
Automata Techniques for Query Inference
Machines

William Gasarch∗

University of Maryland

Geoffrey R. Hird†

Arcot Systems

Abstract

In prior papers the following question was considered: which classes
of computable sets can be learned if queries about those sets can be
asked by the learner? The answer depended on the query language
chosen. In this paper we develop a framework (reductions) for study-
ing this question. Essentially, once we have a result for queries to
[S, <]2, we can obtain the same result for many different languages.
We obtain easier proofs of old results and several new results. An
earlier result we have an easier proof of: the set of computable sets
cannot be learned with queries to the language [+, <] (in notation:
COMP /∈ QEX[+, <]). A new result: the set of computable sets
cannot be learned with queries to the language [+, <, POWa] where
POWa is the predicate that tests if a number is a power of a.

∗Dept. of Computer Science and Institute for Advanced Computer Studies, University
of Maryland, College Park, MD 20742. Supported in part by NSF grants CCR-8803641
and CCR-9020079 (gasarch@cs.umd.edu).

†Arcot Systems, 3200 Patrick Henry Drive, Santa Clara, CA 95054. Some of the work
was done when this author was at Odyssey Research Associates (geoffrey@arcot.com).

1

Contents

1 Introduction 3

2 Definitions 5
2.1 Query Languages . 5
2.2 Inductive Inference . 6
2.3 Variants of Second Order Decidability 9
2.4 Nice Query Languages . 10
2.5 Convention and Definition . 11

3 L Nice ⇒ (∀a, n)[PEXn+1 −QEXa
n[L] 6= ∅] 11

4 Reductions 14
4.1 L ≤ L$ and L ≤N L

$. 14
4.2 L ≤w L

$ and L ≤wb L
$. 17

5 Consequences of L ≤ [S,<]2 19
5.1 L ≤N [S,<]2 ⇒ COMP 6∈ QBC[L] 20

5.1.1 ω-Regular Sets . 20
5.1.2 COMP 6∈ QBC[L] . 25

5.2 L ≤N [S,<]2 ⇒ COMP 6∈ [1, d]QBCa[L] 28
5.3 L ≤N [S,<]2 ⇒ PEXn+1 −QEXa

n[L] 6= ∅ 30
5.4 L ≤wb [S,<]2 ⇒ PEXn+1 −QEXa

n[L] 6= ∅ 32
5.5 L ≤wb [S,<]2 ⇒ L is QCD . 33

6 [+, <] ≤N [S,<]2 34

7 [+, <,POWb] ≤N [S,<]2 37

8 [S,<, P]2 ≤wb [S,<]2 for several P 40

9 Corollaries 44

10 Further Results 45

11 Open Questions 45

12 Acknowledgement 46

2

1 Introduction

In [10, 11] the following question was considered: how much can an inductive
inference machine learn if it is augmented with the ability to make queries
(about the computable set it is trying to learn)? The queries must be in
some query language L; so L is one of the parameters of learning. The other
parameters of learning are (1) the number of quantifier alternations allowed
in the queries, and (2) the type of inference being used (e.g., the number of
mindchanges may be bounded).

1. For certain values of the parameters, what classes of computable sets
could be learned? A key theme that emerges is that the less expressive
a query language is, the fewer classes of computable sets can be learned
using it. Of particular interest is when COMP (the class of all com-
putable sets) can be EX-learned with queries in L; which is written
as COMP ∈ QEX[L]. In [10, 11] it was shown that, for some query
languages L, COMP /∈ QEX[L], while for others COMP ∈ QEX[L].

2. How do the resulting learning paradigms compare to each other? In [12]
it was shown that, for several query languages L, there were classes of
computable sets that could be learned with no queries (just receiving
data) and n + 1 mindchanges, that could not be learned with queries
to L and n mindchanges; this is written EXn+1 −QEXn[L] 6= ∅. As a
corollary we obtain QEXn[L] ⊂ QEXn+1[L].

In [11] ω-regular sets were used to obtain COMP /∈ QEX[S,<] (queries
can use symbols < and S where S stands for the Successor function). In this
case the machinery needed was already in the literature. In [10] the (com-
plicated) machinery of k-good sets was developed to help obtain COMP /∈
QEX[+, <]. In [12] k-good sets were used to show that EXn+1−QEXn[+, <
] 6= ∅. In this paper we obtain COMP /∈ QEX[L] and EXn+1−QEXn[L] 6= ∅
for several query languages L, including L = [+, <]. Our proofs are consid-
erably simpler than those in [10] and [12] and do not use k-good sets. (A
recent result by Frank Stephan [19] seems to require the use of k-good sets.)

The main point of this paper is that we can now obtain results by re-
ducing queries about QEX[L] to queries about QEX[S,<]2 (the “2” means
that we can use second order quantifiers).

3

We now give a precise summary of our results. The non-query learning
classes (those that do not begin with aQ) have been defined in [3, 18], and the
query learning classes have been defined in [11]; we review these definitions in
Section 2.2. The query languages mentioned are standard and are reviewed
in Section 2.1.

1. Theorems about query languages in general.

(a) Niceness. We define what it means for a query language to be nice
(Definition 2.12). We then show that if L is nice then (∀a, n)[PEXn+1−
QEXa

n[L] 6= ∅] (Theorem 3.1).

(b) Reductions. We define two notions of reduction L ≤ L$ and L ≤w

L$ (Definitions 4.2 and 4.5). We also define two refinements of
them L ≤N L$ and L ≤wb L$ (Definitions 4.3 and 4.6). Let
a, d, n ∈ N with d ≥ 1. We show the following.

i. L ≤N [S,<]2 ⇒ COMP /∈ QBCa[L].

ii. L ≤N [S,<]2 ⇒ COMP /∈ [1, d]QBCa[L].

iii. L ≤N [S,<]2 ⇒ PEXn+1 −QEXa
n[L] 6= ∅.

iv. L ≤N [S,<]2 ⇒ QEXa
n[L] ⊂ QEXa

n+1[L] (easy corollary).

v. L ≤wb [S,<]2 ⇒ PEXn+1 −QEXa
n[L] 6= ∅.

vi. L ≤wb [S,<]2 ⇒ QEXa
n[L] ⊂ QEXa

n+1[L] (easy corollary).

vii. L ≤wb [S,<]2 ⇒ L is QCD. (QCD is a decidability criteria
on languages. It will be defined in Section 2.3.)

2. Theorems about particular query languages. Let b ≥ 2.

(a) [+, <] ≤N [S,<]2.

(b) [+, <,POWb] ≤N [S,<]2.

(c) For a large class of predicates P , [S,<, P]2 ≤wb [S,<]2. The class
of predicates P includes FAC, POWb, and POLYb.

(d) Using 1b and 2a, 2b, 2c we obtain many results about query infer-
ence classes.

For the reader who just wants to see the easier proof of COMP /∈ QEX[+, <]
do the following: Read the proof that COMP /∈ QEX[S,<] from [11] and

4

adjust it to work for COMP /∈ QEX[S,<]2 (this is easy). Then read Theo-
rem 4.4.3 and Lemma 6.1 of this paper.

Some of the ideas in this paper are similar to those of Semenov [17].

2 Definitions

2.1 Query Languages

For this paper we will only consider learning classes of computable sets (as
opposed to functions). Hence in the definitions below the queries are about
sets. This restriction does not affect our results since, for example, if the set
of computable sets cannot be inferred by some machine, then certainly the
set of all computable functions cannot either.

Definition 2.1 A query language consists of the usual logical symbols (and
equality), symbols for first and second order variables, symbols for every
element of N, and symbols for some functions and relations on N. A query
language is denoted by the symbols for these functions and relations. We
will use a superscript 2 to indicate that we allow quantification over second
order variables. For example we refer to ‘the query language [+, <]’ or ‘the
query language [S,<]2.’ A well-formed formula over L is defined in the usual
way.

Convention 2.2 Small letters are used for first order variables which range
over N. Capital letters are used for second order variables which range over
subsets of N.

Definition 2.3 Let L be a query language. A query over L is a formula
φ(X) such that the following hold.

1. φ(X) uses symbols from L.

2. X is a free set variable and is the only free variable in φ.

3. If L does not allow quantification over second order variables then X
(which is not quantified over) is the only second order variable in φ(X).

5

We think of a query φ(X) as asking a question about an as yet unspecified
set X ⊆ N. If A ⊆ N then φ(A) will be either true or false.

Notation 2.4 Let b ∈ N, b ≥ 2. We will be using the following symbols in
some of our query languages

1. S stands for the successor function S(x) = x+ 1.

2. POWb is the unary predicate that determines if a number is in the set
{bn : n ∈ N}.

3. POLYb is the unary predicate that determines if a number is in the set
{nb : n ∈ N}.

4. FAC is the unary predicate that determines if a number is in the set
{n! : n ∈ N}.

2.2 Inductive Inference

We briefly review concepts from both passive and query inference. For a fuller
treatment see Case and Smith [3], and Smith [18], for passive inference; and
see Gasarch and Smith [11] for query inference. We will only be concerned
with learning classes of computable sets and our definitions will reflect this.

Notation 2.5 We assume that Turing machines are coded into natural num-
bers in some fixed computable fashion. We assume that all of our Turing
machines compute partial computable sets (on all inputs either output 0 or
1 or diverge). Let ϕe be the partial computable set computed by the Turing
machine that is coded by e. We refer to e as a program.

An inductive inference machine (IIM) is a total Turing machine M . We
interpret M as trying to learn a computable set A as follows. M is presented
with the values A(0), A(1), A(2), . . . and will, over time, output conjectures
e indicating that M thinks A is decided by ϕe. (ϕe need not be total. In
this case M ’s guess is wrong.) M has no other way of obtaining additional
information about A. A query inference machine (QIM) is a total Turing
machine that can make queries about the computable set A in a particular
query language (and magically get the answers). Note that a QIM gets all

6

of its information from making queries and does not see any data; however
it can request whatever data it wants (i.e., the QIM can ask ‘17 ∈ A?’).

Let M be either an IIM or a QIM. Both query and passive inductive
inference deal with inference in the limit; that is, we think of M as executing
forever. From time to time, M may make a conjecture about the set A, in
the form of a program e such that M thinks (at least for now) that A is
decided by ϕe. The guess can be null, denoted ⊥. If M guesses the same
program from some point on, and that program is correct, then we say that
M EX-inferred the set A. A concept class is a subset of COMP ; we say that
M EX-infers the concept class S if it EX-infers every A ∈ S. EX is the set
of concept classes which are inferred by some IIM. The term EX stands for
‘explains.’ The idea is that we are looking at data and we wish to explain it
by producing an index for a machine that behaves just like the data. (This
motivation is from [3].)

QEX[L] is the set of concept classes that are inferred by some QIM that
makes queries in the query language L. For i ∈ N, QiEX[L] is the set
of concept classes of computable sets which can be inferred in the limit by
a QIM that makes queries in the query language L, where the queries are
restricted to i alternations of quantifiers.

We define several variations on inference. Let M be an IIM, A be a
computable set, c, d, n ∈ N with c, d ≥ 1, and a ∈ N ∪ {∗}.

1. Mindchanges [3]. If M infers A and makes ≤ n+1 different conjectures
then M EXn-infers A. S ∈ EXn if there is an IIM M such that, for
every A ∈ S, M EXn-infers A. QEXn[L] and QiEXn[L] can be defined
similarly. (The name ‘mindchange’ comes from the fact that if n + 1
different programs are output then the conjecture changes at most n
times. The change from ⊥ to a non-null guess is not counted.)

2. Anomalies [3]. Let a ∈ N. If ϕe and A differ on at most a points then
ϕe is an a-variant of A. If M is trying to infer A and, from some point
on, always outputs e where ϕe is an a-variant of A, then M EXa-infers
A. If A and ϕe differ on at most a finite number points then ϕe is is a
finite variant of A. If M is trying to infer A and, from some point on,
always outputs e where ϕe is a finite variant of A then M EX∗-infers
A. In either case (a ∈ N or a = ∗) S ∈ EXa if there exists an IIM M
such that, for every A ∈ S, M EXa-infers A. QEXa[L] and QiEX

a[L]
can be defined similarly. QEXa[L] was studied in [8].

7

3. Teams [14, 18], Let M1, . . . ,Md be a set of d IIMs. If at least c of
{M1, . . . ,Md} correctlyEX-inferA thenA is [c, d]-inferred by {M1, . . . ,Md}.
S ∈ [c, d]EX if there exists M1, . . . ,Md such that, for every A ∈ S, A
is [c, d]-inferred by {M1, . . . ,Md}. The set of machines {M1, . . . ,Md} is
referred to as a team. [c, d]QEX[L] and [c, d]QiEX[L] can be defined
similarly. [c, d]QEX[L] was studied in [8]. Note that different sets in
S may be inferred by different size-c subsets of M1, . . . ,Md.

4. Popperian Inference [3]. S ∈ PEX if S ∈ EX via an IIM that only
conjectures total programs. (By contrast, the guesses made by a ma-
chine for EX inference may be non-total.) This concept was studied and
named in [3]. [c, d]QPEX[L] and QiPEX[L] can be defined similarly.
QPEX[L] was studied in [12].

5. Behaviorally Correct [3]. M BC-infers A if, when M is fed A, even-
tually all of M ’s guesses about A are indices e where ϕe = A. This
differs from EX in that if M EX-infers A then past some point all
the guesses are the same and decide A, where as here they need not be
the same, they need only decide A. BC is the set of concept classes of
computable sets which can be behaviorally inferred by some IIM M .
If M is trying to infer A and, from some point on, always outputs an
index for a program that is an a-variant of A, then M BCa-infers A.
The classes BCa, QBC[L], and QiBC[L] can all be defined easily.

6. Combinations. The parameters above can be combined to yield classes
like [c, d]EXa

n. Comparisons between these classes have been studied
extensively [7]. We will deal with the combinations PEXn, PEXa

n,
QEXa

n, and [1, d]QBCa[L]. We may use phrases like “M QiEX
a
n-

infers A” which should be understood. (We do not consider BC∗ since
COMP ∈ BC∗. Case and Smith present Harrington’s proof of this in
[3].)

Definition 2.6 COMP is the class of all computable subsets of N. Let
E ∈ COMP . COMPE is the set of all computable subsets of E. COMP is
the largest possible concept class of sets.

It is known that COMP ∈ QEX[+,×] (in fact COMP ∈ Q1EX[+,×]
and COMP ∈ Q2EX0[+,×] [11, Theorem 9,10]). In [11, Theorem 23] it

8

was shown that COMP /∈ QEX[S,<]. In [10] it was shown that COMP /∈
QEX[+, <]. In [12] it was shown that, for all n, PEXn+1−QEXn[+, <] 6= ∅.
These last two results had rather complicated proofs.

In this paper we will often show a result about team learning and then
obtain from that a result about learning with anomalies via the following
lemma. The proof is similar to Theorem 6.1 of [18].

Lemma 2.7 Let a, d ∈ N. Let I be any of {EX,BC,EXm}. Let Ia be the
notion I allowing at most a anomalies. Let QI and QIa be the corresponding
query notions. Then [1, d]QIa[L] ⊆ [1, d(a+ 1)]QI[L].

2.3 Variants of Second Order Decidability

We define the notions of Cardinality Decidable and Quasi Cardinality Decid-
able. These notions played an important role in the proofs that COMP /∈
QEX[S,<] and COMP /∈ QEX[+, <], and are also of independent interest.
As an easy consequence of our reductions we will obtain that several query
languages are quasi cardinality decidable.

Definition 2.8 We identify a query φ(X) with the set {A : φ(A)}. Hence
a query φ is uncountable if {A : φ(A)} is uncountable. Let E be an infinite
set. A query φ(X) is E-uncountable if {A ⊆ E : φ(A)} is uncountable. We
abbreviate this E-unc. Note that the information that φ(X) is E-unc does
not tell us anything about ¬φ(X) being E-unc or N-unc.

Definition 2.9 Let L be a query language. Let E be an infinite subset of
N.

1. L is E-cardinality decidable (abbreviated E-CD) if the following set is
decidable: {ψ : ψ(X) is E-unc}. L is CD if it is N-CD.

2. L is quasi cardinality decidable (abbreviated QCD) if there is a partial
computable function which behaves as follows. If ψ is a query then the
function returns φ ∈ {ψ,¬ψ} such that φ is uncountable. Note that
even though we know that φ is uncountable we do not know if ¬φ is
uncountable.

9

Using properties of ω-regular sets it is easy to show that [S,<] is CD (see
[11, Lemma 21]). It is known [6] that [+, <] is not second order decidable
and not CD. However, in [10] it was shown that [+, <] is QCD. Hence even
if a language is not second order decidable it may still be QCD.

The proof that [+, <] is QCD was somewhat difficult in that it used the
machinery of k-good sets. In this paper we will prove that [S,<]2 is CD
(easily) and from that show that [+, <] and several other query languages
are QCD. These proofs will be easier than those in [10] in that they avoid
the use of k-good sets.

2.4 Nice Query Languages

In this section we define what it means for a query language to be nice. The
definition will be unnatural. However it will be just what we need because
simultaneously (1) we will be able to prove theorems in inductive inference
for nice query languages, and (in Section 3) (2) we will be able to prove that
several query languages are nice.

Definition 2.10 Let a ∈ N. If A and B are sets then A ==a B means that
A and B (i.e., their characteristic sequences) differ on exactly a places.

We give the intuition behind the next definition. Imagine that there is a
set W such that, for any query ψ, if ψ(W) holds then there exists a set W1

that is not too much different from W (e.g., W ==c W1) such that ψ(W1)
also holds. Imagine that W1 has the same property— for any query ψ, if
ψ(W1) holds then there exists a set W2 that is not too much different from
W1 (e.g., W ==c W1 ==c W2 in such a way that W =2c W2) such that ψ(W2)
holds. Imagine that this goes on for W3,W4, Such a set W would be
useful in constructions since we could feed a QIM answers that are true of
W and then later switch to W1, and later to W2, etc. Intuitively, a language
is nice if such a W exists. We now formalize this notion.

Definition 2.11 Let L be a query language. Let E be an infinite subset of
N, W ⊆ E, and c ∈ N. L is (E,W, c)-nice if the following holds. For all
queries ψ and e ∈ N

(∃W ′ ⊆ E)[ψ(W ′)∧ (W ′ ==ce W)] ⇒ (∃W ′′ ⊆ E)[ψ(W ′′)∧ (W ′′ ==ce+c W)].

10

Definition 2.12 L is E-nice if there exists (W, c) such thatW is computable
and L is (E,W, c)-nice. L is nice if there exists (E,W, c) such that W is
computable and L is (E,W, c)-nice.

In [12] it was shown (implicitly) that [+, <] is (N, ACK, 1)-nice where
ACK is the range of a fast growing function (e.g., a 1-variable version of
Ackerman’s function). This proof was somewhat difficult in that it used the
machinery of k-good sets from [10]. It was also the first proof that [S,<] is
nice. In this paper we will show [S,<]2 is nice (see Lemma 5.22) and then
derive from this using reductions that several other query languages,
including [+, <], are nice. Our proofs are easier than those in [12] in that we
use ω-regular sets instead of k-good sets.

2.5 Convention and Definition

The following convention and definition are used throughout this paper.

Convention 2.13 Let L be a query language. Let φ1, φ2, φ3, . . . be all pos-
sible queries in that query language in some fixed computable order. We will
assume that if M is a query inference machine that is using query language
L then the ith query M makes is φi. This entails no loss of generality since
all queries the machine wanted to make are eventually made.

Definition 2.14 Let L be a query language, t ∈ N, and ~c ∈ {0, 1}t. We
think of ~c as answers to the first t queries. For 1 ≤ i ≤ t let

ψi =
{
φi if ~c[i] = 1;
¬φi if ~c[i] = 0.

Let ψ =
∧t

i=1 ψi. ψ is said to capture the answers ~c to the first t queries. If
L = [S,<]2 then an automaton A captures ~c if (∀X)[A(X) ⇒ ∧

i≤t ψi(X)].

3 L Nice ⇒ (∀a, n)[PEXn+1 −QEXa
n[L] 6= ∅]

11

Theorem 3.1 If L is nice then (∀n)[PEXn+1 − QEXn[L] 6= ∅]. Moreover,
if L is (E,W, c)-nice with a computable W then

(∀n)(∃S ⊆ COMPE)[S ∈ PEXn+1 −QEXn[L]]

where COMPE is the class of all computable subsets of E (see Definition 2.6).

Proof:
Let L be (E,W, c)-nice with W computable. Let

S =
n+1⋃
i=0

{W ′ ⊆ E : W ′ ==ci W}.

(See Definition 2.10 for the definition of ==ci.) Note that since W is com-
putable S ⊆ COMPE. We show that S ∈ PEXn+1 − QEXn[L]. S is in
PEXn+1 by the following process. (Let A denote the set being observed.
Note that A and W differ on a multiple of c points.)

1. Initially output e0, an index for W . Set i = 0. ϕei
and W differ in a

multiple of c places. Since A ∈ S, A and W differ in a multiple of c
places. Hence A and ϕei

differ in a multiple of c places. This will be
true inductively.

2. As long as A agrees with ϕei
we keep outputting ei. This can be checked

since ϕei
will always be total.

3. If an x is observed such that A(x) 6= ϕei
(x) then we do the following.

(a) Keep observing A until c points a = a1, . . . , ac are found such that
(∀j)[f(aj) 6= ϕei

(aj)]. (This must happen since A and ϕei
differ on

a multiple of c places, and we have just observed one more place
where A and ϕei

differ.)

(b) Let g be defined by

B(x) =
{
ϕei

(x) if x /∈ {a1, . . . , ac};
A(x) if x ∈ {a1, . . . , ac}.

Set ei+1 to be a program for B. Let i = i+ 1.

(c) Go to step 2.

12

Assume A ∈ S and i is such that A ==ci W where i ≤ n+1. Clearly A will
be properly PEX-inferred with i ≤ n+1 mindchanges. Hence S ∈ PEXn+1.

We show that S /∈ QEXn[L]. Assume, by way of contradiction, that
S ∈ QEXn[L] via QIM M . We construct a set A ∈ S that M does not infer.
Our construction is non-effective; however the set produced in the end is in
S.
BEGIN CONSTRUCTION

1. Let A0 = W , i = 0. Note that Ai ==ic W , A0 ⊆ E, and Ai ∈ S. These
statements will be true throughout.

2. If i = 0 then start the simulation of M on Ai. If i > 0 then continue the
simulation. (We will later see that this is possible.) Answer queries as
though Ai is the set being inferred. Stop when a conjecture ei is made
such that ϕei

decides Ai. (This must happen since Ai ∈ S. This step is
highly nonconstructive in both answering queries and in knowing when
to stop.)

3. Let ψ be the query that captures all the query answers thus far (see
Definition 2.14). Because of how part 2 executed we have ψ(Ai). In-
ductively we have Ai ==ci W and Ai ⊆ E. Since L is (E,W, c)-nice
there exists W ′′ such that W ′′ ==ci+c W and ψ(W ′′). Let Ai+1 = W ′′.
Note that ϕei

does not decide Ai+1.

4. There are two cases.

(a) If i < n then let i = i + 1 and go to step 2. Note that we have
Ai ==ic W , A0 ⊆ E, and Ai ∈ S. Also note that we have ψ(Ai);
hence the simulation in step 2 can continue.

(b) If i = n then n mindchanges have occurred so no more queries can
be made. Let A be An+1 and terminate the construction.

END OF CONSTRUCTION

The following can be proven inductively. If 0 ≤ i ≤ n then, at the end of
step 3, Ai+1 ==ci+c W and ϕei

does not decide Ai+1. Hence A = An+1 ∈ S.
Note that if M tries to infer A then its sequence of guesses is e0, e1, . . . , en.
Since ϕen does not decide A, M does not infer A.

13

Theorem 3.2 If L is nice then (∀a, n)[PEXn+1−QEXa
n[L] 6= ∅], and hence

(easily) QEXa
n[L] ⊂ QEXa

n+1[L]. Moreover, if L is (E,W, c)-nice with a
computable W then (∀a, n)(∃S ⊆ COMPE)[S ∈ PEXn+1 −QEXa

n[L]].

Proof: Let L be (E,W, c)-nice with W computable. By iterating the
definition of niceness we can assume that c ≥ 2a+ 1. Let

S =
n+1⋃
i=0

{W ′ ⊆ E : W ′ ==ci W}.

Note that since W is computable S ⊆ COMPE. S ∈ PEXn+1 − QEXn[L]
as in the proof of Theorem 3.1.

The construction to show S /∈ QEXa
n[L] is identical to the one above

except that we wait for a conjecture ei such that ϕei
is an a-variant of Ai.

Note that Ai and Ai+1 differ in exactly c ≥ 2a+ 1 places. Since ϕei
decided

an a-variant of Ai, ϕei
must differ from Ai+1 in at least c− a ≥ a+ 1 places.

Hence a new conjecture is required.

4 Reductions

In this section we define reductions ≤ and ≤w between query languages L and
L$. We will also define two refinements of them, ≤N and ≤wb respectively,
which will be the ones we actually use.

4.1 L ≤ L$ and L ≤N L
$

Notation 4.1 Let E, E$ be infinite subsets of N, and f be a bijection be-
tween E and E$. We extend the definition of f to P(E) and to E∗ by
f(A) = {f(n) : n ∈ A} and f(n1, . . . , na) = (f(n1), . . . , f(na)). Note that f
(and its extensions) is a bijection between E and E$ (P(E) and P(E$), E∗

and E$∗). We will use f for all three of these functions. The meaning will
be clear from context.

Definition 4.2 Let L, L$ be query languages and E, E$ be infinite com-
putable subsets of N. Let f be a computable bijection from E to E$. Formally
everything in this definition is parameterized by E, E$, and f ; however we

14

will not make this explicit. L is reducible to L$, written L ≤ L$, if there
exists a computable function with the following properties.

1. The input is a query ψ(X) over L and the output is a query ψ$(X)
over L$. (This is called the domain condition.)

2. (∀A ⊆ E)[ψ(A) iff ψ$(f(A))]. (This is called the equivalence condition.)

We will be most interested in reductions when E$ = N.

Definition 4.3 Let L, L$ be query languages. L ≤N L$ if there exists
(E, f) such that L ≤ L$ with parameters (E,N, f). (Note that since f is a
computable bijection and N is computable, E is forced to be computable.)

The following theorem will be used in Section 5.1.

Theorem 4.4 If L ≤ L$ with parameters (E,E$, f) then the following hold.

1. Let I,J be any of the passive notions of inference discussed in Sec-
tion 2.2. Let QI be the corresponding query notion. For all A ⊆
COMPE the following hold.

(a) A ∈ I iff f(A) ∈ I.

(b) A ∈ QI[L] ⇒ f(A) ∈ QI[L$].

(c) COMPE ∈ QI[L] ⇒ COMPE$ ∈ QI[L$].

(d) If E$ = N (so L ≤N L
$ by definition) and COMP /∈ QI[L$] then

COMP /∈ QI[L].

2. If I −QI[L$] 6= ∅ then I −QI[L] 6= ∅.

3. If E$ = N and COMP /∈ QI[L$] then COMP /∈ QI[L].

4. If U, V ⊆ E then [U ==a V iff f(U) ==a f(V)]. (See Definition 2.10
for the definition of ==a.)

5. If L$ is nice then L is nice.

6. If (∀a, n)[PEXn+1−QEXa
n[L$] 6= ∅] then (∀a, n)[PEXn+1−QEXa

n[L] 6=
∅].

15

7. If ψ is a query over L then [ψ is E-unc iff ψ$ is E$-unc].

8. If L$ is E$-CD then L is QCD.

Proof:
Throughout this proof ψ will denote a query over L and ψ$ will denote

the corresponding (using L ≤ L$) query over L$. Note that from ψ we can
effectively obtain ψ$.

1a) This is obvious since f and f−1 are both computable.
1b) We prove this for QEX[L]. The other proofs are similar. Assume

A ⊆ COMPE and A ∈ QEX[L] via M . The following inference procedure
shows f(A) ∈ QEX[L$].
ALGORITHM

1. (We are inferring f(A) ⊆ E$.) Let ~b = λ.

2. Let ψ be the query M asks upon seeing the vector ~b of answers.

3. Ask ψ$ and let b ∈ {0, 1} be the answer. Note that ψ(A) iff ψ$(f(A)).

Let ~b be ~b · b.

4. Let e be the conjecture made by M when seeing vector ~b. Output an
index for the program ϕe ◦ f−1.

END OF ALGORITHM

Since in the limit e stabilizes and ϕe decides A, we have that the output
of this process stabilizes and the output decides f(A).

1c) This follows from 1b since f(COMPE) = COMPE$.

1d) COMP ∈ QI[L] ⇒ COMPE ∈ QI[L] ⇒ COMP = COMPE$ ∈
QI[L$].

2) This follows from 1a and 1b

3) This follows from 1c and 1d

4) If U ==a V then f(U) ==a f(V) since f is a bijection.

5) Assume L$ is (E$,W $, c)-nice. Let W = f−1(W $) ⊆ E. Note that
since W $, E, and E$ are computable, W is computable. We show that L is
(E,W, c)-nice.

16

Let W ′ ⊆ E, W ′ ==ce W , and ψ(W ′). By part 2 and the definition of
reduction

(f(W ′) ==ce f(W) = W $) ∧ ψ$(f(W ′)).

Since L$ is (E$,W $, c)-nice

(∃W $′′)[ψ$(W $′′) ∧ (W $′′ ==ce+c W $)].

By part 2 and the definition of reduction

ψ(f−1(W $′′)) ∧ (f−1(W $′′) ==ce+c f−1(W $) = W) ∧ (f−1(W $′′) ⊆ E).

Hence W ′′ = f−1(W $′′) will suffice.

6) This follows from 5 and Theorem 3.2.

7) Let ψ be a query over L. f restricted to {A : A ⊆ E∧ψ(A)} is a bijection
between {A : A ⊆ E ∧ ψ(A)} and {A : A ⊆ E$ ∧ ψ$(A)}. The conclusion
follows.

8) Assume L$ is E$-CD. We show L is QCD. Given a query ψ over L we
know that either ψ or ¬ψ is E-unc. Hence at least one of {ψ$, (¬ψ)$} is
E$-unc. Using that L$ is E$-CD we can determine which of these is E$-unc
(it could be both). If it is ψ$ then output ψ, else output ¬ψ. (Note that we
only get partial information— if a formula φ$ is not E$-uncountable, we are
not entitled to conclude that φ is N-countable.)

4.2 L ≤w L
$ and L ≤wb L

$

In the definition of ≤ we fixed E,E$, and f . In the next definition we let E$

and f vary to an extent. The resulting definition is weaker and will not yield
a theorem as strong as Theorem 4.4.

Definition 4.5 Let L, L$ be query languages and E be an infinite com-
putable subset of N. Let {E$

d}∞d=1 be a sequence of infinite computable sub-
sets of N, and {fd}∞d=1 be such that fd is a computable bijection between
E and E$

d . We assume that from d we can obtain Turing machine indices
for E$

d and fd. Formally everything in this definition is parameterized by E,
{E$

d}∞d=1, and {fd}∞d=1, however we will not make this explicit. L is weakly
reducible to L$, written L ≤w L

$, if there exists a computable function with
the following properties.

17

1. The input is a query ψ(X) over L. The output is a pair: a query ψ$(X)
over L$, and a number d (indicating that we are concerned with E$

d).

2. (∀A ⊆ E)[ψ(A) iff ψ$(fd(A))].

We will be most interested in reductions when the singleton sets {E$
d}

are ω-regular.

Definition 4.6 The sequence of sets {E$
d}∞d=1 is well behaved if the following

are true.

1. For each d, the singleton set {E$
d} (viewed as an element of {0, 1}ω) is

ω-regular.

2. There is an effective procedure to go from d to an Büchi-automaton for
{E$

d}.

Let L and L$ be query languages. L ≤wb L$ if there exists parameters
(E, {E$

d}∞d=1, {fd}∞d=1) such that L ≤w L
$ with these parameters and {E$

d}∞d=1

is well behaved. (The wb stands for well behaved.)

Definition 4.7 Let L$ and {E$
d}∞d=1 be as in Definition 4.5. L$ is uniformly

E$
d-CD if there exists a partial computable function which, on input (ψ, d)

determines if ψ is E$
d-unc.

Theorem 4.8 Let (L,L$, E, {E$
d}∞d=1, {fd}∞d=1) be as in Definition 4.5. As-

sume L ≤w L
$.

1. (∀d)[U, V ⊆ E ⇒ [U ==a V iff fd(U) ==a fd(V)]]. (See Definition 2.10
for the definition of ==a.)

2. If there exists c ∈ N, sets {W $
d }∞d=1, and W such that for every d

(a) W $
d is a computable subset of E$

d,

(b) L$ is (E$
d ,W

$
d , c)-nice,

(c) f−1
d (W $

d) = W (so all the W $
d map back to the same set W)

then L is (E,W, c)-nice.

18

3. If (∀a, n)[PEXn+1−QEXa
n[L$] 6= ∅] then (∀a, n)[PEXn+1−QEXa

n[L] 6=
∅].

4. If ψ is a query over L and ψ maps to (ψ$, d) then [ψ is E-unc iff ψ$ is
E$

d-unc].

5. If L$ is uniformly E$
d-CD then L is QCD.

Proof:
The proofs of parts 1,4,5 are similar to the proofs of parts 2,6,7 of Theo-

rem 4.4 and are hence omitted. We prove parts 2 and 3.

2) Since W $, E, and E$
d are computable, W is computable. We show that L

is (E,W, c)-nice.
Let W ′ ⊆ E, W ′ ==ce W , and ψ(W ′). Let ψ get mapped to (ψ$, d). By

part 1 and the definition of reduction

(fd(W
′) ==ce fd(W) = W $

d) ∧ ψ$(f(W ′)).

Since L$ is (E$,W $
d , c)-nice

(∃W $
d

′′
)[ψ$(W $

d

′′
) ∧ (W $

d

′′
==ce+c W $

d)].

By part 1 and the definition of reduction

ψ(f−1
d (W $

d

′′
)) ∧ (f−1

d (W $
d

′′
) ==ce+c f−1

d (W $
d) = W) ∧ (f−1

d (W $
d

′′
) ⊆ E).

Note that f−1(W $
d

′′
) ⊆ E. Hence W ′′ = f−1(W $

d

′′
) will suffice.

3) This follows from 2 and Theorem 3.2.

5 Consequences of L ≤ [S,<]2

In this section we show that, for all a, d, n ∈ N, with d ≥ 1, the following
hold.

1. L ≤N [S,<]2 ⇒ COMP /∈ QBCa[L].

2. L ≤N [S,<]2 ⇒ COMP /∈ [1, d]QBCa[L].

19

3. L ≤N [S,<]2 ⇒ PEXn+1 −QEXa
n[L] 6= ∅ ⇒ QEXa

n[L] ⊂ QEXa
n+1[L].

4. L ≤wb [S,<]2 ⇒ PEXn+1−QEXa
n[L] 6= ∅ ⇒ QEXa

n[L] ⊂ QEXa
n+1[L].

5. L ≤wb [S,<]2 ⇒ L is QCD.

Throughout this section a, d, n ∈ N, d ≥ 1, are fixed.

5.1 L ≤N [S,<]2 ⇒ COMP 6∈ QBC[L]

We first show that COMP /∈ QBC[S,<]2 and then use Theorem 4.4.3 to
easily obtain that, for all L, L ≤N [S,<]2 ⇒ COMP /∈ QBC[L].

While proving COMP /∈ QBC[S,<]2 we will need to pick points to
diagonalize on very carefully. The next subsection contains lemmas that will
help us to do that.

5.1.1 ω-Regular Sets

The language L = [S,<]2 is related to ω-regular sets. We review this relation.
See [20] for a survey of automata on infinite objects and their relation to logic.

Notation 5.1 Let Σ be a finite alphabet.

1. If V ⊆ Σ∗ then let V ω be the set of all infinite sequences of nonempty
strings chosen from V .

2. If σ ∈ Σ∗ and τ ∈ Σ∗ ∪ Σω then σ � τ means that σ is a prefix of τ ,
and σ ≺ τ means that σ is a proper prefix of τ

3. If A ⊆ N and σ ∈ {0, 1}∗ then σ ≺ A means that σ is a prefix of the
characteristic string of A (i.e., σ = A(0)A(1) · · ·A(n) for some n).

4. Let i ∈ N. If ~x ∈ Σω then ~x[i] is the ith symbol in ~x. If ~x ∈ (Σk)ω and
1 ≤ j ≤ k then ~x[i, j] be the jth coordinate of ~x[i].

5. Let ~x ∈ (Σk)ω and 1 ≤ j ≤ k. Then Πj(~x) is the projection of ~x onto the
jth (horizontal) coordinate. Formally Πj(~x) = ~x[0, j]~x[1, j]~x[2, j] · · · .
If A ⊆ (Σk)ω then Πi(A) is {Πi(~x) : ~x ∈ A}.

20

Definition 5.2 A Büchi Automaton [2] is a nondeterministic finite automa-
ton A = 〈Q,Σ,∆, s, F 〉 where Q is the set of states, Σ is the alphabet, ∆
maps Q×Σ to 2Q, s ∈ Q (the start state), and F ⊆ Q, the accepting states.
A Büchi Automaton will differ from a nondeterministic finite automaton in
that we intend to run A on elements of Σω. Let ~x ∈ Σω. A run of A on ~x
is a sequence ~q ∈ Qω such that ~q(0) = s and (∀i)[~q[i + 1] ∈ ∆(~q[i], ~x[i])]. A
accepts ~x if there exists a run ~q such that (∃∞i)[~q[i] ∈ F]. A accepts A ⊆ Σω

if (∀x ∈ Σω)[x ∈ A iff A accepts x].

Definition 5.3 A subset of Σω is ω-regular if there exists a Büchi automaton
that accepts it. (There are many equivalent definitions of ω-regular sets [4,
13].)

Convention 5.4 We identify a Büchi automaton with the ω-regular set it
accepts. In Definition 5.9 we will use this to formulate some very useful
notation.

By representing sets of natural numbers via their characteristic sequences
(which are elements of {0, 1}ω) we can think of an ω-regular set over the
alphabet Σ = {0, 1} as a subset of P(N). By representing a k-tuple of sets of
natural numbers via an element of ({0, 1}k)ω we can think of an ω-regular set
over the alphabet Σ = {0, 1}k as being a subset of P(N)× · · · × P(N) (there
are k copies of P(N)). We denote the input to a Büchi automaton over the
alphabet Σ = {0, 1}k by (A1, . . . , Ak) where Ai is the set whose characteristic
string is the projection of the input onto the ith coordinate.

The following theorems from the literature link Büchi automata with
formulas over [S,<]2.

Proposition 5.5 ([1, 2, 4]) Let k1, k2 ∈ N. Let C ⊆ ({0, 1}k1+k2)ω. As-
sume that, for 1 ≤ i ≤ k1, for A ∈ C, Πi(A) ∈ 0∗10ω. The following are
equivalent.

1. C is ω-regular.

2. There exists a formula φ(x1, . . . , xk1 , X1, . . . , Xk2) over [S,<]2 such that,
using our convention that the xi range over N while the Xi range over
subsets of N,

C = {({a1}, . . . , {ak1}, A1, . . . , Ak2) : φ(a1, . . . , ak1 , A1, . . . , Ak2)}.

21

3. There are regular sets U1, . . . , Un, V1, . . . , Vn such that C =
⋃n

i=1 Ui · V ω
i

and (∀i)[V ∗i = Vi]. Note that if C is uncountable then we can assume
without loss of generality that V ω

1 is uncountable.

Moreover these equivalences are constructive: given any of the objects { Büchi
automaton, formula, the sets {Ui}n

i=1, {Vi}n
i=1 } one can effectively find the

other two.

Definition 5.6 Let φ(X) be a formula over [S,<]2. Then AUT (φ) is a
Büchi automaton that recognizes {A : φ(A)}. Such an automaton exists by
Proposition 5.5. Note that it can be effectively found from φ.

Definition 5.7 Let x ∈ Σω and a ∈ Σ. The expression rm(a, x) denotes
the string that results from removing every occurrence of a from x. Note
that rm(a, x) could be finite, hence rm(a, x) ∈ (Σ−{a})ω ∪ (Σ−{a})∗. Let
B ⊆ Σω. rm(a,B) = {x ∈ (Σ − a)ω : (∃y ∈ B)[rm(a, y) = x]}. Since we
identify a Büchi automaton A with the set {A : A accepts A } ⊆ Σω the
notation rm(a,A) make sense.

Proposition 5.8 If 1 ≤ i ≤ k, A,B are ω-regular subsets of ({0, 1}k)ω,
σ ∈ {0, 1}k, then Πi(A), rm(σ,A), A ∪ B, A ∩ B, and A are ω-regular.
One can obtain the automaton for A∩B (and the others) effectively by using
a cross-product construction. (Büchi [2] showed that the class of ω-regular
sets is closed under union, intersection, and complementation. See [4] for an
exposition and see [16] for a more efficient proof.)

Definition 5.9 We identify a Büchi automaton A with both the ω-regular
language that it accepts and the query over [S,<]2 that it is equivalent to by
Proposition 5.5. Let A be a Büchi automaton.

1. If A uses alphabet {0, 1} and A ⊆ N then A(A) will mean that A
accepts the characteristic string of A.

2. A is uncountable if the corresponding ω-regular set is uncountable.

22

3. IfA and B are Büchi automaton over {0, 1} thenA∩B is the automaton
that accepts only those elements of {0, 1}ω accepted by both A and B.
This automaton exists by Proposition 5.8.

4. If φ(X) is a query over [S,<]2 and A uses alphabet {0, 1} then A∩φ(X)
is the Büchi automaton that accepts only those elements of {0, 1}ω

that are both accepted by A and satisfy φ. This automaton exists by
Propositions 5.5 and 5.8. We may use the notation A ∩ φ at times.

5. Let σ be a finite string. If there is a run of A on σ that contains an
accepting state n times then σ is n-accepted by A. Note that if A ∩ B
n-accepts σ then both A n-accepts σ and B n-accepts σ.

Proposition 5.10 ([11]) Let A be a Büchi automaton, n ∈ N, and σ ∈ Σ∗
be such that {A : (A accepts A)∧ (σ ≺ A)} is uncountable. Then there exists
σ′ such that

1. σ ≺ σ′,

2. {A : (A accepts A) ∧ (σ′ ≺ A)} is uncountable, and

3. A n-accepts σ′.

The string σ′ can be found from (σ,A, n) in a uniform effective fashion.

Definition 5.11 Let EXT be a partial computable function that takes a
Büchi automaton A, a string σ, and the number n = |σ|, and returns the σ′

from Proposition 5.10.

Proposition 5.12 Let {As}∞s=1 be a sequence of Büchi automata and {σs}∞s=1

be elements of Σ∗ such that the following are true.

1. A1 ⊇ A2 ⊇ A3 · · ·.

2. σ1 ≺ σ2 ≺ σ3 ≺ · · ·.

3. There exists an increasing sequence n1 < n2 < n3 · · · such that for all
s, As ns-accepts σs.

23

Then the string A = lims→∞ σs ∈ Σω is accepted by all As. In addition, if
the sequence σ1, σ2, . . . is computable then A is computable (this is obvious).

Proof: Fix s. We show that A is accepted by As. For any t ≥ s, As−At

is ω-regular by Proposition 5.8. Hence At can be built by intersecting As

with a Büchi automaton. Hence, any finite string that At n-accepts is also
n-accepted by As. Therefore σt is nt-accepted by As. By an easy application
of König’s infinite lemma one can construct a run of A that shows As accepts
A.

Proposition 5.13 (Lemma 16 of [11]) If V is a regular set such that |V ω| ≥
2 then V ∗ contains two distinct strings of the same length.

Lemma 5.14 Let a ∈ N. There is a partial computable function that, given
an uncountable Büchi automaton A, returns n ∈ N such that

(∀b ∈ {0, 1})[(A ∩ (X(n) = b)) is uncountable].

(See Definition 5.9 for the definition of A ∩ φ.)

Proof: Let A be uncountable. By Propositions 5.5 and 5.13, applied to
A, we can find DFA’s for regular sets U and V such that the following hold.

1. A ∈ U · V ω ⇒ A(A).

2. V = V ∗.

3. V ω is uncountable.

4. There exists v0, v1 ∈ V and i ∈ N such that |v0| = |v1|, v0[i] = 0, and
v1[i] = 1. (v0, v1, and i can be found by searching.)

Fix u ∈ U . Let

|u| = r (so u determines membership for {0, . . . , r − 1})
|v0| = |v1| = s (so 0 ≤ i ≤ s− 1)
n = r + i

Let b =∈ {0, 1}. If A ∈ uv0 · V ω then (1) A ∈ U · V ω, so A(A), and (2)
uv0 ≺ A so A(n) = b. Since V ω is uncountable we have that (A∩X(n) = b)
is uncountable.

24

Definition 5.15 FIND is the partial computable function that was shown
to exist in Lemma 5.14, i.e., the n in the proof of Lemma 5.14.

Lemma 5.16 There is a computable function RESTRICT that behaves as
follows.

1. The input to RESTRICT is an ordered pair (A, φ) where A is a Büchi
automaton and φ is a query over [S,<]2.

2. RESTRICT (A, φ) is a Büchi automaton.

3. RESTRICT (A, φ) accepts either A ∩ φ or A ∩ ¬φ. We abbreviate
this by RESTRICT (A, φ) = A ∩ φ or RESTRICT (A, φ) = A ∩ ¬φ.
(See Definition 5.9 for the definition of A ∩ φ.)

4. If A is uncountable then RESTRICT (A, φ) is uncountable.

(In essence RESTRICT picks out which of φ or ¬φ has an uncountable
intersection with A and then produces the automaton that accepts that in-
tersection.)
Proof: RESTRICT (A, φ) is computed as follows. By Proposition 5.5,
Proposition 5.8, (of this paper) and Lemma 21 of [11] one can effectively
construct Büchi automaton for each of A ∩ φ and A ∩ ¬φ and determine,
for each one, if it is uncountable. If A ∩ φ is uncountable then output the
automaton for it, else output the automaton for A ∩ ¬φ. Clauses 1,2, and
3 are clearly satisfied. If A is uncountable then one of {A ∩ φ,A ∩ ¬φ} is
uncountable, hence clause 4 is satisfied.

5.1.2 COMP 6∈ QBC[L]

The proof of the following theorem is similar to the proof that COMP /∈
QEX[S,<] from [11] (in that paper it was called REC /∈ QEX[S,<]). We
include the proof for completeness and because we are going to discuss vari-
ants of it.

Theorem 5.17 COMP /∈ QBC[S,<]2.

25

Proof: Given a QIM M that asks queries in [S,<]2 we try to construct a
computable set A that is not QBC-inferred by M . By Convention 2.13 the
ith query M asks is φi.

We use the functions AUT (from Definition 5.6), EXT (from Defini-
tion 5.11), and FIND (from Definition 5.15) in the construction. We will
need FIND because when we diagonalize we want either choice (using 0 or
1) to still leave an uncountable number of functions.

We use the function RESTRICT (from Lemma 5.16) in the proof that
the construction works. We will also use the computable function BIT de-
fined as follows.

BIT (A, φ) =
{

1 if RESTRICT (A, φ) = A ∩ φ;
0 if RESTRICT (A, φ) = A ∩ ¬φ.

We construct A in stages. At every stage s we will have the following.

1. ts ∈ N and ~cs ∈ {0, 1}ts . ~cs represents answers to the first ts queries
over L, which will be φ1, . . . , φts by our convention.

2. An uncountable Büchi automaton As which captures ~cs (see Defini-
tion 2.14). It will be used to make the set A satisfy the query answers
given.

3. σs ∈ {0, 1}∗. As(X) implies σs � X, so σs is an initial segment of A.

Either every stage of this construction terminates or the very failure of
a stage to terminate allows us to construct a computable set B that is not
QBC-inferred by M .

CONSTRUCTION

Stage 0: t0 = 0, ~c0 = λ, and A0 accepts {0, 1}ω, and σ0 = λ.

Stage s+1: We can inductively assume that As is uncountable and captures
~cs. Dovetail the following procedure for all (t,~c) ∈ N × {0, 1}∗ such that
t ≥ 1 and ~c ∈ {0, 1}t. If any of them terminate with success then its actions
determine how the construction should proceed. No parameter is changed
until this happens.

26

1. We will simulate what happens if tmore queries (namely φts+1, . . . , φts+t)
are asked and φts+i is answered with ~c[i]. Let A0 = As. For 1 ≤ i ≤ t
let

Ai =

{
Ai−1 ∩ AUT (φts+i) if ~c[i] = 1;
Ai−1 ∩ AUT (¬φts+i) if ~c[i] = 0.

Let A = At. If A is countable or finite then terminate with failure.

2. (A is uncountable and captures ~cs~c.) Let e = M(~cs~c), the conjecture
that M makes upon getting answers ~cs~c. Hence we try to diagonalize
against ϕe.

3. Let n = FIND(A). Run ϕe(n).

4. If ϕe(n) ↓ then we can terminate with success. Proceed as follows.

b = (1− ϕe(n))
As+1 = A ∩ (X(n) = b)
σs+1 = EXT (σs,As+1)
ts+1 = ts + t
~cs+1 = ~cs~c.

We have caused ϕe and A to disagree on n, As+1 to be uncountable,
and As+1 to capture ~cs+1. (Note that if step 4 is never reached then
either some other choice of (t,~c) terminated with success first or ϕe

fails to converge on n.)

END OF CONSTRUCTION
There are two cases.

Case 1: Every stage terminates. The sequences {As}∞s=1 and {σs}∞s=1 satisfy
the premises of Proposition 5.12. Let A be the resulting computable set.
Imagine M trying to infer A. For all s note that the vector of answers to the
first ts queries is ~cs. Let es be the guess made after ts queries are made and
answered. During stage s+1 program ϕes is diagonalized against. Hence ϕes

does not decide an A, so M does not QBC-infer A.

Case 2: There exists a stage s + 1 that does not terminate. Hence for any
choice of (t,~c) the resulting program ϕe fails to converge on some point. We
use this to effectively construct {Bs}∞s=1 and {τs}∞s=1 that satisfy Proposi-
tion 5.12.

27

~d0 = ~cs
B0 = As

For i = 1 to ω
~di = ~di−1 ·BIT (Bi−1, φts+i)
Bi = RESTRICT (Bi−1, φts+i)

(* φts+i is (ts + i)th query *)
τi = EXT (τi−1,Bi)

Clearly {Bt}∞t=1 and {τi}∞i=1 satisfy the premise of Proposition 5.12. Let
B be the resulting computable set. We show that M does not QBC-infer
A. Let ~d be the limit of ~di. Imagine M trying to infer B. For all t′ = t+ ts
let et be the guess made by M after t′ queries are made and answered. Let
~d[1..t′] = ~cs ·~c. During stage s+1 (t,~c) was considered. By the construction of
Bi we know that the resulting automaton A is uncountable. Hence step 3 (of
stage s + 1 of the main construction) was reached. Note that et = ϕM(~c[t]).
Since stage s + 1 never terminated there is a point n such that ϕet(n) ↑.
Hence ϕet is not an index for B. Since this reasoning holds for any t > ts,
M does not QBC-infer B

Theorem 5.18 If L ≤N [S,<]2 then COMP /∈ QBC[L].

Proof: By Theorem 5.17 COMP /∈ QBC[S,<]. By the premise L ≤N [S,<]2.
Hence, by Theorem 4.4.3 COMP /∈ QBC[L].

5.2 L ≤N [S,<]2 ⇒ COMP 6∈ [1, d]QBCa[L]

We first show that, for all d, COMP /∈ [1, d]QBC[S,<]2. We then use
Lemma 2.7 to obtain, for all a, d, COMP 6∈ [1, d]QBCa[S,<]2. We then
use Theorem 4.4.3 to obtain, for all a, d, for all L ≤N [S,<]2, COMP 6∈
[1, d]QBCa[L].

Theorem 5.19 COMP /∈ [1, d]QBC[S,<]2.

Proof: We use the same conventions as in Theorem 5.17. RESTRICT ,
BIT , and FIND are as in Theorem 5.17.

Fix d. Given {M1, . . . ,Md}, a team of d QIMs that asks queries in L, we
try to construct a computable set A that is not QBC-inferred by any Mm.
By Convention 2.13, for 1 ≤ m ≤ d, the ith query that Mm makes is φi.

28

The construction will proceed in stages. At every stage s we will have
ts ∈ N, ~cs ∈ {0, 1}ts , an uncountable Büchi Automata As, σs, and POSSs ⊆
{1, . . . ,m}. The parameters ~cs, As, and σs are similar to their counterparts
in Theorem 5.17. POSSs represents the set of machines that might infer A.

The construction may fail to terminate. If this occurs then there exists
m, σ and A such that any set with initial segment σ that is accepted by A is
not inferred by Mm. We will then (noncontructively) restart our construction
such that (1) we no longer care about Mm and (2) the set we construct has
initial segment σ and is accepted by A. The construction may fail again, in
which case we can eliminate another machine and restart again.

If less than m stages of the construction fail to terminate then the con-
struction will produce a computable set A that is not BC inferred by any
Mm. The algorithm for A will need some finite information about which
stages did not terminate along with the code for the construction. If m
stages of the construction fail to terminate then these m failures will allow
us to construct a computable set B that is not QBC-inferred by M .

CONSTRUCTION

Stage 0: t0 = 0, ~c0 = λ, A0 accepts {0, 1}ω, σ0 = λ, and POSS0 = {1, . . . , d}.
Stage s+1: We can inductively assume that As is uncountable and captures
~cs. Let m be such that 1 ≤ m ≤ d and s ≡ m (mod d). If m /∈ POSSs then
go to the next stage. If m ∈ POSSs then we try to diagonalize against Mm.
Dovetail the procedure described in Theorem 5.17 for all (t,~c) ∈ N×{0, 1}∗
such that t ≥ 1 and ~c ∈ {0, 1}t, except that we use Mm instead of M . If any
of them terminate with success then take the same action as in Theorem 5.17.
If none of the (t,~c) cause a termination with success then (nonconstructively)
let POSSs+1 = POSSs − {m}.
END OF CONSTRUCTION

Case 1: For all s, POSSs 6= ∅. The parameters {As}∞s=1 and {σs}∞s=1 satisfy
the premises of Proposition 5.12. Let A be the resulting set. The sequence
{σs}∞s=1 is computable, but the algorithm for it needs finite information about
which stages did not terminate. Even so, the set A is computable. We show
that, for all m, Mm does not QBC-infer A. There are two cases.

1. m ∈ lims→∞ POSSs. A cannot be QBC-inferred by Mm by reasoning
similar to that of Case 1 of Theorem 5.17 specialized to the stages
s ≡ m (mod d).

29

2. m /∈ lims→∞ POSSs. Let s be such that m ∈ POSSs − POSSs+1.
Imagine Mm trying to infer A. For all t′ = t + ts let et be the guess
made by M after t′ queries are made and answered. Let ~c be the correct
set of answers to the first t queries and let ~c = ~cs · ~c. The rest of this
proof is similar to Case 2 of Theorem 5.17.

Case 2: There exists s such that POSSs = ∅. A new computable set B can
be constructed that is not BC inferred by the team. This can be proven with
reasoning similar to Case 2 of Theorem 5.17.

Corollary 5.20 If a, d ∈ N then COMP /∈ [1, d]QBCa[S,<]2.

Proof: By Theorem 5.19, with parameter d(a + 1), we have COMP /∈
[1, d(a+ 1)]QBC[S,<]2. Lemma 2.7 yields COMP /∈ [1, d]QBCa[S,<]2.

Corollary 5.21 If a, d ∈ N and L ≤N [S,<]2 then COMP /∈ [1, d]QBC[L].

Proof: By Corollary 5.20 COMP /∈ [1, d]QBCa[S,<]. By the premise
L ≤N [S,<]2. Hence, by Theorem 4.4.3 COMP /∈ [1, d]QBCa[L].

5.3 L ≤N [S,<]2 ⇒ PEXn+1 −QEXa
n[L] 6= ∅

We first obtain PEXn+1 −QEXn[S,<]2 6= ∅ by showing that [S,<]2 is nice.

Lemma 5.22 [S,<]2 is nice.

Proof:
LetW be the computable set whose characteristic sequence is 011021031 · · ·.

We show that [S,<]2 is (N,W, 2)-nice.
Let e ∈ N. Assume

(∃W ′ ⊆ N)[ψ(W ′) ∧ (W ′ ==2e W)].

We show that
(∃W ′′ ⊆ N)[ψ(W ′′) ∧ (W ′′ ==2e+2 W)].

(See Definition 2.10 for the definition of ==a.)

30

Let the characteristic sequence of W ′ be 0m110m210m3 · · ·. Note that
(∀∞i)[mi = i].

By Proposition 5.5 there exists regular sets U and V such that 0m110m2 · · · ∈
U · V ω and V = V ∗. Let the DFA for V be 〈Q, {0, 1}, δ, s, F 〉. Note that
δ : Q×{0, 1} → Q. Let δ be the natural extension of δ to domain Q×{0, 1}∗.

Our plan is to represent 0m110m210m31 · · · as uv1v2v3 · · · where u ∈ U and
vi ∈ V and then to replace one of the vi with v′i ∈ V such that vi ==2 v′i. In
order to find such a v′i we will need x, y, z1, z2 such that vi = z1xz2, v

′
i = z1yz2,

|x| = |y|, and the DFA cannot tell x and y apart.
We define an equivalence relation on {0, 1}∗. Associate to every x ∈

{0, 1}∗ the set
INFO(x) = {(q1, q2) : δ(q1, x) = q2}.

Define x ∼ y iff INFO(x) = INFO(y). Note that there are ≤ |Q|2 equiva-
lence classes.

We assume that x ∼ y and z1xz2 ∈ V and show that z1yz2 ∈ V . Let q1
and q2 be such that δ(s, z1) = q1 and δ(q1, x) = q2. Since z1xz2 ∈ V we have
δ(q2, z2) ∈ F . Clearly (q1, q2) ∈ INFO(x) = INFO(y). Since δ(s, z1) = q1,
δ(q1, y) = q2, and δ(q2, z2) ∈ F we have z1yz2 ∈ V .

The number of equivalence classes is ≤ |Q|2. Let n > |Q|2. Consider the
n strings {0i10j : i + j = n}. Two of these must be equivalent, say 0i110j1

and 0i210j2 . We intend to replace some occurrence of the substring 0i110j1

in the characteristic string of W ′ with 0i210j2 . To ensure the result is still in
U · V ω this must be done carefully.

Since (∀∞i)[mi = i] the string 0n10n is a substring of W ′ infinitely often.
Since W ′ ∈ U · V ω, W ==2e W ′, and V = V ∗ there exists u ∈ U , v1, v2, . . . ∈
V , and i0 ∈ N such that the following happens.

1. W ′ has characteristic string uv1v2v3 · · ·.

2. (∀j ≥ |uv1v2 · · · vi0|)[W (j) = W ′(j)].

3. (∃i > i0)(∃z′1, z′2)[vi = z′10
n10nz′2].

Since n ≥ i1, j1 we can rewrite vi as z10
i110j1z2. Since 0i110j1 ∼ 0i210j2

and vi ∈ V we have v′i = z10
i210j2z2 ∈ V . Let W ′′ be the set whose charac-

teristic string is uv1v2v3 · · · vi−1v
′
ivi+1vi+2 · · ·.

Since v′i ∈ V the characteristic string of W ′′ is in U · V ω. Hence ψ(W ′′)
holds.

31

Since |vi| = |v′i| and vi ==2 v′i we have W ′ ==2 W ′′. Since i > i0 the two
places where W ′′ and W ′ disagree are also places where W ′′ and W disagree.
Since W ==2e W ′ we have W ==2e+2 W ′′.

Theorem 5.23 If L ≤N [S,<]2 then

1. PEXn+1 −QEXa
n[L] 6= ∅.

2. QEXa
n[L] ⊂ QEXa

n+1[L]. (This is an easy consequence of part 1.)

Proof: By Lemma 5.22 [S,<]2 is nice. By Theorem 4.8.2 L is nice. By
Theorem 3.2 PEXn+1 −QEXa

n[L] 6= ∅.

5.4 L ≤wb [S,<]2 ⇒ PEXn+1 −QEXa
n[L] 6= ∅

We need a slightly stronger version of Lemma 5.22, in what follows.

Definition 5.24 Let E ⊆ N, E infinite, E = {e1 < e2 < e3 · · ·}. Let
W ⊆ N. The set E restricted to W is {ei : i ∈ W}. We denote this by
E � W . Intuitively E � W is obtained by using the characteristic sequence
of W to determine which members of E to put into our set. Note that
E ⊆ E � W .

Lemma 5.25 Let W be as in Lemma 5.22. Let E be such that the singleton
set {E} is ω-regular. Then [S,<]2 is (E,E � W, 2)-nice.

Proof: The definition of (E,E � W, 2)-nice deals with subsets of E.
Rather than deal with such subsets directly, we will deal with sets W ⊆ N
and look at E � W .

Let e ∈ N. Assume

(∃W ′ ⊆ N)[ψ(E � W ′) ∧ (E � W ′ =2e E � W)].

We show that

(∃W ′′ ⊆ N)[ψ(E � W ′′) ∧ (E � W ′′ ==2e+2 E � W)].

32

Let the characteristic sequence of W ′ be 0m110m210m3 · · ·. Note that

(∀n)(∃∞i)[(mi,mi+1) = (n, n)].

Let A = {A : Π1(A) = E ∧ ψ(Π2(A))}. Since {E} is ω-regular A is
ω-regular (use Proposition 5.8). Since A is ω-regular B = Π2(rm(00,A)) is
ω-regular (use Propositions 5.8). Note that W ′ ∈ B.

We now find a set W ′′ in a manner identical to that of Lemma 5.22.
Formally we end up with E � W ′′ as our desired set.

Theorem 5.26 If L ≤wb [S,<]2 then the following are true.

1. PEXn+1 −QEXa
n[L] 6= ∅.

2. QEXn[L] ⊂ QEXn+1[L]. (This is an easy consequence of part 1.)

Proof: Let (P, {E$
d}∞d=1, {f}∞d=1) be the well behaved parameters. We

show that the conditions of Theorem 4.8.2 hold with L as above, L$ = [S,<]2,
W from Lemma 5.22, W $

d = E$
d � W .

Fix d. Clearly W $
d is a computable subset of E$

d . Since the parameters
are well behaved the singleton set {E$

d} is ω-regular. Hence, by Lemma 5.25,
[S,<]2 is (E$

d ,W
$
d , 2)-nice. By definition f−1

d (W $
d) = W . These are all the

conditions needed.
By Theorem 4.8.2, L is (P,W, 2)-nice. Since P and W are computable,

L is nice. By Theorem 3.2, PEXn+1 −QEXa
n[L] 6= ∅.

5.5 L ≤wb [S,<]2 ⇒ L is QCD

Theorem 5.27 If L ≤wb [S,<]2 then L is QCD.

Proof: Assume L ≤wb [S,<]2 with parameters (E, {E$
d}∞d=1, {fd}∞d=1). We

show that [S,<]2 is uniformly E$
d-CD.

ALGORITHM

1. Input(ψ, d) (ψ is a query over [S,<]2 and d ≥ 1.)

2. Find the query ψ′ (over [S,<]2) that accepts {A : A ⊆ E$
d and ψ(A)}.

This is possible since {E$
d}∞d=1 is well behaved (also use Proposition 5.5).

33

3. Test if ψ′ is uncountable. Note that ψ′ is uncountable iff ψ′ is E$
d-

uncountable. Output the answer.

END OF ALGORITHM

Since [S,<]2 is uniformly E$
d-CD, by Theorem 4.8.4 L is QCD.

Theorem 5.28 If L ≤N [S,<]2 then L is QCD.

Proof: If L ≤N [S,<]2 then clearly L ≤wb [S,<]2. Apply Theorem 5.27

6 [+, <] ≤N [S,<]2

We show that [+, <] ≤N [S,<]2. We will use some ideas from the proof that
first order Presburger arithmetic is decidable by a reduction to the weak
second order theory with successor (see [15]).

Lemma 6.1 [+, <] ≤N [S,<]2 with parameters (POW2, f) where f is the
function that maps 2i to i.

Proof:
Let φ(X) be a query over [+, <]. Our only concern is when X ⊆ POW2.

We intend to replace X by a variable X such that as X ranges over POW2,
X ranges over N. The statement 2i ∈ X will be coded by i ∈ X .

We will replace the original first order variables with second order vari-
ables. These second order variables will be constrained to be finite sets. We
will code numbers into finite sets by the following convention.

Definition 6.2 Let Y be a finite set. Let Y = {a1, . . . , ak}. The number
coded by Y is

∑k
j=1 2aj . We denote this number by code(Y). Note that code

is a bijection from finite subsets of N to N.

Example 6.3 The set {3, 5} represents the number 23 + 25 = 40. We will
think of it as the string which has a 1 in the 3rd and 5th place, namely 10100.

34

We will then be able to replace + by S and quantifiers as explained below.
At that point we will have a query in [S,<]2.

Definition 6.4 Let Y, Z be second order variables. FIN(Y) is the formula
that states that Y is finite, namely

(∃x1)(∀x2)[x2 ≥ x1 ⇒ x2 /∈ Y].

ONE(Y, Z) is the formula that states |Y | = 1 and the one element in Y is
also in Z, namely

(∃x1)[(x1 ∈ Y) ∧ (x1 ∈ Z) ∧ (∀x2 6= x1)[x2 /∈ Y]].

The following reduction transforms a formula φ of [+, <] into a formula
of [S,<]2.
REDUCTION OF [+, <] TO [S,<]2, abbreviated RED

1. Input(φ).

2. Replace all occurrence of s < t with (∃x)[x 6= 0∧ s+ x = t]. Hence the
formula has no < in it. Call the resulting formula φ.

3. If φ = φ1 ∧ φ2 then output RED(φ1) ∧ RED(φ2). If φ = ¬φ1 then
output ¬RED(φ1). If φ = (∃y)[φ1(y)] then output (∃Y)[FIN(Y) ∧
RED(φ1(y))]. (Make sure that when y becomes a second order variable
that variable is Y .) For the rest of this algorithm assume φ is atomic.

4. φ is n ∈ X for some natural number n. If n /∈ POW2 then replace this
with 1 6= 1. If n = 2i then replace with i ∈ X .

5. φ is y = n for some natural number n. Replace with Y = code−1(n).

6. φ is y ∈ X. Replace this with ONE(Y,X). We are saying that Y is a
set that codes a number, Y is a singleton set (hence it codes a power of
2, say 2i, by having i ∈ Y), and that number is in X (coded by i ∈ X).

7. φ is y1 + y2 = y3. We will replace y1, y2, y3 with second order variables
(if they ever get quantified over then they will be forced to be finite).
We will obtain a formula that codes code(Y1) + code(Y2) = code(Y3).
Let C be a new second order variable. C will represent bit carries.

35

Let place and carry be the functions from {0, 1}3 to {0, 1}1 such that
for b1, b2, b3 ∈ {0, 1} the sum b1 + b2 + b3, when written in base 2, is
carry(b1, b2, b3) ·place(b1, b2, b3). (Note that here and elsewhere · means
concatenation, not multiplication.)

Replace y1 + y2 = y3 by the formula that begins with (∃C)(∀i) and
then has the conjunction of the following.

(a) C(0) = 0.

(b) For every (b1, b2, b3) ∈ {0, 1}3 the formula

[(Y1[i] = b1) ∧ (Y2[i] = b2) ∧ (C[i] = b3)] ⇒
[(Y3[i] = place(b1, b2, b3)) ∧ (C[i+ 1] = carry(b1, b2, b3))].

8. Output the formula obtained.

END OF REDUCTION

We need to show that the above algorithm is a reduction. The domain
condition is clearly satisfied. We show the equivalence condition.

A formula φ(x1, . . . , xn, X) will map to a formula φ$(X1, . . . , Xn, X). One
can show by induction on the formation of a formula that for any a1, . . . , an ∈
N and A ⊆ POW2

φ(a1, . . . , an, A) iff φ$(code−1(a1), . . . , code
−1(an), f(A)).

Hence for queries φ(X) we obtain

(∀A ⊆ POW2)[φ(A) iff φ$(f(A))].

Hence the equivalence condition is satisfied.

Lemma 6.5 [+, <,POW2] ≤N [S,<]2 with parameters (POW2,N, f) where
f maps 2i to i.

Proof: We modify the proof of Lemma 6.1 by saying where to map the new
atomic formulas that may occur. The formula POW2(x) maps to |X| = 1.

36

7 [+, <,POWb] ≤N [S,<]2

We extend the results of the last section by adding predicates to test powers.

Lemma 7.1 Let b ≥ 2. [+, <,POWb] ≤N [S,<]2 with parameters (POWb, f)
where f maps bi to i.

Proof:
Let φ(X) be a query over [+, <]. Our only concern is when X ⊆ POWb.

We intend to replace X by a variable X such that as X ranges over POWb,
X ranges over N. The statement bi ∈ X will be coded by bi+ 1 ∈ X .

We will replace the original first order variables with second order vari-
ables. These second order variables will be constrained to be finite sets that
are also proper (to be defined later). We give some examples of how we do
the coding before giving a formal definitions.

Example 7.2 Let b = 5. All strings mentioned are infinite with the un-
represented part being an infinite string of 0’s going off to the left. These
infinite strings will later be thought of as characteristic sequences for a set
(reading from right to left, which is the reverse of the usual convention).

1. The infinite string

A = · · · 10000 00001 00010 00100.

will represent, in base 5, the number 4012. This is because the numbers
in the 0th, 1st, 2nd and 3rd block are 2,1,0,4 respectively. We will also
viewA as representing a set. This set hasA(0) = 0, A(1) = 0, A(2) = 1,
A(3) = 0, and A(4) = 0. For this purpose we read the string from right
to left, so we have that A(x+ 1) is to the left of A(x).

2. The infinite string

· · · 00010 00000 00000 00000 00000

represents 10000 in base 5 which is 54 in base 10. More generally a
string represents a power of 5 iff there is only one 1 in it, and that
place is n ≡ 1 (mod 5). Note that the string that represents 5i to us
looks like 5i+ 1 the normal way of looking at strings.

37

3. The infinite string

· · · 10001 00000 00000

does not represent anything. Given a string we can test for this kind
of property by insisting that if two bit places x > y are both one then
there is a number z ≡ 0 (mod 5) such that x ≥ z > y.

4. Any infinite string whose first five bits are 00100 must be≡ 2 (mod 5).
More generally, for any b, the first b bits of x determine the i such that
x ≡ i (mod b).

Notation 7.3 Let Bi = {bi, . . . , b[i+ 1]− 1}.

Definition 7.4 A set Y is proper if Y is finite and (∀i)[|Y ∩Bi| ≤ 1]. For
all i let mi be the unique number in Y ∩ Bi if such a number exists, and bi
otherwise (almost all of the mi are bi). The number coded by Y is

∑∞
i=0(mi−

bi)bi and is denoted code(Y).

We will be able to replace + by S and quantifiers. We will then turn
X back into a second order variable. At that point we will have a query in
[S,<]2.

Definition 7.5 Let MOD be the formula with prefix (∃C0, . . . , Cb−1) and
body

b−1∧
i=0

(i ∈ Ci) ∧ (∀x)[x ∈ Ci ⇒ (x+ b ∈ Ci ∧
∧

1≤j≤b−1

x+ j /∈ Ci)]

 .
This formula asserts the existence of C0, . . . , Cb−1 such that, for 0 ≤ i ≤ b−1,
Ci = {n : n ≡ i (mod b)}. They will of course be helpful for coding the
MODb functions, however they will also be helpful for ensuring that a finite
set is proper.

38

Definition 7.6 Let FIN(Y) be the formula that asserts that Y is finite
(see Definition 6.4). Let PROPER(Y) be the formula that asserts that Y
is proper, namely

FIN(Y) ∧MOD ∧ (∀x > y)[(x ∈ Y ∧ y ∈ Y) ⇒ (∃z)[z ∈ C0 ∧ x ≥ z > y]].

See the examples to see why this works.

Definition 7.7 Let POWb(Y) be the formula that asserts that code(Y) ∈
POWb, namely

MOD ∧ (∃n)[n ∈ Y ∧ (∀m 6= n)[m /∈ Y] ∧ n ∈ C1].

ONE(Y, Z) is the formula that states that |Y | = 1 and that one element is
in Z, namely

(∃x1)[(x1 ∈ Y) ∧ (x1 ∈ Z) ∧ (∀x2 6= x1)[x2 /∈ Y]].

The following reduction transforms a formula φ of [+, <,POWb] into a
formula of [S,<]2.
REDUCTION OF [+, <,POWb] TO [S,<]2, abbreviated RED

1. Input(φ).

2. Replace all occurrence of s < t with (∃x)[x 6= 0∧ s+ x = t]. Hence the
formula has no < in it. Call the resulting formula φ.

3. If φ = φ1 ∧ φ2 then output RED(φ1) ∧ RED(φ2). If φ = ¬φ1 then out-
put ¬RED(φ1). If φ = (∃y)[φ1(y)] then output (∃Y)[PROPER(Y) ∧
RED(φ1(y))]. (Make sure that when y becomes a second order variable
that it is Y .) For the rest of this algorithm we assume φ is atomic.

4. φ is n ∈ X for some natural number n. If n /∈ POWb then replace this
with 1 6= 1. If n = bi then replace with bi+ 1 ∈ X .

5. φ is y = n for some natural number n. Replace with Y = code−1(n).

6. φ is y ∈ X. Replace this with POWb(Y)∧ONE(Y,X). We are saying
that Y is a set that codes a power of b, say bi (hence bi + 1 ∈ Y) and
bi ∈ X, coded by having bi+ 1 ∈ X .

39

7. φ is POWb(y). Replace this with POWb(Y).

8. φ is y ≡ i (mod b). Replace this with i ∈ Y . (See the example above.)

9. φ is y1+y2 = y3. We will replace y1, y2, y3 with second order variables (if
they ever get quantified over then they will be forced to be proper). We
will obtain a formula that codes code(Y1)+ code(Y2) = code(Y3). Let C
be a new second order variable. C will represent bit carries. Let place
and carry be the functions from {0, . . . , b− 1}3 to {0, . . . , b− 1} such
that for b1, b2, b3 ∈ {0, . . . , b− 1} the sum b1 + b2 + b3, when written in
base b, is carry(b1, b2, b3)·place(b1, b2, b3). (Note that here and elsewhere
· means concatenation, not multiplication.) Replace y1 + y2 = y3 by
the formula that begins with (∃C)(∀i) and then has the conjunction of
the following.

(a) (0 /∈ C) ∧ (1 /∈ C) ∧ · · · ∧ (b− 1 /∈ C).

(b) For every (b1, b2, b3) ∈ {0, 1}3 the formula

[(i+ b1 ∈ Y1) ∧ (i+ b2 ∈ Y2) ∧ (i+ b3 ∈ C)] ⇒
[(i+ place(b1, b2, b3) ∈ Y3) ∧ (i+ b+ carry(b1, b2, b3) ∈ C)]

10. Output the resulting formula.

END OF REDUCTION

a: Command not found. The proof that this is a reduction is similar to
the last part of the proof of Lemma 6.1 and is hence omitted.

Note 7.8 The proof of Lemma 7.1, when using b = 2, does not become the
proof of Lemma 6.5. For b = 2 we could use 0 and 1 to code 0 and 1 in
binary. The proof of Lemma 7.1, specialized to b = 2, would have coded 0
as 00 and 1 as 10.

8 [S,<, P]2 ≤wb [S,<]2 for several P

We show that, for several predicates P , [S,<, P]2 ≤wb [S,<]2.

40

Notation 8.1 Throughout this section P is computable, infinite, and co-
infinite. We use P to denote the set P , the predicate that tests if numbers
are in P , and the characteristic string of P .

Some of our techniques are based on [5].

Definition 8.2 Let d ∈ N, Σ be a finite alphabet, σ ∈ Σ. The partial
function thind,σ : Σω → Σω is defined as follows. If X = σp1τ1σ

p2τ2 · · ·
(p1 = 0 is allowed) where, for all i, τi ∈ Σ− {σ}, then let

qi =
{
pi if pi ≤ d;
µq[d < q ≤ d+ d! ∧ q ≡ pi (mod d!)], otherwise

then define
thind,σ(X) = σq1τ1σ

q2τ2 · · · .
If X is not of the correct form then thind,σ(X) is undefined. This only occurs
when X ∈ Σ∗σω ∪ Σ∗(Σ− σ)ω.

The function thind,0 is a partial function from P(N) to P(N). The only
elements not in the domain are finite and co-finite sets. The set thind,0(P)
will be very important.

Notation 8.3 If Σ = {0, 1}m then we denote A ∈ Σ∗ by (A1, A2, . . . , Am)
where Ai = Πm(A). The term thind,00(A,P) means that we have Σ =
{00, 01, 10, 11}, A and P are subsets of N, and the input to thind,00 is the
x ∈ Σω such that Π1(x) is the characteristic string for A, and Π2(x) is the
characteristic string for P . Note that 00 is a character in this context.

Proposition 8.4 (Theorem 3 of [5]) Let Σ be a finite alphabet, σ be an
element of Σ, A be a Büchi-automaton over Σ, and n be the number of states
in N . Let d ≥ 2n22n

. If X is in the domain of thind,σ then (A(X) accepts iff
A(thind,σ(X))) accepts.

From Proposition 8.4 and 5.5 we easily obtain the following.

Lemma 8.5 Given ψ(X1, . . . , Xm), a formula in [S,<]2, one can effectively
find a number d0 such that, for all d ≥ d0,

ψ(A1, . . . , Am) iff ψ(thind,0m(A1, . . . , Am)).

41

Definition 8.6 Let d ∈ N and P = 0p11r10p21r2 · · ·. Let q1, q2, . . . be as in
Definition 8.2. Note that thind,0(P) = 0q11r10q21r2 · · ·. We define a com-
putable bijection fd,P from P to thind,0(P), with computable inverse, as
follows. Let x be the input. If x /∈ P then diverge. (This can be tested since
P is computable.) Otherwise:

1. Find a, b such that x is the ath element of the bth block of 1’s in P .
(Formally x = a− 1 +

∑b−1
i=1(pi + ri).)

2. Output the ath element of the bth block of 1’s in thind,0(P). (Formally
fd,P (x) = a− 1 +

∑b−1
i=1(qi + ri).)

We extend fd,P to subsets of P by fd,P (A) = {fd,P (x) : x ∈ A}.

Lemma 8.7 Let d ∈ N, A ⊆ P and f = fd,P . Then thind,00(A,P) =
(f(A), thind,0(P)).

Proof: Let A ⊆ P . Let

P = 0p11r10p21r2 · · · .

Hence
A = 0p1σ10

p2σ2 · · ·

where (∀i)[|σi| = ri]. Therefore

f(A) = 0q1σ10
q2σ2 · · · .

Since A ⊆ P , if x /∈ P then x /∈ A. Hence if x /∈ P then 00 is in the xth
place of (A,P). If x ∈ P then clearly 00 is not in the xth place of (A,P).
Hence 00 is in the xth place of (A,P) iff x /∈ P , so

thind,00(A,P) = (0q1σ10
q2σ2 · · · , 0q11r10q21r2 · · ·) = (f(A), thind,0(P)).

Lemma 8.8 Let P be computable, infinite, and co-infinite. Assume that
{thind,0(P)}∞d=1 is well behaved (see Definition 4.6). Then [S,<, P]2 ≤wb

[S,<]2 with parameters (P, {thind,0(P)}∞d=1, {fd,P}∞d=1).

42

Proof:
ALGORITHM

1. Input(ψ(X)), a query in [S,<, P]2.

2. Effectively create the formula that results in replacing the predicate P
in ψ by free set variable Y and denote it by φ(X, Y).

3. Find d such that φ(X, Y) iff φ(thind,00(X,Y)). (This is possible by
Lemma 8.5.)

4. Find ∆d(Y) such that ∆d(A) iff A = thind,0(P). (This can be done
since {thind,0(P)}∞d=1 is well behaved.)

5. Let ψ$(X) = (∃Y)[φ(X,Y) ∧ ∆d(Y)]. Note that this is equivalent to
φ(X, thind,0(P)).

6. Output(ψ$, d).

END OF ALGORITHM

We need to show that if A ⊆ P then ψ(A) iff ψ$(fd,P (A)). Let A ⊆ P .
ψ(A) iff φ(A,P) by the definition of φ.
φ(A,P) iff φ(thind,00(A,P)) by the definition of d.
φ(thind,00(A,P)) iff φ(fd,P (A), thind,0(P)) by Lemma 8.5.
φ(fd(A), thind,0(P)) iff ψ$(f(A)) by definition of ψ$.

We can now use Lemma 8.8 and results from the literature to show that
several languages reduce to [S,<]2.

Lemma 8.9 Let P ∈ {FAC,POLYb,POWb : b ∈ N} and L = [S,<, P]2.
Then L ≤wb [S,<]2.

Proof: Let P ∈ {FAC,POLYb,POWb : b ∈ N}. By [5, Theorem 4]
{thind,0(P)}∞d=1 is well behaved. Hence, by Lemma 8.8, L ≤wb [S,<]2.

43

9 Corollaries

Corollary 9.1 Let L be any of the following languages.

• [S,<]2.

• [+, <].

• For any b, [+, <,POWb].

Let a, d, n ∈ N such that d ≥ 1. Then the following are true.

1. COMP /∈ QBCa[L].

2. COMP /∈ [1, d]QBCa[L].

3. PEXn+1 −QEXn[L] 6= ∅.

4. QEXn[L] ⊂ QEXn+1[L].

5. L is QCD.

Proof: Clearly [S,<]2 ≤N [S,<]2. By Lemmas 6.1 and 7.1 L ≤N [S,<]2 for
L = [+, <] or [+, <,POWb]. Hence for these languages COMP /∈ QBCa[L]
by Theorem 5.17, COMP /∈ [1, d]QBCa[L] by Corollary 5.20, PEXn+1 −
QEXa

n[L] 6= ∅ and QEXn[L] ⊂ QEXn+1[L] by Theorem 5.23, and L is QCD
by Theorem 5.28.

Corollary 9.2 Let L be any of the following languages.

• For any b, [S,<,POWb]
2.

• For any b, [S,<,POLYb]
2.

• [S,<,FAC]2.

Let a, d, n ∈ N such that d ≥ 1. Then the following are true.

1. PEXn+1 −QEXn[L] 6= ∅.

2. QEXn[L] ⊂ QEXn+1[L].

44

3. L is QCD.

Proof: By Lemma 8.9 if L is [S,<,POWb]
2, [S,<,POLYb]

2, or [S,<
,FAC]2, then L ≤wb [S,<]2. Hence for these languages PEXn+1−QEXa

n[L] 6=
∅ and QEXn[L] ⊂ QEXn+1[L] by Theorem 5.26, and L is QCD by Theo-
rem 5.27.

10 Further Results

In this paper we showed how to take results about queries to [S,<]2 and
extend them to different languages L. However, obtaining results about
[S,<]2 may still require some effort. In a subsequent paper [9] a general
theorem was proven that (roughly) allows you to obtain results about query
learning with [S,<]2 from results about passive learning. Combining there
results with ours we obtain the following.

If L ≤ [S,<]2 then the following hold.

1. QEX1[L] ⊂ QEX2[L] ⊂ · · ·.

2. EXa+1 −QEXa[L] 6= ∅.

3. QBC1[L] ⊂ QBC2[L] ⊂ · · ·.

4. BCa+1 −QBCa[L] 6= ∅.

5. QEX[L] ⊂ [1, 2]QEX[L] ⊂ [1, 3]QEX[L] · · ·.

6. QBC[L] ⊂ [1, 2]QBC[L] ⊂ [1, 3]QBC[L] · · ·.

7. EX∗0 − [1, d]QEXa[L] 6= ∅. (This had appeared in an earlier version of
this paper with a very complicated proof.)

11 Open Questions

We have that [S,<,POW2]
2 and [S,<,POW3]

2 are QCD but what about
[S,<,POW2,POW3]

2? This question is somewhat premature since it is not
even known if (first order) [S,<,POW2,POW3] is decidable.

45

12 Acknowledgement

We would like to thank Kalvis Aps̄itis, Mark Bickford, Andrew Lee, and
Mark Pleszkoch, for proofreading and discussion.

References

[1] J. R. Büchi. Weak second order arithmetic and finite automata. Zeitsch.
f. math. Logik und Grundlagen d. Math., 6:66–92, 1960.

[2] J. R. Büchi. On a decision method in restricted second-order arithmetic.
In Proc. of the International Congress on logic, Math, and Philosophy
of Science (1960), pages 1–12. Stanford University Press, 1962.

[3] J. Case and C. H. Smith. Comparison of identification criteria for ma-
chine inductive inference. Theoretical Comput. Sci., 25:193–220, 1983.

[4] Y. Choueka. Theories of automata on ω-tapes: A simplified approach.
Journal of Computer and Systems Sciences, 8:117–142, 1974.

[5] C. C. Elgot and M. O. Rabin. Decidability and undecidability of exten-
sions of second (first) order theory of (generalized) successor. Journal
of Symbolic Logic, 31(2):169–181, June 1966.

[6] Y. Ershov, I. Lavrov, A. Taimanov, and M. Taitslin. Elementary theo-
ries. Russian Math Surveys, 20:35–105, 1965.

[7] R. Freivalds, C. H. Smith, and M. Velauthapillai. Trade-off among pa-
rameters affecting inductive inference. Information and Computation,
82(3):323–349, Sept. 1989.

[8] W. Gasarch, E. Kinber, M. Pleszkoch, C. H. Smith, and T. Zeugmann.
Learning via queries, teams, and anomalies. Fundamenta Informaticae,
23:67–89, 1995. Earlier version in COLT90, pages 327–337.

[9] W. Gasarch and A. C. Lee. Inferring answers to queries. In Proceedings
of 10th Annual ACM Conference on Computational Learning Theory,
pages 275–284, 1997. Long version on Gasarch’s home page.

46

[10] W. Gasarch, M. Pleszkoch, and R. Solovay. Learning via queries to
[+, <]. Journal of Symbolic Logic, 57(1):53–81, Mar. 1992.

[11] W. Gasarch and C. H. Smith. Learning via queries. Journal of the ACM,
39(3):649–675, July 1992. Earlier version is in 29th FOCS conference,
1988, pp. 130–137.

[12] W. Gasarch and M. Velauthapillai. Asking questions versus verifiability.
Fundamenta Informaticae, pages 1–9, 1997.

[13] R. McNaughton. Testing and generating infinite sequences by a finite
automaton. Information and Control, 9:522–530, 1966.

[14] D. Osherson, M. Stob, and S. Weinstein. Aggregating inductive exper-
tise. Information and Computation, 70:69–95, 1986.

[15] M. O. Rabin. Decidable theories. In J. Barwise, editor, Handbook of
Mathematical Logic. North Holland, 1977.

[16] S. Safra. On the complexity of ω-automata. In Proc. of the 29th IEEE
Sym. on Found. of Comp. Sci., pages 319–329, 1988.

[17] A. L. Semenov. On certain extensions of the arithmetic of addition of
natural numbers. Mathematics of the USSR–Izv, 15:401–418, 1980. ISSN
0025-5726.

[18] C. H. Smith. The power of pluralism for automatic program synthesis.
Journal of the ACM, 29(4):1144–1165, October 1982. Earlier verssion
in FOCS 1981, pages 283–295.

[19] F. Stephan. Learning via queries and oracles. Annals of Pure and
Applied Logic, 94:273–296, 1998. Earlier version in COLT95, pages 162–
169.

[20] W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, Volume A: Algorithms and
Complexity, pages 757–804. MIT Press and Elsevier, The Netherlands,
1990.

47

