
A Techniques-Oriented Survey of Bounded
Queries

William Gasarch∗

University of Maryland

1 Introduction

One paradigm in computational complexity theory is the classification of
recursive functions according to their difficulty. Time is the most common
complexity measure for recursive functions. For nonrecursive functions, time
is not an appropriate measure. In 1985 Richard Beigel [1] and William
Gasarch [14] independently hit on the idea of measuring the complexity of a
nonrecursive function f by how many queries to some set X are required to
compute f . (Louise Hay had similar ideas but not quite in that form [15].)
There have since been many papers in the area and an upcoming book [13].

In the book and in a prior survey [12] the main theme has been the classi-
fication of functions: given a function, how complex is it, in this measure. In
this survey we instead look at the techniques used to answer such questions.
Hence each section of this paper focuses on a technique.

All of the results in this paper have appeared elsewhere except those in
Section 8. For this reason we give sketches rather than proofs, except in
Section 8.

∗Dept. of C.S. and Inst. for Adv. Comp. Stud., University of MD., College Park, MD
20742, U.S.A. (Email: gasarch@cs.umd.edu.)

1

2 Notation, Definitions, and Useful Facts

We use standard notation from recursion theory [22, 25]. We define classes
of functions that can be computed with a bound on the number of queries
to an oracle.

Definition 2.1 [2] FQ(n,A) is the collection of all total functions f such
that f is recursive in A via an oracle Turing machine that makes at most
n sequential (i.e., adaptive) queries to A. FQ||(n,A) is the collection of all
total functions f such that f is recursive in A via an oracle Turing machine
that makes at most n parallel (i.e., nonadaptive) queries to A (as in a weak
truth-table reduction). FQX(n, A) and FQX

|| (n, A) are similar except that we
also allow unlimited queries to X.

Correspondingly, we define classes of sets that can be decided with a
bound on the number of queries.

Definition 2.2

• B ∈ Q(n,A) if χB ∈ FQ(n, A).

• B ∈ Q||(n, A) if χB ∈ FQ||(n, A).

• B ∈ QX(n,A) if χB ∈ FQX(n,A).

• B ∈ QX
|| (n,A) if χB ∈ FQX

|| (n,A).

If the oracle is a function g rather than a set A, complexity classes
FQ(n, g), FQ||(n, g), FQX(n, g), FQX

|| (n, g), Q(n, g), Q||(n, g), QX(n, g), and

QX
|| (n, g) are defined similarly to FQ(n,A) etc. For a class of sets C, we define

FQ(n, C) =
⋃

A∈C FQ(n, A), and we define FQ||(n, C) etc. similarly.
Note that if (say) f ∈ FQ(3, A) then it might be that while trying to com-

pute (say) f(10), and 3 INCORRECT answers are given, the computation
might diverge. We now define the class of functions for which this does not
happen.

Definition 2.3 [2] FQC(n, A) is the collection of all total functions f such
that f is recursive in A via an oracle Turing machine M () that has the
following property: for all x, for all X, MX(x) makes at most n sequential
queries to X and MX(x) ↓.

Note 2.4 The classes FQC||(n,A), QC(n, A), and QC||(n,A) can easily be
defined.

The following notion has important connections to bounded queries which
will be made explicit in Theorem 2.6.

Definition 2.5 Let n ≥ 1. A function f is n-enumerable (denoted f ∈
EN(n)) if there exists a recursive function g such that, for all x, |Wg(x)| ≤
n and f(x) ∈ Wg(x). Let n ≥ 1. A function f is strongly n-enumerable
(denoted f ∈ SEN(n)) if there exists a recursive function g such that, for all
x, |Dg(x)| ≤ n and f(x) ∈ Dg(x). (This concept first appeared in a recursion-
theoretic framework in [1]. The name “enumerable” was coined in [6].)

Theorem 2.6 [2] If f is any function then (1) (∃X)[f ∈ FQ(n,X)] ⇐⇒
f ∈ EN(2n); and (2) (∃X)[f ∈ FQC(n,X)] ⇐⇒ f ∈ SEN(2n).

The following definition introduceds two functions which have been very
useful in the study of bounded queries.

Definition 2.7 [2] Let n ≥ 1.

1. CA
n : Nn → {0, 1}n is defined by CA

n (x1, . . . , xn) = A(x1) · · ·A(xn).

2. #A
n : Nn → {0, . . . , n} is defined by #A

n (x1, . . . , xn) = |{i : xi ∈ A}|.
The following two theorems are the most fundamental in bounded queries.

Theorem 2.8 Let n ≥ 1.

1. If CA
n ∈ EN(n), then A is recursive [2].

2. If #A
n ∈ EN(n), then A is recursive [20].

3 Using Clever Techniques

In this section we examine the complexity of the set ODDA
n (defined below).

We first prove results for A semirecursive. This proof requires some clev-
erness. Then we derive these same results for A r.e. from the result for A
semirecursive. This requires a clever use of known theorems. We will only
consider parallel queries since they suffice to illustrate the techniques. A
fuller treatment of the results here is in [4, 5]

Definition 3.1 ODDA
n = {(x1, . . . , xn) : #A

n (x1, . . . , xn) is odd.}

3.1 The Complexity of ODDA
n for Semirecursive Sets A

Definition 3.2 [17] A set A is semirecursive-in-X if either one of the two
equivalent conditions holds. (A set is semirecursive if it is semirecursive-in-∅.)

1. There exists a linear ordering v on N such that v is recursive in X and
A is closed downward under v.

2. There exists f ≤T X such that, for all x, y, (1) f(x, y) ∈ {x, y}, and
(2) A ∩ {x, y} 6= ∅ ⇒ f(x, y) ∈ A.

Theorem 3.3 If A is semirecursive, m ∈ N , and #A
m+1 ∈ FQ(1, CA

m) then
A is recursive.

Proof sketch: Note that for A semirecursive CA
m ∈ FQ(1, CA

m), hence the
premise can be restated as CA

m+1 ∈ FQ(1, CA
m). An easy induction shows

that (∀n)[CA
n ∈ FQ(1, CA

m)]. In particular CA
2m ∈ FQ(1, CA

m) ⊆ FQ(m, A) ⊆
EN(2m) (The last inclusion is from Theorem 2.6.) By Theorem 2.8.a A is
recursive.

Theorem 3.4 Let n ≥ 1, and let A be a semirecursive set such that ODDA
n ∈

Q||(n− 1, A). Then A is recursive.

Proof sketch: Clearly A is recursive if n = 1, since (∀x)[ODDA
1 (x) =

A(x)], so assume that n > 1. Choose a recursive linear ordering v so that
A is semirecursive via v, and choose an oracle Turing machine M () so that
ODDA

n ∈ Q||(n− 1, A) via MA.
The following algorithm shows that #A

2n+1 ∈ FQ(1, CA
2n). Hence A is

recursive, by Theorem 3.3.
ALGORITHM

1. Input (x1, . . . , x2n+1), where we can assume x1 v · · · v x2n+1. Note
that CA

2n+1(x1, . . . , x2n+1) ∈ 1∗0∗.

2. Simulate the computation of M ()(x2, x4, x6, . . . , x2n) to obtain numbers
z1, . . . , zn−1 such that the (parallel) queries made in the computation
MA(x2, x4, x6, . . . , x2n) are “z1 ∈ A?”, . . ., “zn−1 ∈ A?”. (We do not
make these queries at this point; we will make them in parallel with
others in step 3.)

3. Ask: “What is CA
2n(x1, x3, x5 . . . , x2n+1, z1, z2, z3, . . . , zn−1)?” Using this

information we can find CA
n (x1, x3, x5, . . . , x2n+1) and ODDA

n (x2, x4, . . . , x2n).
From this information, together with the ordering on A, we can com-
pute CA

2n+1(x1, . . . , x2n+1).

END OF ALGORITHM

The above theorem easily relativizes to yield the following.

Theorem 3.5 Let n ≥ 1, and let A, X be such that A is semirecursive-in-X
and ODDA

n ∈ QX
|| (n− 1, A). Then A ≤T X.

3.2 The Complexity of ODDA
n for R.E. Sets A

Definition 3.6 A set X is extensive if, for every 0,1-valued partial recursive
function g, there is a 0,1-valued total function h ≤T X such that h extends g.

Note 3.7 The degrees of extensive sets are the same as the degrees of com-
plete consistent models of Peano Arithemetic [18]. Hence they have been
called PA sets. They have also been called DNR2 sets. We hope the termi-
nology ‘extensive’ is the one that will survive.

Proposition 3.8 ([19]) There is a minimal pair of extensive sets.

The next lemma will make an r.e. sets A “look semirecursive.”

Lemma 3.9 If A is r.e. and X is extensive, then A is semirecursive-in-X.

Proof: Assume that A is r.e. and X is extensive. Let {As}s∈N be a
recursive enumeration of A. Define a 0,1-valued partial recursive function g
by

g(x, y) =

1 if (∃s)[x ∈ As ∧ y /∈ As],
0 if (∃s)[y ∈ As ∧ x /∈ As],
↑ otherwise.

Since X is extensive, there is a 0,1-valued total function h ≤T X such that
h extends g. Let

f(x, y) =
{

x if h(x, y) = 1,
y if h(x, y) = 0.

Then f ≤T X, (∀x, y)[f(x, y) ∈ {x, y}], and

A ∩ {x, y} 6= ∅ ⇒ f(x, y) ∈ A,

so A is semirecursive-in-X.

The following lemma follows from Theorem 3.5 and Lemma 3.9.

Lemma 3.10 Let n ≥ 1, and let A, X be sets such that A is r.e., X is
extensive, and ODDA

n ∈ QX
|| (n− 1, A). Then A ≤T X.

Theorem 3.11 Let A be an r.e. set, and let n ≥ 1. If ODDA
n ∈ Q||(n− 1, A),

then A is recursive.

Proof: Suppose ODDA
n ∈ Q||(n− 1, A). Note ODDA

n ∈ QX
|| (n− 1, A) for

every set X. Choose sets X1 and X2 that are extensive and form a minimal
pair (such X1, X2 exists, by Proposition 3.8). Since X1 and X2 are extensive,
it follows from Lemma 3.10 that A ≤T X1 and A ≤T X2. Since X1, X2 form
a minimal pair we have A recursive.

4 Using Coding Theory

In this section we will state theorems about the function freqA
m,n, which is an

‘approximations’ of CA
n . In order to even state our theorems we need some

terminology from coding theory. A full treatment of this material can be
found in [3].

Definition 4.1 Let A be a set, and let m, n, i ≥ 1 (m, i ≤ n). freqA
m,n is the

class of functions f such that f(x1, . . . , xn) and CA
n (x1, . . . , xn) agree in at

least m places. (freq stands for ‘frequency,’ i.e., the frequency of agreement,
in terms of number of components, between f(x1, . . . , xn) and CA

n (x1, . . . , xn).)

Definition 4.2 Let a, r ∈ N. Let z ∈ {0, 1}a. The closed ball of radius r
centered at z is the set B(z, r) = {y ∈ {0, 1}a : y =r z}. If D ⊆ {0, 1}a then
D is covered by k balls of radius r means that there exist z1, . . . , zk ∈ {0, 1}a

such that D ⊆ ⋃k
i=1 B(zi, r).

Definition 4.3 Let a, r ∈ N and D ⊆ {0, 1}a. Define k(D, r) to be the
minimal number j such that D can be covered by j balls of radius r. The
quantity k({0, 1}a, r) is denoted by k(a, r).

The quantity k(a, r) is known as the covering number. It has been studied
extensively (see [7, 8, 9, 16, 26]). No exact formula is known for it.

Definition 4.4 Let a, r ∈ N and D ⊆ 2{0,1}a
. We define k(D, r) to be

max{k(D, r) : D ∈ D}.

We now define the notions of D-verbose and strongly D-verbose in order
to state a very general result. Note that every set is strongly 2{0,1}a

-verbose.

Definition 4.5 Let a ∈ N. Let D ⊆ 2{0,1}a
. A set A is D-verbose if

there is a recursive function g such that, for all x1, . . . , xa, Wg(x1,...,xa) ∈ D
and CA

a (x1, . . . , xa) ∈ Wg(x1,...,xa). A set A is strongly D-verbose if there
is a recursive function g such that, for all x1, . . . , xa, Dg(x1,...,xa) ∈ D and
CA

a (x1, . . . , xa) ∈ Dg(x1,...,xa).

The following theorem provides for any A ⊆ N (1) matching upper and
lower bounds for the strong enumerability of freqA

b,a, and (2) lower bounds
for the enumerability of freqA

b,a.

Theorem 4.6 Assume 1 ≤ b ≤ a and A ⊆ N. For all k the following hold.

1. The following are equivalent.

(a) There exists D ⊆ 2{0,1}a
such that A is strongly D-verbose and

k(D, a− b) ≤ k.

(b) freqA
b,a ∩ SEN(k) 6= ∅.

2. If freqA
b,a ∩ EN(k) 6= ∅ then there exists D ⊆ 2{0,1}a

such that A is
D-verbose and k ≥ k(D, a− b).

Theorem 4.6 yields matching upper and lower bounds; however they are
not readily computable. We state theorems about two cases where it can be
computed.

Theorem 4.7 Assume 1 ≤ b ≤ a, A is a semirecursive set that is not
recursive, and k =

⌈
a+1

2(a−b)+1

⌉
. Then freqA

b,a ∩ SEN(k) 6= ∅ but freqA
b,a ∩

SEN(k − 1) = ∅. Note that if b
a
≤ 1

2
then k = 1 so freqA

b,a ∩ EN(1) 6= ∅,
hence some function in freqA

b,a is recursive.

Definition 4.8 [2] A set A is superterse if (∀n)(∀X)[CA
n /∈ FQ(n− 1, X)].

A set A is weakly superterse if (∀n)(∀X)[CA
n /∈ FQC(n− 1, X)].

Theorem 4.9 Assume 1 ≤ b ≤ a, b
a

> 1
2
, and A ⊆ N.

1. freqA
b,a ∩ SEN(k(a, a− b)) 6= ∅. The algorithm that achieves this does

not look at the input and runs in constant time.

2. If A is superterse then freqA
b,a ∩ EN(k(a, a− b)− 1) = ∅.

3. If A is weakly superterse then freqA
b,a ∩ SEN(k(a, a− b)− 1) = ∅.

5 Using the Recursion Theorem

In this section we show two uses of the recursion theorem within bounded
queries.

5.1 The Complexity of CK
m

It is well known that if A is any r.e. set then CA
m ∈ EN(m + 1): given

(x1, . . . , xm), first output 0n. Enumerate A until an element appears. If
this happens then output the appropriate 0m10n−m−1. Then enumerate A
some more until the next element appears, etc. The proof does not seem
to yield CA

m ∈ SEN(m + 1). The next theorem shows that, in fact, CK
m /∈

SEN(2m − 1).

Theorem 5.1 CK
m /∈ SEN(2m − 1).

Proof: Assume CK
m ∈ SEN(2m − 1) via f . We construct x1, . . . , xm such

that CK
m(x1, . . . , xm) /∈ Df(x1,...,xm). Our construction of x1, . . . , xm uses

the m-ary recursion theorem [23, 24] so program xi knows the programs
x1, . . . , xm.

Our algorithm for xi is as follows. On any input, xi first finds Df(x1,...,xm) =
{w1, . . . , w2m−1}. Let w be the least element (lexicographically) of {0, 1}m

that is not in {w1, . . . , w2m−1}. If the ith bit of w is 0 then xi diverges, else
xi converges.

For all xi the same w is found. The xi’s conspire to make CK
m(x1, . . . , xm) =

w. But w /∈ Df(x1,...,xm) Hence CK
m /∈ SEN(2m − 1) via f .

5.2 The Complexity of freqK
b,a

In Section 4 we determined the complexity of freqA
b,a for several A using

notions from coding theory. In this section we determine the complexity of
freqK

b,a. The lower bound uses the recursion theorem. The upper bound does
not use the recursion theorem; however, it is included for completeness.

Theorem 5.2 If 1 ≤ b ≤ a then freqK
b,a ∩ EN(

⌈
a+1

(a−b)+1

⌉
) 6= ∅.

Proof: Given (x1, . . . , xa) we show how to enumerate ≤
⌈

a+1
(a−b)+1

⌉
possibil-

ities such that one of them agrees with CK
a (x1, . . . , xa) on at least b positions.

Let k =
⌈

a+1
(a−b)+1

⌉
, and let I1, . . . , Ik be intervals of length at most a−b+1

that partition {0, . . . , a}. (Notice that k > 1 because b ≥ 1.) For each
interval I = [c, d] we enumerate a possibility that is based on the belief that
#K

a (x1, . . . , xa) ∈ [c, d]. By dovetailing these computations we enumerate at
most k possibilities.

For interval I = [c, d] we do the following. If c = 0 then output (0, . . . , 0).
If c > 0 then simultaneously run all of Mx1(x1), . . . ,Mxa(xa) until exactly
c of them halt (this need not happen). Output a string that indicates that
these c programs are in K and no other programs are in K.

We show that if #K
a (x1, . . . , xa) ∈ I = [c, d] then the possibility associated

to I is correct. Clearly the c 1’s are correct. Since there are at most d
programs in K, at least a−d of the 0’s are correct. Hence at least c+a−d =
a + (c− d) = a + 1− |I| ≥ a + 1− (a− b + 1) = b bits are correct.

We show that the above bound is tight. For this we need the a-ary
recursion theorem.

Theorem 5.3 If 1 ≤ b ≤ a then freqK
b,a ∩ EN(

⌈
a+1

(a−b)+1

⌉
− 1) = ∅.

Proof: Assume, by way of contradiction, that there exists f ∈ freqK
b,a ∩

EN(
⌈

a+1
(a−b)+1

⌉
− 1). Assume that f ∈ EN(

⌈
a+1

(a−b)+1

⌉
− 1) via g. We create

programs x1, . . . , xa that conspire to cause

(∀~v ∈ Wg(x1,...,xa))[¬(~v =a−b CK
a (x1, . . . , xa))].

We plan to have different blocks of programs invalidate different elements
of Wg(x1,...,xa). Let k =

⌈
a+1

(a−b)+1

⌉
− 1. Since b ≥ 1 we have k ≥ 1. Let

J1, . . . , Jk be intervals of length ≥ a− b + 1 that partition {0, . . . , a}.
By the a-ary recursion theorem we can assume that xi has access to the

numbers {x1, . . . , xa}.
ALGORITHM FOR xi

1. Let j be such that i ∈ Jj (if no such j exists then diverge).

2. Enumerate Wg(x1,...,xa) until j elements appear (this step might not
terminate). Let that jth element be ~v = b1 · · · ba.

3. If bi = 0 then converge. If bi = 1 then diverge.

END OF ALGORITHM

For all j, 1 ≤ j ≤ k, if Wg(x1,...,xa) has the jth element ~v, then ~v and
CK

a (x1, . . . , xa) differ on the bits specified by Jj. Hence they differ on at
least a− b + 1 places, so (∀~v ∈ Wg(x1,...,xa))[¬(~v =a−b CK

a (x1, . . . , xa))].

6 Using Ramsey Theory

Clearly, #A
n ∈ SEN(n + 1), since #A

n (x1, . . . , xn) ∈ {0, . . . , n}. We sketch the
proof that if #A

n ∈ EN(n), then A is recursive. The full proof is in [20]. A
different proof is in [21].

The following is a high-level description of the proof.

1. If #A
n ∈ EN(n), then there exists an infinite r.e. tree T (to be defined

in Section 6.1) such that A is one of the infinite branches of T .

2. If T is an infinite r.e. tree of a certain type, then all the infinite branches
of T are recursive.

3. The infinite r.e. tree T in 1 is of the type alluded to in 2. To prove
this, we will need a Ramsey-type theorem on trees.

6.1 Trees

Definition 6.1 Let T ⊆ {0, 1}∗. T is a tree if

(∀σ, τ ∈ {0, 1}∗)[(σ ∈ T ∧ τ ≺ σ) ⇒ τ ∈ T].

Trees can be finite or infinite. The notions of recursive tree and r.e. tree
are defined in the obvious way. We will denote finite trees by italicized letters
like T and infinite trees by fancy letters like T .

Example 6.2 Let n ≥ 1, and let A be a set such that CA
n ∈ EN(n2). Choose

a recursive function h: Nn → N so that CA
n is n2-enumerable via h If n > 1,

there may be sets C other than A such that CC
n is n2-enumerable via h. The

set of all sets C (including C = A) such that CC
n is n2-enumerable via h is

just the set of all infinite branches of the following tree:

T = {σ ∈ {0, 1}∗ : (∀x1, . . . , xn < |σ|)[σ(x1) · · ·σ(xn) ∈ Wh(x1,...,xn)]}.

Now T is r.e., since the definition of T can be written as

T = {σ ∈ {0, 1}∗ : (∃s)(∀x1, . . . , xn < |σ|)[σ(x1) · · ·σ(xn) ∈ Wh(x1,...,xn),s]}.

We will want to show that certain trees T are severely restricted in some
sense. We formalize ‘severely restricted’ by considering the embedding of
finite trees in T .

Definition 6.3 Let k ≥ 0. The full binary tree of depth k (denoted by Bk)
is the tree {σ ∈ {0, 1}∗ : |σ| ≤ k}. Note that if k > 0, then the left and
right subtrees of Bk are isomorphic to Bk−1.

Definition 6.4 Let k ∈ N, let T be a nonempty tree (not necessarily infi-
nite), and let f : Bk → T . (Recall that Bk is the full binary tree of depth k.)
Bk is embeddable in T via f (and f is called an embedding of Bk in T) if,
for every internal node σ of Bk,

• f(σ) has two children in T (hence f(σ) is an internal node of T),

• f(σ)0 � f(σ0), and

• f(σ)1 � f(σ1).

If f is an embedding of Bk in T , then f is one-one, and the set {f(σ) :
σ ∈ Bk} (which is a subset of T , but not necessarily a subtree of T) is the
embedded Bk; the node f(λ) is the root of the embedded Bk.

Bk is embeddable in T if there is an embedding g of Bk in T . For τ ∈ T ,
Bk is embeddable in T at or below τ if there is an embedding g of Bk in T
such that τ � g(λ). (We use the term ‘below’ for consistency with the way
we are visualizing trees: The longer the node, the further it lies below the
root.)

Note that B0 (the full binary tree of depth 0) is embeddable in every
nonempty tree T , since |B0| = 1.

Definition 6.5 Let k ≥ 0.

1. A 2-coloring of Bk (the full binary tree of depth k) is a function
that maps the nodes of Bk into some 2-element set (e.g, into the
set {RED, BLUE} or the set {0, 1}).

2. Let c be a 2-coloring of Bk. Relative to c: Given k′ ≤ k, and given an
embedding of Bk′ in Bk, the embedded Bk′ is monochromatic if c assigns
the same color to all the elements of the embedded Bk′ .

The following Ramsey-type theorem will be useful. It was first proven
in [10].

Theorem 6.6 Let k1, k2 ∈ N. Then there exists a number r(k1, k2) such
that, for every 2-coloring of Br(k1,k2) (the full binary tree of depth r(k1, k2))
with RED and BLUE, there is either a RED embedded Bk1 or a BLUE em-
bedded Bk2 in Br(k1,k2). Moreover, r(k1, k2) = k1 + k2 will suffice.

Corollary 6.7 Let k ∈ N. Then for every 2-coloring of B2k, there is a
monochromatic embedded Bk in B2k.

6.2 A Lower Bound on the Complexity of #A
n

Lemma 6.8 Let T be an infinite r.e. tree such that, for some m ∈ N,
Bm cannot be embedded in T . Then every infinite branch of T is recursive.

Theorem 6.9 Let n ≥ 1, and let A be a set such that #A
n ∈ EN(n). Then

A is recursive.

Proof sketch: Choose a recursive function g so that #A
n is n-enumerable

via g, i.e.,

(∀x1, . . . , xn)[|Wg(x1,...,xn)| ≤ n ∧#A
n (x1, . . . , xn) ∈ Wg(x1,...,xn)].

There may be sets C other than A such that #C
n is n-enumerable via g. The

set of all sets C (including C = A) such that #C
n is n-enumerable via g is

just the set of all infinite branches of the following tree:

T = {σ : (∀x1, . . . , xn < |σ|)[
n∑

i=1

σ(xi) ∈ Wg(x1,...,xn)] }.

(We are using the fact that, for every set B and all x1, . . . , xn ∈ N, we have
#B

n (x1, . . . , xn) =
∑n

i=1 B(xi).) Now T is r.e., since the definition of T can
be expressed as follows:

T = {σ : (∃s)(∀x1, . . . , xn < |σ|)[
n∑

i=1

σ(xi) ∈ Wg(x1,...,xn),s] }.

We show that T satisfies the premise of Lemma 6.8, hence that every infinite
branch of T is recursive. In particular, this will prove that A is recursive.

Suppose, by way of contradiction, that (∀m)[Bm is embeddable in T].
We use this to show that there exist z1, . . . , zn ∈ N and τ0, . . . , τn ∈ T such
that, for every j ≤ n,

∑n
i=1 τj(zi) = j. Hence {0, 1, . . . , n} ⊆ Wg(z1,...,zn), in

contradiction to the fact that |Wg(z1,...,zn)| ≤ n.

7 Using Mindchanges

In this section we study how much convergence matters. We show here that,
for sets decided with a bounded number of queries to K, the ability to diverge
on incorrect answers does not add power. More succinctly (∀n)[Q(n, K) =
QC(n, K)].

The proofs use mindchanges. Here is the intuition: rather than run a com-
putation and ask questions (where wrong answers may lead to divergence)
we will instead ask questions about the computation. Having done that, an
incorrect response might lead to an incorrect answer, but not to divergence.

In this section we give a proof that uses the notion of a mindchange. In
Section 8 we will combine mindchanges with 0′′-priority arguments.

Definition 7.1 Let A be an r.e. set, let e, x, m ∈ N, and let {As}s∈N be a
recursive enumeration of A. MA

e (x) changes its mind at least m times with
respect to {As}s∈N if there exist s0, . . . , sm ∈ N and b ∈ {0, 1} such that
s0 < · · · < sm (if m > 0) and, for every i ≤ m,

i even ⇒ M
Asi
e,si (x) ↓= b,

i odd ⇒ M
Asi
e,si (x) ↓= 1− b.

Lemma 7.2 Let A be an r.e. set, let n ≥ 1, let X ∈ Q(n, A), and let e ∈ N
such that X ∈ Q(n,A) via MA

e . Let

B = {〈x, m〉 : MA
e (x) changes its mind at least m times}.

Then the following hold.

1. For every x, MA
e (x) changes its mind at most 2n − 1 times.

2. B ∈ Q(n,A) (hence B ≤T A) and B is r.e.

Theorem 7.3 Let A be an r.e. set. Then (∀n ≥ 1)[Q(n, A) ⊆ QC(n,K)].
In particular, (∀n ≥ 1)[Q(n, K) = QC(n, K)].

Proof: Let n ≥ 1. We show that Q(n, A) ⊆ QC(n,K).
Let X ∈ Q(n,A). We show that X ∈ QC(n,K). Choose e so that

X ∈ Q(n,A) via MA
e . Let

B = {〈x, m〉 : MA
e (x) changes its mind at least m times}.

Note that B is r.e. (by Lemma 7.2.2), hence B ≤m K.
ALGORITHM

1. Input x.

2. Find the least s such that MAs
e,s (x) ↓∈ {0, 1}. (Such s exists, since

MA
e (x) ↓∈ {0, 1}.) Let b = MAs

e,s (x).

3. Note that 〈x, 0〉 ∈ B, since MA
e (x) ↓∈ {0, 1}, and that (by Lemma 7.2.1)

there exists m′ ≤ 2n − 1 such that {〈x, 0〉, . . . , 〈x, m′〉} ⊆ B and
{〈x, m′ + 1〉, 〈x, m′ + 2〉, 〈x, m′ + 3〉, . . .} ⊆ B. Thus MA

e (x) changes
its mind exactly m′ times, and

X(x) =

{
b, if m′ is even;

1− b, otherwise.

So we wish to determine the parity of m′. We will actually compute m′.

Using the fact that B ≤m K, obtain numbers z1, . . . , z2n−1 such that,
for every m with 1 ≤ m ≤ 2n − 1, 〈x, m〉 ∈ B iff zm ∈ K. Note that
m′ = #K

2n−1(z1, . . . , z2n−1).

4. Compute m′ = #2n−1
K (z1, . . . , z2n−1) by a binary search that uses n

queries to K. Note that even if incorrect answers are supplied, this
computation converges.

5. If m′ is even, output b; else output 1− b.

END OF ALGORITHM

8 Using 0′′ Priority Arguments

In this section we sketch a theorem that uses a 0′′ priority argument. We
present the motivation for using 0′′ and the construction; however, we leave
the justification for the reader. The main point of our writeup is to show
why a 0” seems to be needed.

In Theorem 7.3 we showed that (∀n ≥ 1)[Q(n,K) = QC(n, K)]. The
question arises as to whether this property is special for K. We show that
there exist incomplete r.e. sets that have the same property. The proof codes
mind change information into a set A while trying to make A incomplete. The
mindchange information is infinitary in nature, and hence leads to infinite
injury.

The technique is inspired by Downey-Jockush [11]. In fact, the theorem
could be derived from their work. However, our construction is more flexible
in that we can add additional requirements. In particular, we can obtain a
high set A, which their construction could not do (they proved that the sets
they get must be low2).

Definition 8.1 If e ∈ N then MA(=n)
e is oracle Turing machine MA modified

so that if it tries to ask more than n questions then it diverges.

Theorem 8.2 Let n ∈ N and let C be any nonrecursive r.e. set. There exists
a nonrecursive r.e. sets A such that Q(n, A) = QC(n, A), and C 6≤T A.

Proof sketch:
We construct an r.e. set A to satisfy the following requirements.

Ne : {e}A total ⇒ {e}A 6= C
Qe : {e} total ⇒ {e} 6= A
Pe : MA(=n)

e total ⇒ MA(=n)
e ∈ QC(n, A)

We discuss the requirements and how to satisfy them as if this were going
to be a finite injury argument with priority ordering

N0, Q0, P0, N1, Q1, P1,

In reality we are going to use a priority tree; however, discussing it as if it
were finite injury will motivate the use of the priority tree.

We will meet the Ne requirement by using the standard method of pre-
serving agreement (see [25]). We will meet the Qe requirement by using the
standard method of holding onto a witness x: if {e}(x) ↓ then diagonalize,
and if {e}(x) ↑ then Qe is satisfied with no action needed. Note that Qe only
enumerates a finite number of elements and hence causes only finite injury.

The alert reader may be asking herself “how come the Pe requirements
cannot be broken down into an infinite number of finitary requirements called
Pe,x, where Pe,x codes the status of MA(=n)

e (x) into a QC(n, A) comptuta-
tion?” This would not work. In the end we have to have a QC(n, A) algo-
rithm for MA(=n)

e . This algorithm can of course use some finite information.
If the requirement Pe gets injured finitely often then the QC(n, A) algorithm
will indeed need some finite information. If we split it up, and each Pe,x

gets injured finitely often, then the algorithm would have to code infinite
information.

We informally describe how to satisfy the Pe requirements. Let x ∈ N.
We take action on coding MA(=n)

e (x) into A the first time we spot s ∈ N such
that, for 0 ≤ y ≤ x, MAs(=n)

e,s (y) ↓. If this never occurs then Pe is satisfied

since MA(=n)
e is not total. If this does occur then we declare 2n − 1 traces

tr(e, x, 1), . . . , tr(e, x, 2n−1). These traces are picked larger than all numbers
seen so far. In later stages if we spot MA(=n)

e (x) changing its mind for the
kth time then we enumerate tr(e, x, k) into A. Note the following.

1. Since MA(=n)
e (x) asks n questions the number of mindchanges is ≤

2n − 1. Hence we have declared enough traces.

2. If MA(=n)
e (x) is total and the traces are declared and enumerated as

above then MA(=n)
e ∈ QC(n, A) as follows. On input x find the least

s ∈ N and b ∈ {0, 1} such that MAs(=n)
e,s (x) ↓= b and 2n − 1 traces are

declared. (Such an s exists since MA(=n)
e is total.) Using a binary search

and queries to A find the least k such that tr(e, x, k) ∈ A but tr(e, x, k+
1) /∈ A. Note that k is the number of mind changes MA

e (x) makes. If
k is even then output b, else output 1− b. Note that if incorrect query
answers are supplied then this computation still converges (though it
may be wrong).

3. Pe does not try to preserve MAs(=n)
e,s (x) ↓. Pe merely codes mindchange

information into A.

4. If at stage t > s we observe M
At(=n)
e,t (x) ↑, or M

At(=n)
e,t (x) = MAs(=n)

e,s (x)
but with different query answers then, no trace is enumerated. Traces
are enumerated only when A changes and the new computation con-
verges and the new result is different.

5. If MA(=n)
e is total then Pe may enumerate an infinite number of traces.

6. Assume MA(=n)
e is not total. Then there exists x0 such that MA(=n)

e (x0) ↑.
Since the MA(=n)

e (x0) computation asks at most n queries there exists s0

such that for all s ≥ s0 the computation of MAs(=n)
e,s (x0) uses correct in-

formation about A. Recall that in order for elements to be enumerated
for the sake of MA(=n)

e (y) during stage s one must have MAs(=n)
e,s (x) ↓

for all x < y. Hence, during all stages s ≥ s0, no trace tr(e, y, k) for
y ≥ x0 will ever be enumerated. In brief, if MA(=n)

e is not total then
Pe enumerates a finite number of traces.

At first glance it looks like the P -requirements of higher priority can injure
Ne infinitely often. This is true; however, the reasons for it are subtle. Let
e′ < e. The following sequence of events shows how Pe′ might injure Ne.
Assume s0 < s1 < s2 < s3.

1. During stage s0 the computation M
As0 (=n)

e′,s0
(x) ↓= b is spotted and traces

tr(e′, x, 1), . . . , tr(e′, x, 2n − 1) are declared.

2. During stage s1 q is enumerated into A and causes M
As1 (=n)
e,s1 (x) ↑. Note

that this does not cause any trace to be enumerated.

3. During stage s2 Ne acts and sets a restraint r(e, s) > max{tr(e′, x, k) :
1 ≤ k ≤ 2n − 1}.

4. During stage s3 M
As3 (=n)
e,s3 (x) ↓= 1− b. Pe′ enumerates tr(e′, x, 1) which

injures Ne.

The key problem is that some traces are associated to computations that
currently are diverging but may soon converge; hence the traces may enter
A.

Definition 8.3 Assume Ne wants to act at stage s. Let tr(e′, x, k) be a trace

associated to Pe′ , e′ ≤ e, and M
As(=n)
e′,s (x) ↑. Then tr(e′, x, k) is called a trace

threatening Ne or just a threatening trace. It stops threatening at stage t if
M

At(=n)
e′,t (x) ↓ and tr(e′, x, k) either goes in (if there was a mindchange) or

not.

The problem Ne has with threatening traces is uncertainty. Consider the
following optimistic scenarios.

1. Ne knows that M
A(=n)
e′ is not total. Ne can ignore the threatening

traces declared by Pe′ since Pe′ will only enumerate a finite number of
traces. Hence Pe′ may injure Ne finitely often which is tolerable.

2. Ne knows that M
A(=n)
e′ is total. If Ne wants to preserve the {e}A(x)

then it will first note if any element queried in that computation is a
threatening trace declared by Pe′ . If so then Ne will not act now—
Ne will wait until the trace stops threatening. This must happen since
M

A(=n)
e′ is total.

The problem of course is that Ne does not know if M
A(=n)
e′ is total. The

key idea is that we will have 2e different strategies working on Ne; one for
each combination of guesses as to which M

A(=n)
e′ , 0 ≤ e′ ≤ e, are total. We

have motivated using a priority tree.
Level 0 is the root. Level 3e (3e + 1, 3e + 2) will be concerned with

requirement Ne (Qe, Pe). At the levels associated to the Pe requirement the
tree will branch both ways. At all other levels the nodes have only one
outcome (i.e., one branch). The construction could be done without putting
the Qe nodes on the tree; however, this makes the construction easier to
extend later.

At a node associated to Pe we think of going to the left as guessing
“MA(=n)

e is total” and going to the right as guessing “MA(=n)
e is non-total.”

We think of the nodes associated to the Ne requirements as having opinions
about the behavior of the Pe′ requirements with e′ ≤ e. These opinions will
be embodied in the definition of {η}A (Definition 8.7.4).

Convention 8.4 If η is a node and |η| = 3e (3e+1, 3e+2) then Nη (Qη, Pη)
refers to both the requirement Ne (Qe, Pe) and the attempt to satisfy Ne

(Qe, Pe) using the information and assumptions at node η. For example the
statement ‘Nη is satisfied’ will mean that Ne is satisfied by the actions that
happen at node η.

Convention 8.5 When we use the expression Nη (Qη, Pη) we will be as-
suming that |η| ≡ 0 (mod 3) (|η| ≡ 1 (mod 3), |η| ≡ 2 (mod 3)).

Definition 8.6 If η and η′ are nodes then η′ has higher priority than η if
either η is an ancestor of η′ or η is on a branch to the right of the branch
that η′ is on. We denote that η′ has higher priority than η by η ≤pri η′. Note
that if η′ ≺ η then η ≤pri η′.

We now describe the concepts needed for Nη’s actions.

Definition 8.7 Let |η| = 3e.

1. If η = λ then η̂ = λ. If η = η1000 then η̂ = η̂10. If η = η1001 then
η̂ = η̂11. Let η̂ = b0 · · · be−1. Our intention is that η assumes that, for

0 ≤ i ≤ e, bi = 1 iff M
A(=n)
i is total.

2. If for all 0 ≤ i ≤ e, bi = 1 iff M
A(=n)
i is total, then η is correct.

3. Let i be such that bi = 1. Let η1 be such that |η1| = 3i + 2 and η1 ≺ η

(i.e., Nη assumes M
A(=n)
i is total and has to defer to Pη1 ’s actions). Let

s ∈ N. Let tr(η1, x, k) be a trace declared for Pη1 during some stage

t ≤ s. If η is visited during stage s and M
As(=n)
i,s (x) ↑ then tr(η1, x, k)

is a trace threatening Nη or just a threatening trace. (We do not care
about traces associate to requirements of higher priority that are not
prefixes of η since Nη believes they will be visited only finitely often.
If Nη is wrong then a different node will be used to satisfy Ne.)

4. We define {η}A such that, if η is correct then {e}A = {η}A. We actually
define {η}As

s (y) and take {η}A(y) to be the limit as s →∞. To calculate
{η}As

s (y) simulate {e}As
s (y). If one of the queries made is a threatening

trace threatening Nη then {η}As
s (y) ↑; otherwise {η}As

s (y) = {e}As
s (y).

5. We define the standard length of agreement and restraint functions. If
η is visited during stage s then

l(η, s) = max{x : (∀y < x)[{e}As
s (x) = Cs(x)];

r(η, s) = max{use(η, As, y, s) : y < l(η, s)};

If η is not visited during stage s then l(η, s) = l(η, s− 1) and r(η, s) =
r(η, s − 1) are undefined. The function l(η, s) is called the length of
agreement. The function r(η, s) is called the restraint function.

The Pη and Qη requirements will have to respect the restraints imposed by
higher priority N -type requirements. Hence we have the following definition.

Definition 8.8 Let η be any node on the tree. Then

R(η, s) = max{r(η′, s) : η ≤pri η′, |η′| ≡ 0 (mod 3)}.

Note that this is the restraint imposed on node η, not the restraint imposed
by node η. We could do the entire construction and proof only using R(η, s)
when |η| ≡ 1, 2 (mod 3); however, we will use the |η| ≡ 0 (mod 3) case
for convenience.

The following facts will be useful. Their proofs are based soly on the
shape of the priority tree and the definition of R(η, s); they are left to the
reader.

Fact 8.9 Let η1 ≺ η ≺ η′ ≺ η′′, |η1| = 3e − 1, |η| = 3e, |η′| = 3e + 1,
|η′′| = 3e + 2. Then

1. R(η, s) is the maximum of {r(η∗, s) : η∗ is to the left of η } and {R(η1, s)}.

2. R(η, s) = R(η′, s) = R(η′′, s).

We now describe the concepts needed for Pη’s actions. If the function
MA(=n)

e looks like it is converging for longer and longer initial segments then
it is worth taking action on. Hence we have the following definition.

Definition 8.10 Let |η| = 3e + 1, and s ∈ N. If η is visited during stage s
then

lc(η, s) = max{x : (∀y ≤ x)[MAs(=n)
e,s (x) ↓].

mlc(η, s) = max{lc(η, s), mlc(η, s− 1)}.

If η is not visited during stage s then then lc(η, s) = lc(η, s − 1) and
mlc(η, s) = mlc(η, s − 1). The function lc(η, s) is called length of conver-
gence. The function mlc(η, s) is called the maximum length of convergence.

The numbers we use as witnesses for the Qη and traces for the Pη are
picked ahead of time. The following definition formalizes this.

Definition 8.11 Let {Q̂e : e ∈ N} be a recursive partition of the evens into
an infinite number of infinite recursive sets. Let {P̂η : η ∈ {0, 1}∗} be a
recursive partition of the odds into an infinite number of infinite recursive
sets. The elements of Q̂e will be potential witnesses for any Qη with |η| =

3e + 1. The elements of P̂η will be potential traces for Pη.

We now describe what information is stored at each node.

1. If |η| = 3e then the only information stored at η is r(η, s).

2. If |η| = 3e + 1 then the only information stored at η is an index for
Q̂e and a Boolean variable SATe which is TRUE if any of the Qη with
|η| = 3e + 1 is satisfied.

3. If |η| = 3e + 2 then the only information stored at η is an index for P̂η,
mlc(η, s), and the traces that have been declared.

Convention 8.12 When we use the expressions r(η, s) we are implicitly
assuming that |η| ≡ 0 (mod 3). When we use the expressions lc(η, s) and
mlc(η, s) we are implicitly assuming that |η| ≡ 1 (mod 3).

CONSTRUCTION

Stage 0: A0 = ∅. For all η set r(η, 0) = 0 and mlc(η, 0) = 0. For all e set
SATe = FALSE.

Stage s: Visit nodes along a path of length s starting at the root.

Case 0: |η| = 3e. We work on Nη. Compute r(η, s). Note that for all η′ to
the left of η we have r(η′, s) = r(η′, s − 1) by definition of restraint. Hence
R(η, s) can be determined. By Fact 8.9, for all nodes η′ such that |η′| ≡ 1, 2
(mod 3), if η′ is visited in this stage, the value of R(η′, s) will be known when
that node is entered.

Case 1: |η| = 3e + 1. We work on Qη. If SATe = TRUE then do nothing
and exit the node. Otherwise let

x = µy[y ∈ Q̂e ∧ y ≥ R(η, s)].

If {e}s(x) ↓= b then do the following. If b = 0 then put x into A. If b = 1
then do nothing but note that x /∈ A. Set SATe to TRUE. If an element was
enumerated which is less than r(η′, s) for some η′ ≤pri η then Nη′ is said to
be injured. If SATe is set to TRUE then we will say that the requirement
Qη acts.

Case 2: |η| = 3e + 2. We work on Pη.

I) (Take care of old traces.) For all x ≤ mlc(η, s) and k ≤ 2n − 1 if
MAs(=n)

e,s (x) has changed its mind k times (total) then enumerate all ele-
ments of {tr(η, x, 1), tr(η, x, 2), . . . , tr(η, x, k)} that are larger than R(η, s)
into A. (Some of these traces may already be in A from prior visits to η.
For those traces no action is needed.) If an element was enumerated which
is less than r(η′, s) for some η′ ≤pri η then Nη′ is said to be injured.

II) (Plant new traces and exit.) Compute lc(η, s) and mlc(η, s). If lc(η, s) ≤
mlc(η, s− 1) then exit η on the right. If lc(η, s) > mlc(η, s− 1) then do the
following: (1) For every x ≤ mlc(η, s) such that no traces for x have been
declared, declare traces tr(η, x, 1), tr(η, x, 2), . . . , tr(η, x, 2n − 1) for x. These
traces are the least elements of P̂η that are bigger than any number seen so
far in the construction. (2) Exit on the left.

END OF CONSTRUCTION
Let ηs be the path traversed in stage s. Let

be =
{

1 if (∃∞s)[b0b1 · · · be−11 ≺ η̂s]
0 otherwise.

Let η̂∞ = b0b1b2b3 · · ·. Let η∞ = b000b100b200b300 · · ·. We call η∞ the true
path.

The following lemmas can easily be established.

Lemma 8.13 Every Qη acts at most once and enumerates at most one ele-
ment.

Lemma 8.14 Let e ∈ N. Let η, η′, and η′′ be such that η ≺ η′ ≺ η′′ ≺ η∞,
|η| = 3e, |η′| = 3e + 1, and |η′′| = 3e + 2. Then

1. η is correct. (See Definition 8.7.)

2. Nη is satisfied.

3. (a) lims→∞ R(η, s) < ∞.

(b) lims→∞ R(η′, s) < ∞.

(c) lims→∞ R(η′′, s) < ∞.

4. Qη′ is satisfied.

5. Pη′′ is satisfied.

6. If be = 0 then Pη′′ enumerates only finitely many traces and MA(=n)
e is

not total. If be = 1 then MA(=n)
e is total.

One can easily adjust this construction to get A high by replacing Qe

with the usual thickness requirements to obtain highness, and putting the
two guesses (cofinite vs. finite) on the tree.

9 Acknowledgment

We would like to thank Andrew Lee and Maciek Smuga-Otto for proofreading
and helpful discussion.

References

[1] R. Beigel. Query-Limited Reducibilities. PhD thesis, Stanford University,
1987. Also available as Report No. STAN-CS-88-1221.

[2] R. Beigel, W. Gasarch, J. T. Gill, and J. C. Owings. Terse, superterse,
and verbose sets. Information and Computation, 103:68–85, 1993.

[3] R. Beigel, W. Gasarch, and E. Kinber. Frequency computation and
bounded queries. Theoretical Computer Science, pages 177–192, 1996.

[4] R. Beigel, W. Gasarch, M. Kummer, G. Martin, T. McNicholl, and
F. Stephan. On the query complexity of sets. In 21st International
Symposium on Mathematical Foundations of Computer Science (MFCS
’96), Cracow, Poland, 1996.

[5] R. Beigel, W. Gasarch, M. Kummer, G. Martin, T. McNicholl, and
F. Stephan. On the complexity of odda

n, 1997.

[6] J. Cai and L. A. Hemachandra. Enumerative counting is hard. Infor-
mation and Computation, 82(1):34–44, July 1989.

[7] G. Cohen and P. Frankl. Good coverings of Hamming spaces with
spheres. Discrete Mathematics, 56:125–131, 1989.

[8] G. Cohen, M. Karpovsky, and H. Mattson. Covering radius — survey
and recent results. IEEE Trans. Inform. Theory, IT-31:338–343, 1985.

[9] G. Cohen, A. Lobstein, and N. Sloane. Further results on the covering
radius of codes. IEEE Trans. Inform. Theory, IT-32:680–694, 1986.

[10] W. Deuber. A generalizationg of ramsey’s theorem for regular trees.
Journal of Combinatorial Theory (Series B), 18:18–23, 1975.

[11] R. Downey and C. Jockusch. T-degrees, jump classes, and strong re-
ducibilities. Transactions of the AMS, 301:103–120, 1987.

[12] W. Gasarch. Bounded queries in recursion theory: A survey. In Proc.
of the 6th Annu. Conference on Structure in Complexity Theory, pages
62–78. IEEE Computer Society Press, June 1991.

[13] W. Gasarch and G. Martin. Bounded queries in recursion theory. Un-
published manuscript.

[14] W. I. Gasarch. A hierarchy of functions with applications to recursive
graph theory. Technical Report 1651, University of Maryland, Dept. of
Computer Science, 1985.

[15] L. Hay. Letters to bill gasarch, 1985.

[16] I. Honkala. Modified bounds for covering codes. IEEE Trans. Inform.
Theory, IT-37:351–365, 1991.

[17] C. G. Jockusch. Semirecursive sets and positive reducibility. Transac-
tions of the AMS, 131:420–436, May 1968.

[18] C. G. Jockusch. Degrees of functions with no fixed points. In J. Fenstad,
I. Frolov, and R. Hilpinen, editors, Logic, Methodology, and Philosophy
of Science VIII, pages 191–201. North Holland, 1989.

[19] C. G. Jockusch and R. I. Soare. Π0
1 classes and degrees of theories.

Transactions of the AMS, 173:33–56, 1972.

[20] M. Kummer. A proof of Beigel’s cardinality conjecture. Journal of
Symbolic Logic, 57(2):677–681, June 1992.

[21] M. Kummer and F. Stephan. Effective search problems. Mathematical
Logic Quarterly, 40, 1994.

[22] P. Odifreddi. Classical Recursion Theory (Volume I). North-Holland,
Amsterdam, 1989.

[23] H. Rogers, Jr. Theory of Recursive Functions and Effective Computabil-
ity. McGraw Hill, New York, 1967.

[24] R. Smullyan. Theory of Formal Systems. Princeton University Press,
Princeton, New Jersey, 1961. Annals of Mathematical Studies Vol 47.

[25] R. I. Soare. Recursively Enumerable Sets and Degrees. Perspectives in
Mathematical Logic. Springer-Verlag, Berlin, 1987.

[26] G. V. Wee. Improved sphere bounds on the covering radius of codes.
IEEE Trans. Inform. Theory, IT-34:237–245, 1988.

