∈ N}.

c) POLYb is the unary predicate that determines if a number is in the set
{nb : n ∈ N}.

d) FAC is the unary predicate that determines if a number is in the set {n! :
n ∈ N}.

The query language [Succ, <]2 will be used frequently in this paper. Apart
from the extra symbols Succ and <, we allow the use of set variables and their
quantifications (the superscript 2 is used to denote this fact). We adopt the
following conventions. Small (resp. Large) letters are used for number (resp.
set) variables, which range over N (resp. subsets of N). Specific features of this
query language will be addressed in later sections.

Definition 2.3 The Second Order Query language [Succ, <]2 is defined as
follows.

a) Terms: a term is either a numeric variable, a numerical constant k (inter-
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preted as the natural number k), or is of the form g(t), where t is a term
and g is either the symbol Succ or F . Note that a term does not use set
variables.

b) Atomic formulas: any atomic formula is of the form (t ∈ X), (s = t), (s < t)
where s and t are terms and X is a set variable.

c) Well-formed formulas: well-formed formulas in the query language [Succ, <]2

are defined inductively as follows:
(1) Any atomic formula is a well-formed formula.
(2) If ψ and θ are well-formed formulas, then (ψ) ∨ (θ), (ψ) ∧ (θ), (ψ)→ (θ),

(ψ)↔ (θ) and ¬(θ) are well-formed formulas.
(3) If x is a numeric variable,X is a set variable and θ is a well-formed formula,

then (∃x)[θ(x)], (∀x)[θ(x)], (∃X)[θ(X)], and (∀X)[θ(X)] are well-formed
formulas.

(4) Nothing else is a well-formed formula.
d) Queries: queries are the closed well-formed formulas with the function sym-

bol F .

2.3 Answer Inference Types

Definition 2.4

a) An answer inference machine M (abbrev. AIM) is a total Turing machine
such that on each input φ ∈ L and each initial segment f [n] (n ≥ 0) of f ,
output a guess of the truth value of φ(f), which is denoted by M(φ, f [n]) ∈
{0, 1}. The limit limn→∞M(φ, f [n]) is denoted by M(φ, f) whenever it
exists.

b) M infers the correct answer of φ(f) if M(φ, f) = φ(f).
c) Given C ⊆ DEC. We write

C ⊆ QAN (L)(M) if (∀φ ∈ L)(∀f ∈ C)[M(φ, f) = φ(f)] and

QAN (L) = {C ⊆ DEC : (∃M)[C ⊆ QAN (L)(M)]}.

d) The inference types QiANj (L) (i, j ≥ 0, i 6= 0) denotes the case when the
queries considered have at most i − 1 alternations of quantifiers and the
answer inference machines can make at most j mindchanges. We omit the
appropriate subscripts when no restrictions are made in the corresponding
case. We will, in text, refer to this as i = ∗ or j = ∗. For example we
may say “when i ∈ N ∪ {∗} then . . .”. We call QiANj (L) trivial when
DEC ∈ QiANj (L).

The inclusion relations described in Figure 3 follows immediately from Defi-
nition 2.4.
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Q1AN (L) ⊇ Q2AN (L) ⊇ · · · ⊇ QAN (L)
...

...
...

∪ ∪ ∪

Q1ANj (L) ⊇ Q2ANj (L) ⊇ · · · ⊇ QANj (L)

∪ ∪ ∪
...

...
...

∪ ∪ ∪

Q1AN1 (L) ⊇ Q2AN1 (L) ⊇ · · · ⊇ QAN1 (L)

∪ ∪ ∪

Q1AN0 (L) ⊇ Q2AN0 (L) ⊇ · · · ⊇ QAN0 (L)

Fig. 3. Hierarchy of Answer Inference Types

Definition 2.5 We call each row (i.e. for j ∈ N ∪ {∗}) in Figure 3

Q1ANj (L) ⊇ Q2ANj (L) ⊇ · · · ⊇ QANj (L)

a quantifier hierarchy of answer inference types and each column (i.e. for i ∈
N ∪ {∗}) in Figure 3

QiAN0 (L) ⊆ QiAN1 (L) ⊆ · · · ⊆ QiAN (L)

a mindchange hierarchy of answer inference types.

For a general answer inference types QiANj (L), the query language used (i.e.
L) is also a parameter. In this article we will use the reduction techniques
introduced in [17] to deal with this parameter. It was shown that many query
languages are reducible to the language [Succ, <]2. By using reductions, one
can obtain results for a class of query languages by simply proving the results
for the language [Succ, <]2. These techniques make use of the decidability
results [15,27] about Büchi automata. We will use these tools in Section 7 and
Section 8.

2.4 Büchi Automata and [Succ, <]2

We first state some basic facts about Büchi automata and the query language
[Succ, <]2. More specific notions concerning Büchi automata will be introduced
in Section 4 and Section 5.
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Definition 2.6 ([1,2]) Let Σ be a finite alphabet. A Büchi-automaton

A = (Q,Σ,∆, s, F )

is a nondeterministic finite automaton where

a) Q is a (finite) set of states;
b) Σ is a finite alphabet;
c) ∆ is a map from Q× Σ to 2Q;
d) s ∈ Q and F ⊆ Q. s is called the starting state and F is called the set of

accepting states.

A operates on infinite strings ~x ∈ Σω. If ~x(i) denotes the (i + 1)th symbol of
~x, then a run of A on ~x is a sequence of states ~q such that

~q(0) = s and (∀i)[~q(i+ 1) ∈ ∆(~q(i), ~x(i))].

A accepts ~x if there is a run ~q such that (∃∞i)[~q(i) ∈ F ]. A accepts C (⊆ Σω) if
it accepts precisely the strings in C. A subset C of Σω is said to be an ω-regular
language if there is a Büchi-automaton that accepts it. We will also use the
term ω automata for Büchi automata.

We use the following connection between the queries in [Succ, <]2 and Büchi
automata.

Theorem 2.7 ([1,2,10]) If φ(x1, . . . , xk1 , X1, . . . , Xk2) is a formula over the
language [Succ, <]2 then the set A

A = {(a1, . . . , ak1 , A1, . . . , Ak2) : φ(a1, . . . , ak1 , A1, . . . , Ak2)}

is ω-regular (here we identify each of the members of A to an ω word via
standard coding methods). Furthermore, there is an effective procedure to
transform any formula into an appropriate Büchi automaton. (There is also a
effective procedure to transform an automaton into an equivalent formula.)

Using this theorem, one can assert that φ(X) (a query about a set X) can be
formulated in [Succ, <]2 by constructing a suitable Büchi automata.

Example 2.8 Let A = ({s, t, u}, {0, 1},∆, {s}, {u}) be the Büchi automata
where ∆ consists of the following rules:

∆(s, 0) = {s, u},∆(s, 1) = ∆(t, 0) = {t};

∆(t, 1) = {s},∆(u, 0) = {u} and ∆(u, 1) = ∅.
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Then A accepts exactly the ω strings which have an even number of 1’s. By
Theorem 2.7 it implies that one can effectively find a query ψ ∈ [Succ, <]2

such that ψ(X) is true iff X is a finite set with an even number of elements.

2.5 Reductions

In this paper we use a reduction among query languages [17].

Definition 2.9 Let L1 and L2 be two query languages and E be an infinite
computable subset of N. Let f : E → N be a computable bijection. L1 is
reducible to L2 via the pair (E, f), written as L1 ≤N L2 if there is a computable
function which satisfies the following two conditions:

a) Domain Condition: The input is a query ψ1(X) over L1 and the output is
a query ψ2(X) over L2.

b) equivalence Condition: (∀A ⊆ E) [ψ1(A) ⇔ ψ2 (f(A))].

Note 2.10 In the above formulation, we only ask questions (in L1) about sets
that are subsets of a specific infinite computable set E. We will denote the
collection DEC0,1 ∩ 2E by DEC0,1(E).

Note 2.11 We use the notation ≤N since it was used in [17]. In that paper
we also used variants where N was replaced with other computable sets. We
will not consider those cases here.

Fact 2.12 [17]

a) [+, <] ≤N [Succ, <]2 where E = POW2 and f is the function that maps 2i

to i.
b) [+, <,POWb] ≤N [Succ, <]2 for any (b ≥ 2) where E = POWb and f is the

function that maps bi to i.

The reduction L1 ≤N L2 between the languages L1 and L2 allows us to relate
concept classes that can be learned via L1 and L2. The following technical
lemma illustrates this point.

Lemma 2.13 [17] Let L1 ≤N L2 via the pair (E, f). Let I be a passive
inference type and QI be the corresponding query notion. Then ∀C ⊆ DEC∩
{X : X ⊆ E},

a) C ∈ I ⇔ f(C) ∈ I.
b) C ∈ QI (L2)⇒ f−1(C) ∈ QI (L1).
c) DEC ∈ QI (L1)⇒ DEC ∈ QI (L2).
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Similarly, we can establish the following technical lemma in the context of
answer inference.

Lemma 2.14 Let L1 and L2 be two reasonable query languages and I be an
inference type. Suppose L1 ≤N L2 via the pair (E, f) and C ⊆ DEC0,1. Then

a) C ∈ QiANj (L2)⇒ f−1(C) ∈ QiANj (L1).
b) C ∈ QiANj (L2)− I ⇒ f−1(C) ∈ QiANj (L1)− I.

Proof:

a) Suppose that L1 ≤N L2 via the pair (E,f). Let C be a collection of sets such
that C ∈ QiANj (L2). By the property of reduction, f−1(C) ∈ QiANj (L1).

b) Suppose that C ∈ QiANj (L2)−I. By previous part of this lemma, f−1(C) ∈
QiANj (L1). By Lemma 2.13, if f−1(C) ∈ I and as f is a computable bijec-
tion, C = f(f−1(C)) ∈ I, which is a contradiction. Hence f−1(C) 6∈ I.

Note 2.15 In [17], some query languages that are extensions of [Succ, <]2 via
an additional predicate P , are studied. They are shown to be reducible to
[Succ, <]2 via ≤w, a weaker form of reduction. We do not use this weaker form
of reduction and hence we do not include it.

3 Technical Summary

For simplicity, we will adopt the following notations in this summary. We use

• Ls to denote any query languages that are reducible to [Succ, <]2 (i.e. L ≤N

[Succ, <]2).
• Ld to denote any reasonable query languages that have decidable base lan-

guages.
• L< to denote query languages that can express the relation <.

3.1 When is an Answer Inference Type Trivial?

1) Existential query about any computable function formulated in any first
order query language Ld can be answered with at most one mindchange and
this bound is tight. This result also holds for any second order languages
LP , where LP = [Succ, <]2, [Succ, <,FAC]2 or

LP ∈ {[Succ, <,POWb]
2, [Succ, <,POLYb]

2 : b > 1}.
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Hence the corresponding answer inference types are trivial.
2) More complex queries formulated in Ld (those with at least one alternation

of quantifiers) about computable functions cannot be inferred.

3.2 Separating the Mindchange Hierarchies

For existential queries: the mindchange hierarchy collapses to the first level
for any Ld. For more complex queries: the mindchange hierarchies are strict
for any Ls.

3.3 Separating the Quantifier Hierarchies

The quantifier hierarchies for two particular query languages collapse when
we restrict input to computable sets. In short, we have

QAN ([Succ, <]2) = Q2AN ([Succ, <]2)

QAN ([Succ, <]) = Q3AN ([Succ, <])

3.4 Inferring Answers Versus Inferring Programs

• There are situations in which inferring programs via some restrictive crite-
rion is easy but inferring answers is hard. Formally,

PEX0 6⊆ Q2AN (Ld).

• There are situations in which inferring programs via some generous criterion
is hard but inferring answers is easy. Formally,

(∀a, n, n ≥ 1)[QAN (Ls) 6⊆ [1, n]QBCa (Ls)].

Note that QAN0 (Ls) (resp. Q2AN (Ls)) is the smallest (resp. largest) non-
trivial answer inference types. These results show that the learning of programs
and the learning of properties are incomparable in a strong sense.

3.5 Lifting Results to Query Inference Types

In query inference the learner is trying to learn a function and is allowed to
ask questions in some language (e.g., L = [+, <]) about it (e.g., (∃x)(∀y)[(x <
y) → F(x) = 0]). All of the standard inference types (e.g. EX) have query
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analogs (e.g., QEX[<]). This notion has been studied extensively in [17–19];
we will review the basic definitions and results in Section 8.1.

It was conjectured that if two inference types differed then their query analogs
differed. Using the machinery in this paper we show that, for many inference
types I and J (which includes EX, BC and their variants with respect to
mindchanges and teams), for many languages L,

J − I 6= ∅ ⇒ QJ (L)−QI (L) 6= ∅.

We show that:

1) For i ≥ 1, [1, i]QEX (Ls) ⊂ [1, i+ 1]QEX (Ls).
2) For i ≥ 1, [1, i]QBC (Ls) ⊂ [1, i+ 1]QBC (Ls).
3) For c, d such that 24/49 < c/d

[24, 49]QEX0 (Ls)− [c, d]QEX (Ls) 6= ∅.

4) [1, 2]QEX0 (Ls) ⊂ [2, 4]QEX0 (Ls).

4 When is an Answer Inference Type Trivial?

Let i > 0 or i = ∗, and j ≥ 0 or j = ∗. In this section, we will show that for
these values of i and j, an answer inference type QiANj (L) is trivial iff i = 1
and j 6= 0.

Theorem 4.1 DEC 6∈ Q1AN0 ([∅]). Hence, DEC 6∈ Q1AN0 (L) for any query
languages L.

Proof: Let S = {A ⊆ N : |A| ≤ 1} and φ be the query φ(X) = (∃y)[y ∈
X]. Here we represent members of S by their characteristic strings. That is,
members of S are either 0ω or 0i10ω for some i ≥ 0. Suppose that S ⊆
Q1AN0 (M) for some AIM M . When we feed M with initial segments of the
form 0i (i ≥ 0, i increasing), then there is a k such that M output an answer b
after examining the segment 0k. However, the sets A,B ∈ S where A = 0ω and
B = 0k10ω are both extensions of σk. If b = 1 (resp b = 0) then φ(A) = 1− b
(resp. φ(B) = 1− b), which is a contradiction. Therefore DEC 6∈ Q1AN0 ([∅])
and hence DEC 6∈ Q1AN0 (L) for any reasonable query languages L.

When mindchanges are allowed, we show that existential queries are learnable
with one mindchange. We need the technical lemmas from Section 3 of [19].
We state them using the terminology in this paper.
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Lemma 4.2 ([19]) Let L be a first order query language with a decidable
base language. Let φ be an existential query in L. Then

1) There is an effective procedure which will convert φ to an equivalent query
φ′ where φ′ is of the form

φ′ = (∃~z)[θ(~z,F(t1),F(t2), . . . ,F(tm))],

where φ′ does not have any nested occurrences of the function symbol F
(F does not appear in any of the ti’s). In addition, each ti is a term that
depends on the variables ~z, and θ is in prenex normal form. For each ti we
may write it as ti(~z).

2) For any f ∈ DEC the query φ(f) is true iff there exists an assignment ~z = ~c
(~c is a vector of natural numbers) such that the sentence

θ(~c, f(t1(~c)), f(t2(~c)), . . . , f(tm(~c)))

is true.

Proof: We refer the interested readers to Section 3 in [19] for a formal
presentation of these results.

Theorem 4.3 Let L be a first order query language with a decidable base
language. Then DEC ∈ Q1AN1 (L).

Proof: By Lemma 4.2, we may assume that the query is of the form

(∃~z)[θ(~z, f(t1(~z)), f(t2(~z)), . . . , f(tm(~z)))].

Initially output NO. Then, as you see f(0), f(1), f(2), . . . dovetail on both the
values of f seen and all ~c to see if θ(~c, f(t1(~c)), f(t2(~c)), . . . , f(tm(~c))) is ever
true. If this ever happens output YES. If the query is true then some value
that makes it true will appear. That will be one mindchange. If the query is
false then it will keep saying NO and make no mindchanges.

Since with only one mindchange we obtain DEC, we have the following corol-
lary. It states that a mindchange hierarchy collapses.

Corollary 4.4 Let L be a first order query language with a decidable base
language. Then

Q1AN0 (L) ⊂ Q1AN1 (L) = · · · = Q1ANi (L) = · · · = Q1AN (L) (i ≥ 1).

We will now show that Theorem 4.3 can be extended to the second order query
language [Succ, <]2, with the caveat that we use DEC0,1 instead of DEC.
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Theorem 4.5 DEC0,1 ∈ Q1AN1 ([Succ, <]2).

Proof: Let ψ be an existential query in [Succ, <]2. By using the same
procedure as in Lemma 4.2.1, we may assume that ψ has no nesting of the
function symbol F . It follows from the definition of terms in [Succ, <]2 (see
Definition 2.3) that each terms in ψ only depends on first order variables. We
may suppose that ψ is of the following form:

ψ = (∃ ~X)(∃~z)[θ( ~X, ~z,F(t1(~z)),F(t2(~z)), . . . ,F(tm(~z)))] (1)

The following procedure will learn the answers of ψ(f) with at most 1 mind-
change.

Procedure for learning ψ(f)

By previous argument, we may assume that ψ is of the form as in (1).

a) Output the answer FALSE.
b) Dovetail w.r.t. the assignment ~z = ~c. For each of assignment ~z = ~c, perform

the following steps:
(1) compute the terms t1(~c), . . . , tm(~c);
(2) read in an initial segment of f so the terms F(t1(~c)), . . . ,F(tm(~c)) can be

interpreted w.r.t. the function f . That is, all the values of f(t1(~c)), . . .,
f(tm(~c)) are obtained.

(3) When we reach this step, we may assume that the query is of the form

(∃ ~X)[θ′( ~X)].

At this stage θ′ is in prenex normal form and all the terms have already
been evaluated. Atomic formulas are either of the form
· (c1 = c2) or (c1 < c2) where c1 and c2 are two natural numbers. The

truth of these atomic formulas can be determined easily.
· (c ∈ X), where c is a natural number and X is a set variable. The

existence of sets that can satisfy a boolean combination of these con-
straints can also be determined effectively.

Let ~X = (X1, . . . , Xm). To determine the truth of (∃ ~X)[θ′( ~X)], it is equiv-
alent to determine the existence of (possibly infinite) sets X1, . . . , Xm that
satisfy the collection of constraints described by the atomic formulas in
θ′. Note that we are only putting a finite number of conditions on the sets
and the conditions involve concrete natural numbers. Hence there exists
(possibly infinite) sets X1, . . . , Xm that satisfy the collection of constraints
described by the atomic formulas in θ′ iff there exists finite setsX1, . . . , Xm

that satisfy the collection of constraints described by the atomic formulas
in θ′. This can be easily determined.
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From the above observation, this problem is clearly decidable. If the
truth value is True, then output the truth value and terminate the pro-
gram. Otherwise, go back to the dovetailing step.

End of Procedure

It is easy to see that the procedure can determine the truth of an existential
query with at most 1 mindchange.

The proof of Theorem 4.5 can be modified to obtain the same result with any
second order query language with decidable base. Hence we have the following
Porism 3

Porism 4.6 Let L be one the following query languages: [Succ, <]2,[Succ, <
,POWb]

2, [Succ, <,POLYb]
2 and [Succ, <,FAC]2. Then

DEC ∈ Q1AN1 (L).

Hence for existential queries, the mindchange hierarchy collapses in the fol-
lowing way:

Corollary 4.7 Let b > 1. Let L be either a first order query language or one
the following query languages: [Succ, <]2,[Succ, <,POWb]

2, [Succ, <,POLYb]
2

and [Succ, <,FAC]2. Then

Q1AN0 (L) ⊂ Q1AN1 (L) = · · · = Q1ANi (L) = · · · = Q1AN (L) (i ≥ 1).

Theorem 4.3 can also be generalized to the following case.

Corollary 4.8 Let L be a first order query language. Then QiAN0 (L) ⊆
Qi+1AN1 (L) for all i ≥ 1 .

Proof: Let C ⊆ DEC such that C ∈ QiAN0 (L), we show that C ⊆
Qi+1AN1 (L). It suffices to look at those queries that are of the form

(Q1~x1)(Q2~x2) . . . (Qk+1~xk+1)α(F , ~x1, ~x2, . . . , ~xk+1)

where Q1, Q2, . . . , Qk+1 are either ∃ or ∀ and they are alternating. Without loss
of generality we may assume that Q1 = ∃. By dovetailing one may effectively

3 A porism is a statement that follows from a theorem by using the same proof
technique. Note that a Corollary can be derived from the Theorem, which is differ-
ent.
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list all possible substitutions to the variable vector ~x1. By assumption there
is an AIM M such that for any f ∈ C, the queries

(Q2~x2) . . . (Qk+1~xk+1)α(f,~c, ~x2, . . . , ~xk+1)

(~c ranges over all possible substitutions of ~x1) can be decided by M . By a
similar argument as in the proof of Theorem 4.3 we get C ∈ Qk+1AN1 (L).

Note 4.9 By Theorem 5.4 and Corollary 5.5 (which will be shown in the next
section), we can show that the subset relation is actually proper for many query
languages. For any i ≥ 2, we have

L ≤N [Succ, <]2 ⇒ QiAN0 (L) ⊂ Qi+1AN1 (L).

The case when i = 1 can also by showed easily by considering the class of sets
that are either a singleton set or the empty set.

While existential queries about computable functions are easy to infer, more
complex properties of computable functions cannot be inferred.

Theorem 4.10 DEC 6∈ Q2AN (∅).

Proof: Suppose DEC ⊆ Q2AN ([∅])(M). We give a query φ in the language
[∅] and construct a computable function f (using φ and M) such that if b =
M(φ, f), then φ(f) = 1 − b. Let φ = (∀x)(∃y)[F(y) = x]. φ is true iff f is
surjective. By assumption, we may assume that M(φ, σ) converges for any
possible initial segment σ. We construct a computable function f as follows.
We set f(0) = 0. Assume we have constructed a finite segment f [n] of f .
Let b=M(φ, f [n]). If b = 0, then set f(n + 1) = f(n) + 1. Otherwise set
f(n+1) = f(n). It is easy to see either M(φ, f) does not converge or M(φ, f)
is not the right answer.

In later sections we shall examine the nontrivial answer inference types.

5 Separating the Mindchange Hierarchies

Corollary 4.7 shows that when dealing with existential questions, the corre-
sponding mindchange hierarchy collapses drastically. By contrast, we show
that when L ≤N [Succ, <]2 and when there is at least one alternation of
quantifiers, all the inclusions in the corresponding mindchange hierarchies are
proper, even when we restrict the input to computable sets.
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Definition 5.1 Let A ⊆ N and L be a reasonable query language. A is said
to be definable by a query φ in L if there is a query φ(X) ∈ L such that φ(X)
is true if and only if X = A.

Intuitively, these sets are those that can be described precisely by a query.
For example, any finite and co-finite sets are definable via a query in any
reasonable query language. The set of all even numbers is also definable in the
language [Succ] via the query

φ(X) = (0 ∈ X) ∧ (1 /∈ X) ∧ (∀y)[y ∈ X ⇔ Succ(Succ(y)) ∈ X]

We will now show that the mindchange hierarchies for non-existential queries
are proper. To simplify our presentation, we introduce the following definitions.

Definition 5.2

a) Let A,B ⊆ N. B is said to be a k-variant of A if the symmetric difference
of the sets A and B (denoted by A∆B) has precisely k elements. Note that
the size of A∆B can be written as |A−B|+ |B − A|.

b) For any A ∈ DEC0,1, we define the k-ball of A to be the set

Sk(A) = {B ∈ DEC0,1 : |A∆B| ≤ k}.

Lemma 5.3

a) Let A be a set that is definable by a query φA in the language L. Then for
any j,m ∈ N, the question

‘Is X a j-variant of A, where j is an odd number and j ≤ m ?’
can be expressed as a query in L of the form

(∃Y )(∃x1, . . . , xk)(∀y)[E1 ∧ E2 ∧ E3].

We will denote this query by ηodd(A,X,m).
b) For any set A that is definable by a query φA in the language [Succ, <]2 and

for any k ≥ 1,

Sk(A) ∈ QANk ([Succ, <]2).

Proof:

a) First note that

u ∈ X∆Y iff [[(u ∈ X) ∧ (u /∈ Y )] ∨ [(u /∈ X) ∧ (u ∈ Y )]]

and that A is definable in L via φA. The question
‘Is X a j-variant of A ?’
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can be represented by the following query φj,A(X) in L:

φj,A(X) = (∃Y )(∃x1)(∃x2) · · · (∃xj)(∀y)(E1 ∧ E2 ∧ E3)

where E1, E2 and E3 are the expressions

E1 :
∧

n6=m,n,m≤j

(xn 6= xm); E2 : φA(Y ); E3 : [(y ∈ Y∆X)⇔
j∨

n=1

(y = xn)]

Hence, the question

‘Is X a j-variant of A, where j is an odd number and j ≤ m ?’

can be expressed as

ηodd(A,X,m) =
∨

j∈{1,...,m}∧j odd
φj,A(X).

As each φj,A(X) is a query in L, ηodd(A,X,m) is a query in L.
b) Let φ(X) ∈ [Succ, <]2 and B ∈ Sk(A), we can infer the answer to φ(B) as

follows. Initially we guess that φ(B)=φ(A). To decide the truth of φ(A),
we construct a Büchi automaton Aφ for φ(X) (Keep this automaton, we
will use it later in the algorithm also.) Since A is definable by a query in
[Succ, <]2, we can construct a Büchi automaton A that accepts only A.
Now construct the intersection of Aφ and A and test for emptiness. As the
emptiness problem of Büchi automata is decidable, the truth of the query
φ(A) can be obtained. Next, on input σ � B, |σ| = n, we first find a Büchi
automaton Aσ that accepts the string σA(n)A(n+1) · · ·. We then construct
the intersection of Aφ and Aσ and test for emptiness. Note that over time
the set we are testing for intersection will change at most k times since B
is in the k-ball of A.

Theorem 5.4 Let i, k ∈ N ∪ {∗}, i 6= 0, 1 and k 6= 0, ∗.

a) QANk ([Succ, <]2) 6⊆ Q2ANk−1 ([Succ, <]2).
b) QiAN0 ([Succ, <]2) ⊂ QiAN1 ([Succ, <]2) ⊂ · · ·

· · · ⊂ QiANj ([Succ, <]2) ⊂ · · · ⊂ QiAN ([Succ, <]2).

Proof:

a) From part b) of Lemma 5.3 it suffices to show that for any set A that is
definable via a query in [Succ, <]2 and for any k ≥ 1,

Sk(A) 6∈ Q2ANk−1 ([Succ, <]2).
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Assume by way of contradiction that Sk(A) ⊆ Q2ANk−1 ([Succ, <]2)(M) for
some positive integer k. Let φ be the query ηodd(A,X, k) (from Lemma 5.3).
Since A is definable via a query in [Succ, <]2, by part a) of Lemma 5.3,
φ = ηodd(A,X, k) is a query in [Succ, <]2.

We shall construct a computable set B ∈ Sk(A) by diagonalizing against
M using φ as our input. B will witness the fact that M cannot infer the
correct answer to the query φ(B). Throughout the construction, at the
beginning of any stage s we keep track of the following:

(1) Bs, the initial segment of the set B defined so far.
(2) As, the initial segment of A such that dom(As)=dom(Bs).
(3) ds=|{x : x ∈ A∆B, x ∈ dom(As)}| .
(4) cs, the number of mindchanges the machine has made at the beginning of

that stage.

Construction of B
Let A0 be the initial segment of A where dom(A0)={0}. Let B0=A0;

a0 = 0; c0 = 0.
Stage s: Compute b = M(φ,Bs) and ds. Compute as+1, which is the small-
est number in A − {0, . . . , as}. Let As+1 be the initial segment of A with
domain {0, . . . , as+1}. Define

C = {(u, 0) : as < u < as+1}.

Define Bs+1 as follows.
(1) If b = TRUE and ds is odd then the question “is |Bs∆A| odd” is currently

true, and is being answered correctly. We want to make it answered incor-
rectly. Hence let Bs+1 = Bs ∪ C ∪ {(as+1, 0)}. This creates another place
where A and B differ, so they now differ in an even number of places.

(2) If b = FALSE and ds is odd then the question “is |Bs∆A| odd” is cur-
rently false, but is being answered incorrectly. We want to maintain this.
Bs∪C ∪{(as+1, 1)}. This does not create another place where they differ,
so they still differ in an odd number of places.

(3) If b = TRUE and ds is even then the question “is |Bs∆A| odd” is cur-
rently false, but is being answered incorrectly. Hence let Bs+1 = Bs ∪C ∪
{(as+1, 1)}.

(4) If b = TRUE and ds is odd then the question “is |Bs∆A| odd” is currently
true, but is being answered correctly. Hence let Bs+1 = Bs∪C∪{(as+1, 0)}.

Compute M(φ,Bs+1). If this is not equal to b then set cs+1 = cs + 1.
End of Construction

Let c be the number of times thatM changes its mind during the construc-
tion. By definition of M , c < k, hence there is a stage we denote t such that
at any stage t′ with t′ > t, M(φ,Bt′) = M(φ,Bt) = M(φ,B). During stage t
of the construction, either there was a mindchange or there was not. If there
was no mindchange then the disagreement that we caused in this stage is
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permanent, so 1−M(φ,Bt)=1−M(φ,B) and this answer is wrong. If there
was a mindchange then during the next stage, which we call t′, we will cause
a disagreement that will be permanent. Hence 1−M(φ,Bt′)=1−M(φ,B)
and this answer is wrong.

Finally, we note that by choosing A =N, the query ηodd(A,X, j) (j ≥ 1)
is a ∃∀ query in the language [∅]. Therefore,

Sk(N) ∈ QANk ([Succ, <]2)−QANk ([∅])

and the result follows immediately.

b) By Theorem 6.1 for any i ≥ 2 and k ≥ 1,

QANk ([Succ, <]2) ⊆ QiANk ([Succ, <]2) and

QiANk−1 ([Succ, <]2) ⊆ Q2ANk−1 ([Succ, <]2).

Suppose that QiANk ([Succ, <]2) = QiANk−1 ([Succ, <]2). Then

QANk ([Succ, <]2) ⊆ QiANk ([Succ, <]2)

= QiANk−1 ([Succ, <]2)

⊆ Q2ANk−1 ([Succ, <]2),

which implies QANk ([Succ, <]2) ⊆ Q2ANk−1 ([Succ, <]2). This contradicts
part (a). Thus, for any i ≥ 2 and k ∈ N,

QiANk ([Succ, <]2) ⊂ QiANk+1 ([Succ, <]2).

Finally, suppose QiAN ([Succ, <]2) = QiANn ([Succ, <]2), for some n ∈ N.
We then have

QiAN ([Succ, <]2) = QiANn ([Succ, <]2)

⊂ QiANn+1 ([Succ, <]2)

= QiAN ([Succ, <]2),

a contradiction. Therefore, for i 6= 0, 1 and k ∈ N,

QiANk ([Succ, <]2) ⊂ QiAN ([Succ, <]2)

Corollary 5.5 Let i, k ∈ N ∪ {∗}, i 6= 0, 1 and k 6= 0.

a) (∀L ≤N [Succ, <]2) [ QANk (L) 6⊆ Q2ANk−1 (L) ].
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b) For all b, QANk ([+, <,POWb]) 6⊆ Q2ANk−1 ([+, <,POWb]).
c) (∀L ≤N [Succ, <]2)[ QiAN0 (L) ⊂ QiAN1 (L) ⊂ · · · ⊂ QiAN (L) ].
d) For all b,

QiAN0 ([+, <,POWb]) ⊂ QiAN1 ([+, <,POWb]) ⊂ · · ·

· · · ⊂ QiANj ([+, <,POWb]) ⊂ · · · ⊂ QiAN ([+, <,POWb]).

Proof: By Theorem 5.4, and Fact 2.12.

6 Quantifier Hierarchies

It is natural to ask if the quantifier hierarchies are also strict. In this subsection
we will give examples of quantifier hierarchies that collapse to low levels.

First, let L be either the language [Succ, <] or [Succ, <]2. Suppose that φ(X)
is a query about a set X in either one of these languages. We claim that these
queries cannot be too complex. From Theorem 2.7 we see that to test if φ(A)
is true, it is equivalent to test if the characteristic string of A is accepted by a
corresponding ω automata Aφ. This automata can be constructed effectively
from φ. As the acceptance condition of any ω automata is itself a formula
in [Succ, <]2 which uses few alternations of quantifiers, these queries cannot
be too complex. By exploring the quantifier complexity of these acceptance
formulas, we have the following results:

Theorem 6.1 When we restrict input to sets, we have

a) Q2AN ([Succ, <]2) = · · · = QjAN ([Succ, <]2) = · · · = QAN ([Succ, <]2)
b) Q3AN ([Succ, <]) = · · · = QjAN ([Succ, <]) = · · · = QAN ([Succ, <])

Proof:

a) By [29], all ω regular languages can be written as the set of solutions to a
two quantifier formula in the language in [Succ, <]2.

b) By [37], any query in [Succ, <] is equivalent to a boolean combination of
formulas in [Succ, <], where each formula has at most two alternations of
quantifiers.
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Note 6.2 The results from [37] also imply the following results in answer
inference and query inference (see Section 5 for basic notions on query infer-
ence).

1) When restrict input to sets, QEX ([Succ, <]2) = Q2EX [[Succ, <]]2.
2) When restrict input to sets, QEX ([Succ, <]) = Q3EX ([Succ, <]).

Hence, queries in the languages [Succ, <] and [Succ, <]2 are not too expressive.
For L ≤N [Succ, <]2 via the pair (E,f), one can use the same idea to show that
the corresponding quantifier hierarchy collapses locally. That is, the quantifier
hierarchy collapses when we restrict our input to computable subsets of E.

It is an open question to determine if other quantifier hierarchies collapse.

7 Inferring Answers versus Inferring Programs

Recall that for many query languages L, the largest nontrivial answer infer-
ence type is Q2AN (L) and the smallest is QAN0 (L) (see Figure 3). In this
section we will use them to demonstrate that the learning of answers and the
learning of programs are incomparable in a very strong sense. Our comparisons
highlight the following two extreme cases:

First Case: There are concepts that can be learned using a very restrictive
identification criteria. However, relatively simple properties of the functions
in this class are not learnable.

Second Case: There are concepts that cannot be learned using a very gener-
ous identification criteria. However, all boolean queries about the functions
in this class are learnable for many query languages.

7.1 First Case

Consider the Popperian inference type PEX0 . The learning criteria is very
restrictive. It does not allows mindchanges and any conjectures that the ma-
chine can make must be a total computable function. We compare it with the
largest nontrivial inference type Q2AN (L). The following non-inclusion holds:

Theorem 7.1 PEX0 6⊆ Q2AN (∅).

Proof: Let P0, P1, P2, . . . an effective enumeration of the primitive recursive
functions that (1) satisfies m-ary composition, (2) satisfies the s-m-n theorem,
and (2) function E(i, x) = Pi(x) is computable. (Note that any reasonable en-
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coding of the primitive recursive functions will have these properties.). Con-
sider the concept

A = {f : Pf(0) = f}.

Intuitively the value f(0) is the index of a primitive recursive function that is
equal to f . Clearly A ∈ PEX0 .

Assume, by way of contradiction, that PEX0 ⊆ Q2AN (L) via machine M .
We can assume that M is primitive recursive by slowing it down. Let φ be the
query

(∀x)(∃y)[F(y) = x].

φ(f) is true iff f is surjective. We construct a computable function f ∈ A such
that M(φ, f) 6= φ(f).

Construction of f

Stage 0: Let f(0) be the index of this construction for f . (We can do this
by the recursion theorem for primitive recursive functions. See Theorem 4.6
of [28].) Let

f(1) = 0,

f(2) = 1,

...

f(f(0))) = f(0)− 1,

and let

f(f(0) + 1) = f(0) + 1.

Let x0 = f(0) + 1. At every state xs will be such that, at the end of stage s,
f(0), . . . , f(xs) are defined.

Stage s+ 1:

Compute b = M(φ, f(0)f(1) · · · f(xs)). If b = 0 (so M(φ, f(0)f(1) · · · f(xs))
thinks that f is not onto) then let f(xs + 1) = f(xs) + 1. If b = 1 (so
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M(φ, f(0)f(1) · · · f(xs)) thinks that f is onto) then let f(xs + 1) = f(xs).

End of Construction

By Stage 0, f ∈ A. If M(φ, f) converges to 0 then f will keep outputting
numbers in order and hence f is onto. If M(φ, f) converges to 1 then f will
keep outputting the same number and hence f is not onto. Hence if M(φ, f)
converges then it is incorrect. This is a contradiction.

7.2 The Omega Operator Ω

We consider another extreme case where we will show that the smallest non-
trivial inference type QAN0 (L) (L ≤N [Succ, <]2) is not contained in many
standard inference types, which include EX , BC and their team variants.
Our proof uses decidability results from the theory of ω-automata and we will
include them in this section.

In addition, we use an operator approach. We construct an operator, call the
omega operator, which translates appropriate concept classes to witness the
corresponding separations. A similar approach was used in [35] in the study
of query inference degrees. The decidability results about the query language
[+, <] [18] were used in that case.

Informally the omega operator Ω will map each function f into a set A with
characteristic string that is of the following form:

A = 0k0·a01 · · · 0kn·an1 · · · (kn ≥ 1 for any n.) (2)

The functional values of f are ‘coded’ into the sequence {kn}n≥0. By using
the structural properties of a Büchi automaton the sequence {an}n≥0 can be
computed so that for any set A with characteristic string of the form (2) and for
any query φ(X) ∈ [Succ, <]2, φ(A) can be answered correctly without making
any mindchanges. We state the following results about Büchi automata which
will be used in our proofs.

Definition 7.2 ([15,17]) Let Σ be a finite alphabet and σ, τ ∈ Σ. Let P be
the infinite string

P = σp0τ0 . . . σ
pnτn . . . ,

where p0 ≥ 0, pi > 0 for any i ≥ 1 and for all i, τi ∈ Σ − {σ}. Define the
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partial function thind,σ: Σω → Σω as:

thind,σ(P ) = σq0τ0 . . . σ
qnτn . . . ,

where qi’s are defined by the formula

qi =

 pi if pi ≤ d,

µq [[d < q ≤ d+ d!] ∧ [q ≡ pi(mod d!)]] otherwise.
(3)

Theorem 7.3 ([15]) Let Σ be a finite alphabet, σ, τ ∈ Σ. Let A be a Büchi
automaton over Σ. Suppose that A has n states. Let d ≥ 2n22n

. If

X = σp0τ0 . . . σ
pnτn . . .

where τi ∈ Σ−{σ} for all i. Then X is accepted by A if and only if thind,σ(X)
is accepted by A.

Note 7.4

a) Let Σ = {0, 1}, σ = 0, τ = 1. Then thind,0(P ) is defined when P has the
property of x ∈ P ⇒ x+ 1 /∈ P .

b) Given a query φ(X) ∈ [Succ, <]2, by Theorem 2.7 one can construct an ω
automata A effectively such that φ(A) is true iff the characteristic strings
of A is accepted by A. Theorem 7.3 suggests that if the number of states in
A equals n, then

φ(A)⇔ φ(thind,0(A)) for any d ≥ 2n22n

.

This fact will be used in our construction of the omega operator.

Now we state the formal definition for the omega operator Ω.

Definition 7.5 Let φ0(X), φ1(X), . . . , φn(X), . . . be a computable enumer-
ation of all queries about a set X in [Succ, <]2 via a fixed procedure P1.
Let A0, . . . ,An, . . . be the corresponding Büchi automata obtained from the
queries via a fixed procedure P2. (Note: by Theorem 2.7, such a procedure
exists). Let nj (j ∈ N) be the number of states of Aj. Define

hj = n2
j2

nj ; dj = 2hj and mj = max {di : 0 ≤ i ≤ j}.

We identify a function f : N→ N with the string f(0) · · · f(n) · · · ∈ Nω and a
set A with its characteristic string. The Omega operator Ω : Nω → {0, 1}ω is
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defined as:

Ω(f) = 0l(0,f(0))1 · · · 0l(n,f(n))1 · · · ,

where l(n, f(n)) = (f(n) + 1) ·mn! for any n.

Notation 7.6 We also use the following notations when using the operator
Ω.

a) For any C ⊆ DEC, Ω(C) = {Ω(f) : f ∈ C}.
b) Ω denotes the transformation which takes a string f(0) . . . f(n) (identified

with f [n]) to Ω(f [n]) = 0l(0,f(0))1 . . . 0l(n,f(n))1.
c) The xth position of the string Ω(f [n]) = 0l(0,f(0))1 . . . 0l(n,f(n))1 ( 0 ≤ x <∑n

i=0 l(i, f(i)) + 1) is denoted by Ω(f [n](x)).

Lemma 7.7 Let φ(X) be a query in the language [Succ, <]2 and f : N→ N.
Then there is an effective procedure E such that

a) On input φ(X), E determines the length of a finite initial segment α(f) of
f and,

b) the truth of the query φ(Ω(f)) can be determined effectively from α(f).

Proof: Given a query φ ∈ [Succ, <]2 and a function f : N → N, we use
the procedure P1 in Definition 7.5 to enumerate the queries in [Succ, <]2. The
number i such that φ = φi (syntactically) can be determined. For definiteness
we assume that i is the least one. We set α(f) = {(0, f(0)), . . . , (i, f(i))}. The
following procedure determine the truth of φ(Ω(f)) from α(f).

Procedure

a) Note that Ω(α(f)) = 0p01 . . . 0pi1 where pk = l(k, f(k)) = (f(k) + 1) ·mk!
for all k ≤ i. As the mk’s can be effectively determined, hence p0, . . . , pi can
be computed from α(f).

b) For k ≤ i, compute qi using formula (3) from Definition 7.2 and for k > i,
set qk = qi.

c) Construct an ω automaton A1 for the string (0q11 . . . 0qi1) · (0qi1)ω. (Note
that this string is definable by a query in [Succ, <]2).

c) Construct an ω automaton A2 for the query φ(X).
d) Construct the intersection of the automata A1 and A2.
e) Test the emptiness of A1∩A2, that is, to determine if the automata A1∩A2

accepts at least one string in {0, 1}ω. This step is effective [2,36].
f) Output TRUE if the intersection is non-empty. Otherwise output FALSE.

End of Procedure
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Recall from Definition 7.2 that

thindi,0(A) = 0q01 . . . 0qn1 . . . ,

and from part b). of Note 7.4,

φ(Ω(f)) = φi(Ω(f)) = φi(0
p01 · · · 0pn1 · · ·) = φi(0

q01 · · · 0qn1 · · ·).

We shall show that qk = qi for any k ≥ i, which implies

(0q11 . . . 0qi1) · (0qi1)ω = thindi,0(Ω(f)).

Let j > i. Since di! | mj! and for all j’s, kj ≥ 1 and dj > 2. We have

pj = kj ·mj! ≥ kj · (di!) ≥ di! > di.

Therefore, from Definition 7.2 we have

qj = µq [[di < q ≤ di + di!] ∧ [q ≡ pj(mod di!)]].

But q ≡ pj(mod di!)⇒ q ≡ kj ·mj! ≡ 0(mod di!). Hence for any j ≥ i, qj =
di!. This completes the proof.

7.3 Second Case

We will show that for any L ≤N [Succ, <]2),

QAN0 ([Succ, <]2) 6⊆ [1, n]BC .

This comparison result will be further generalized in the next section.

Note 7.8 In Definition 2.4, we define the inference type QAN (L) to be the
collection of all classes of computable functions where their properties (express-
ible as queries in L) are learnable. This definition can be easily generalized
to classes of total functions in the same way. In the following theorem, we
implicitly assume that the answer inference type are defined in the general
sense.

Theorem 7.9 Ω(Nω) ∈ QAN0 ([Succ, <]2).
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· · · f(n) · · · f(0)
M−→ · · · en · · · e0

↑ (T1) ↓ (T2)

· · ·Ω(f)(n) · · ·Ω(f)(0)
M ′−→ · · · e′

n · · · e
′
0

Fig. 4. Construction of M ′ from M

Proof: Follows from Lemma 7.7.

Corollary 7.10 Ω(DEC) ∈ QAN0 ([Succ, <]2).

Proof: Follows from Theorem 7.9.

We now demonstrate that QAN0 ([Succ, <]2) cannot be contained in many
standard inference types. In fact, this separation holds for all inference types
(for learning programs) that satisfy the following invariance property.

Definition 7.11 Let I be an inference type for inferring programs. I is in-
variant under Ω if

(∀C ⊆ DEC)[Ω(C) ∈ I ⇔ C ∈ I].

Theorem 7.12 The Inference type EX is invariant over Ω.

Proof: Let C ⊆ EX (M). We will construct an IIM M ′ such that Ω(C) ⊆
EX (M ′). To show this, we first consider the diagram as shown in Figure 4.

Our algorithm for M ′ first read in a sufficiently long initial segment of Ω(f)
until some initial segment of f are recovered (labeled as T1 in the diagram).
Feed the initial segment of f obtained to machine M . Assuming that the out-
put of M is an index of f , construct an index for Ω(f) (labeled as T2). Repeat
the process when longer initial segments of Ω(f) are obtained. It remains to
note that given an index of a computable function f , one can obtain an index
of the set Ω(f) effectively. Hence, each conjecture ei from machine M can be
transformed to a conjecture e

′
i for Ω(f) and when the conjecture for f from

machine M is correct, the corresponding conjecture for Ω(f) will also be cor-
rect. Finally we note that the reverse direction also holds since given an index
for Ω(f), one can also obtain an index for f effectively.

Note 7.13 Clearly, the inference type BC is also invariant under Ω. By
applying the same procedure to each machine, we see that the corresponding
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Fig. 5. Sample Comparison Results with variants of EX

team’s types are also invariant under Ω. The invariance of these inference types
are also preserved when we restrict the number of mindchanges. Therefore,
the combinations such as [a, b]EXm (a ≥ b ≥ 1,m ≥ 0) and etc. are all
invariant under Ω. However, it is unclear if the inference types with anomalies
are invariant under Ω.

Theorem 7.14 Let I be invariant under Ω. Then

(∀L ≤N [Succ, <]2)[DEC 6∈ I ⇒ QAN0 (L) 6⊆ I].

Proof: Since I is invariant under Ω, DEC 6∈ I ⇒ Ω(DEC) 6∈ I. How-
ever, it follows from Theorem 7.9 that Ω(DEC) ∈ QAN0 ([Succ, <]2). Hence,
Ω(DEC) ∈ QAN0 ([Succ, <]2)−I. The general case follows from Lemma 2.14.

Corollary 7.15 Let L ≤N [Succ, <]2 and i, j ∈ N ∪ {∗} (i 6= 0). Suppose I
is invariant under Ω. Then DEC 6∈ I ⇒ QiANj (L) 6⊆ I.

Proof: By Theorem 7.14 and the fact that QAN0 (L) ⊆ QiANj (L).

By the remarks stated in Note 7.13 and prior results, we can visualize the
difference between the learning of answers and the learning of programs (See
Figure 5 for sample comparison results with variants of EX). In fact, we have

Corollary 7.16

(1) L ≤N [Succ, <]2 ⇒ (∀n ≥ 1)[QAN0 (L) 6⊆ [1, n]BC].
(2) For all b, (∀n ≥ 1)[QAN0 [+, <,POWb] 6⊆ [1, n]BC].
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QIM

−→ ψ0, ψ1, . . . (questions to the teacher)

−→ e0, e1, . . . (programs)

←− b0, b1, . . . (answers from the teacher)

L

Fig. 6. Query Inference Machine

Proof: Since (∀n ≥ 1)[DEC 6∈ [1, n]BC] and [1, n]BC is invariant under Ω.
Part a follows immediately. Part b follows from Lemma 2.14.

8 Lifting Results to Query Inference Types

In this section, we will explore the relations between query inference ma-
chines [19] and answer inference machines. Our discussion leads to a partial
answer to one of the central questions in query inference: which relations be-
tween inference types remains true for their query counterparts. We will show
that for any query languages that are reducible to [Succ, <]2, separations be-
tween many standard inference types remains true for their query versions.
This settles some conjectures [17] in query inference.

8.1 Relationships Among Learning Machines

We recall the definition of query inference machines (See Figure 6) and query
inference types.

Definition 8.1 ([19])

a) A query inference machine (QIM) is a total Turing machine that tries to
infer a program that computes f . It can make queries about the computable
function f in a particular query language L (and magically obtain answers).
Note that a QIM gets all its information from making queries and does not
see the data. However, it can request data such as f(5) by asking questions
f(5) = 0?, f(5) = 1?, . . . until a yes answer is obtained.

b) QEX (L) is the collection of concept classes that can inferred by some QIM
M when M makes queries in the query language L and use the learning
criteria EX. Generally, if I is a passive inference type then QI (L) will
represent the corresponding query inference type. Variants such as teams,
anomalies, bounding mindchanges, bounding the number of alternations of
quantifiers can be considered likewise.
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We observe that the collection of queries a QIM can make is exactly the
same collection of queries that some answer inference machine wish to learn.
The following lemma state a useful relationship between query inference and
inductive inference. The intuition is that when the collection of queries that
a QIM can make is decidable, then the QIM is nothing more than an IIM.
Queries made to the teacher (See Figure 6) can be decided correctly by an AIM.
More generally, if the answers to the collection of queries can be learned, then
many concepts that can be learned by some QIM’s can also be learned by
some other IIM’s.

Lemma 8.2 Let L be any reasonable query language and C ⊆ DEC.

a) Suppose that I is a passive inference type for learning programs. Then

C ∈ QI (L) ∧ C ∈ QAN0 (L)⇒ C ∈ I .

b) Suppose that J is an inference type that tries to learn programs in the limit
and QJ (L, ∗) be the corresponding query inference types that ask finitely
many queries, then

C ∈ QJ (L, ∗) ∧ C ∈ QAN (L)⇒ C ∈ J .

Proof:

a) Suppose that C ⊆ QI (L) via M and C ⊆ QAN0 (L) via M ′. Then all the
answers to those queries made by M while inferring programs for functions
in C can be obtained by using the AIM M ′. It is clear that there is an IIM
M ′′ which combines the use of M and M ′.

b) The answer of those queries made by M while inferring programs for func-
tions in C can be learned by using some AIM M ′. Hence the action of the
QIM can be simulated by restarting computations every time when a differ-
ent answers to some queries are obtained. As the answers of the queries will
stabilize eventually to the correct set of answers and the QIM make only
finitely many queries, the simulation will eventually succeed in learning a
correct program.

Daley [11] shows that it is always possible to trade machines for errors in BC
style learning, namely,

Lemma 8.3

(∀n ≥ 1)(∀a ≥ 0)[ [1, n]BCa ⊆ [1, n(a+ 1)]BC ].
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Hence Corollary 7.16 can be further improved even though the inference type
[1, n]QBCa (L) may not be invariant under Ω.

Theorem 8.4 Let a, n ∈ N and n ≥ 1. Then

QAN0 ([Succ, <]2) 6⊆ [1, n]QBCa ([Succ, <]2)

Proof: Assume by way of contradiction that

QAN0 ([Succ, <]2) ⊆ [1, n]QBCa ([Succ, <]2),

where a, n ∈ N (n 6= 0). Hence we have (QAN0 ([Succ, <]2) ⊆ QAN0 ([Succ, <
]2)) ∧ (QAN0 ([Succ, <]2) ⊆ [1, n]QBCa ([Succ, <]2)).

By Lemma 8.2, we obtain

QAN0 ([Succ, <]2) ⊆ [1, n]BCa .

In addition, by trading machines for errors (Lemma 8.3) we get

QAN0 ([Succ, <]2) ⊆ [1, n(a+ 1)]BC .

By Corollary 7.10 Ω(DEC) ∈ QAN0 ([Succ, <]2), hence Ω(DEC) ∈ [1, n(a +
1)]BC . Since [1, n(a + 1)]BC is invariant under Ω, DEC ∈ [1, n(a + 1)]BC ,
which is a contradiction (See [9]).

Corollary 8.5 Given a query language L,

L ≤N [Succ, <]2 ⇒ (∀n ≥ 1)(∀a ∈ N)[QAN0 (L) 6⊆ [1, n]QBCa (L)].

Proof: Use reduction in Corollary 8.4.

Note 8.6 We use only the fact that (∀a ∈ N)[DEC 6∈ [1, a]BC]. Hence we
obtain a short proof of the result ([17])

L ≤N [Succ, <]2 ⇒ (∀n ≥ 1)(∀a ∈ N)[DEC 6∈ [1, n]QBCa (L)].

8.2 A Lifting Lemma
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Lemma 8.7 Let I be a passive inference type that is invariant under Ω. Then

A ∈ QI ([Succ, <]2) iff A ∈ I.

Proof: Assume A ∈ QI ([Succ, <]2). By Lemma 7.7 we can take the query-
inference procedure for A and turn it into a passive-inference procedure for
Ω(A). Hence Ω(A) ∈ I. Since I is invariant we have A ∈ I.

It is clear that if A ∈ I then A ∈ QI ([Succ, <]2).

Theorem 8.8 Let I, J be two passive inference types and QI (L), QJ (L)
be the corresponding query inference types. Suppose I and J are invariant
under Ω. Then

J − I 6= ∅ ⇒ J −QI ([Succ, <]2) 6= ∅.

Proof: Suppose J − I 6= ∅. Hence there exists C ⊆ DEC such that C ∈
J − I. By Lemma 8.7, C /∈ QI ([Succ, <]2). Hence J − QI ([Succ, <]2) 6= ∅.

The following theorem is proven by a sight modification of Theorem 8.8

Theorem 8.9 Let I, J be two passive inference types and QI (L), QJ (L)
be the corresponding query inference types. Suppose I and J are invariant
under Ω. Let L ≤N [Succ, <]2. Then

J − I 6= ∅ ⇒ J −QI (L) 6= ∅.

Note 8.10 For many passive inference types I and J and languages L, the
inclusion QI (L) ⊆ QJ (L) follows immediately from the proof of the inclu-
sion I ⊆ J . Hence, for such cases we actually have

I ⊂ J ⇒ QI (L) ⊂ QJ (L).

Theorem 8.9 helps to lift separation results to their query versions. For in-
stance, Smith [30] shows that

Theorem 8.11 ( [30])

EX ⊂ [1, 2]EX ⊂ [1, 3]EX ⊂ · · · and BC ⊂ [1, 2]BC ⊂ [1, 3]BC ⊂ · · ·

All these inference types are invariant under Ω. Therefore we have the following
corollary, which settles a few questions raised in [17,20].
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Corollary 8.12 Let L ≤N [Succ, <]2. Then

a) QEX (L) ⊂ [1, 2]QEX (L) ⊂ [1, 3]QEX (L) ⊂ · · ·
b) QBC (L) ⊂ [1, 2]QBC (L) ⊂ [1, 3]QBC (L) ⊂ · · ·

Proof:

QEX (L) ⊆ [1, 2]QEX (L) ⊆ [1, 3]QEX (L) ⊆ · · ·

and

QBC (L) ⊆ [1, 2]QBC (L) ⊆ [1, 3]QBC (L) ⊆ · · ·

follows directly from their definitions. It suffices to note that by applying lifting
lemma (Theorem 8.9) to Theorem 8.11, the non-inclusion follows immediately.

Interestingly, we also have an analogue of the ‘[24, 49]’ Theorem [12] for query
inference types.

Corollary 8.13 Let L ≤N [Succ, <]2. Let c, d be such that 24/49 < c/d <
1/2. Then

a) [1, 2]QEX0 (L) ⊂ [2, 4]QEX0 (L) ⊂ [24, 49]QEX0 (L).
b) [24, 49]QEX0 (L)− [c, d]QEX0 (L) 6= ∅.

Proof:

a) It is easy to see that

[1, 2]QEX0 (L) ⊆ [2, 4]QEX0 (L) ⊆ [24, 49]QEX0 (L).

By applying the lifting lemma (Theorem 8.9) to the results ([12])

[2, 4]EX0 − [1, 2]EX0 6= ∅

and

[24, 49]EX0 − [2, 4]EX0 6= ∅,

we have

[1, 2]QEX0 (L) ⊂ [2, 4]QEX0 (L) ⊂ [24, 49]QEX0 (L).

b) By applying the lifting lemma (Theorem 8.9) to the following result [12]

[24, 49]EX0 − [c, d]EX0 6= ∅
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we have

[24, 49]QEX0 (L)− [c, d]QEX0 (L) 6= ∅

Corollary 8.14

a) For all b,

QEX ([+, <,POWb])⊂ [1, 2]QEX ([+, <,POWb])⊂ [1, 3]QEX ([+, <,POWb])
⊂ [1, 4]QEX ([+, <,POWb]) ⊂ · · ·

b) For all b,

QBC ([+, <,POWb])⊂ [1, 2]QBC ([+, <,POWb])⊂ [1, 3]QBC ([+, <,POWb])
⊂ [1, 4]QBC ([+, <,POWb]) ⊂ · · ·

c) Let b ∈ N. Let c, d ∈ N be such that 24/49 < c/d < 1/2. Then

[1, 2]QEX0 ([+, <,POWb]) ⊂ [2, 4]QEX0 ([+, <,POWb])

⊂ [24, 49]QEX0 ([+, <,POWb])

and [24, 49]QEX0 ([+, <,POWb])− [c, d]QEX0 ([+, <,POWb]) 6= ∅.

Proof: This follows from Corollaries 8.12, 8.13, and Fact 2.12.

9 Open Problems

Query languages: The results in this work holds for languages that are re-
ducible to [Succ, <]2. Our techniques depend on decidability results from
the theory of omega automata. Do these results still hold for any query
languages with a decidable base languages?

Lifting separations: We proved a lifting lemma which ‘lifts’ every separa-
tions to their query inference analogue when no anomalies are involved. Will
the lifting lemma hold when anomalies are allowed ?

Lifting subset relations: Can subset relations be also lifted? For example,
can one show the following:

(∀L ≤N [Succ, <]2)(∀a, b, c, d ∈ N)

[a, b]EX0 ⊆ [c, d]EX0 ⇒ [a, b]QEX0 (L) ⊆ [c, d]QEX0 (L)
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