Bounded Query Classes and the Difference
Hierarchy

Richard Beigel*
Department of Computer Science

The Johns Hopkins University
Baltimore, MD 21218

William I. Gasarchf
Department of Computer Science
Institute for Advanced Studies

University of Maryland
College Park, MD 20742

Louise Hay?
Department of Mathematics, Statistics, and Computer Science

University of Illinois at Chicago
Chicago, IL 60680

January 5, 1995

Abstract

Let A be any nonrecursive set. We define a hierarchy of sets (and a corre-
sponding hierarchy of degrees) that are reducible to A based on bounding the
number of queries to A that an oracle machine can make. When A is the halt-
ing problem K our hierarchy of sets interleaves with the difference hierarchy

*Current address: Department of Computer Science, Yale University, 51 Prospect Street, P.O.
Box 2158 Yale Station, New Haven, CT 06520. Supported in part by NSF grant CCR-8808949. Part
of this work was completed while this author was a student at Stanford University supported by
fellowships from the National Science Foundation and from the Fannie and John Hertz Foundation.

TSupported in part by NSF grant CCR-8803641.

tPart of this work was completed while this author was on sabbatical leave at the University of
California, Berkeley.

on the r.e. sets in a logarithmic way; this follows from a tradeoff between the
number of parallel queries and the number of serial queries needed to compute
a function with oracle K.

1 Introduction

The traditional reducibilities of recursion theory are one-one reducibility, many-one
reducibility, truth-table reducibility, weak truth-table reducibility, and Turing re-
ducibility [Rog67]. The differences among these reducibilities are essentially qualita-
tive.

In this paper we consider variations on (weak) truth-table reducibility and Turing
reducibility in which only a fized number of queries are allowed. These reducibilities
differ from each other quantitatively, depending on the number of queries allowed.
It seems reasonable to consider the question of whether (and which) functions or
decision problems are computable using, say, £+ 1 queries to the oracle but not using
only k queries.

While this approach might seem unusual from the point of view of computability
theory, it is quite natural from the point of view of complexity theory. For example the
problem of minimum-comparison sorting is equivalent to determining the minimum
number of sequential queries necessary in order to reduce the sorting problem to the
comparison problem. Thus, given a problem, the number of queries required in order
to solve that problem can be considered a measure of the problem’s complexity.

In this paper we restrict our attention to computations relative to an oracle for
the halting problem. A main result will be a numerical tradeoff between serial and
parallel queries when the oracle is K. Bounded query classes relative to K have
arisen in other contexts (e.g., [Hay78]), and turn out to be closely related to the
difference hierarchy on the r.e. sets (henceforth, simply “the difference hierarchy”),
which was defined in [Add65] and studied in detail in [Ers68]. Ershov showed that
the (union of all levels of the) difference hierarchy is equal to the Boolean algebra
generated by the r.e. sets, which, by [Rog67, Theorem 14-1X], is equal to the class of
sets that are bounded truth-table reducible to K. We refine this result by showing
that the nth level of the difference hierarchy is equal to the class of sets bounded
truth-table reducible to K via a truth-table with norm n; the result also holds for
weak truth-table reducibility. Known properties of the difference hierarchy can thus
be used to show that the degree hierarchies defined by limiting the number of parallel
(or serial) queries to K are proper. A normal form theorem for functions which can
be computed by mixing serial and parallel queries to K is also obtained.

Related questions dealing with bounded query computations relative to arbi-
trary oracles have been considered in [BGGO93, Bei88b]. Bounded query classes
for polynomial-time computations relative to an oracle for the Boolean satisfiability
problem have also been studied (see, for example,

[AGSS8, ABG90, Bei90, Bei9l, Bei88a, BHO1, CGH*88, KSW87, Wag88, WW85]).

2 Notation and terminology

We use lower-case italic letters to refer to integers and functions, upper-case italic
letters to refer to sets of integers, upper-case roman letters to refer to sets of sets of
integers, and boldface letters to refer to Turing degrees. The recursion-theoretic ter-
minology and notation will be that of [Rog67]. In particular, N denotes the natural
numbers. We define recursive sequence-coding functions as follows: denote a fixed
recursive pairing function from N x N onto N by (zg,z1). By iteration there is a
recursive coding function (xg,...,z;_;) mapping N* onto N; and by “dovetailing”
there is a recursive map of Uys; N* onto N denoted by {({zg,...,z,_1)). We will
abbreviate f({x1,...,2,)) by f(z1,...,2,). We write x4(z) to denote the character-
istic function of A, and |A| to denote the cardinality of A. The symbol & denotes the
exclusive-or operator on 0-1 functions. The recursive join of A and B is denoted by
ANB={2z:2€ A}U{2z+1:2 € B}.

We identify Turing machines with programs (and partial recursive functions).
{034, {1}4,... is a list of all Turing machines with (arbitrary) oracle A. If f is a
total function, {e¢}/ denotes the Turing machine with program e which can make
function calls to f. {e}? denotes s stages in the computation of {e}4. WA is
the domain of {e}4, W, the domain of {e} = {e}?. K is the oracle for the halt-
ing problem. Since all commonly considered variants of the halting problem are
recursively isomorphic, we lose no generality by considering only the halting prob-
lem for “oblivious” Turing machines, i.e., machines that ignore their input. Thus
K = {e : {e} halts on blank input} and K, = {e : {e}; halts on blank input}. p
denotes the minimization operator.

We follow the standard notation for reducibilities in recursion theory. A <; B
means A is one-one reducible to B; A <1t B means A is Turing reducible to B. We
write A <,; B if A is truth-table reducible to B and A < B if A is weak truth-table
reducible to B. Since we are concerned with the distinction between truth-table and
weak truth-table reducibility, we will briefly discuss their definitions, based on those

in [Rog67].
Definition 2.1

i. (truth-table reducibility) A < B iff there is a recursive function ¢ such that for
each x,

(a) g(x) = (Y1, Yky, fz), Wwhere y1,...,yr, € N and f; is a code for a k,-ary
Boolean function; and

(b) € Aif and only if fo(xB(y1),- -, xB(yr)) = 1.

ii. (bounded truth-table reducibility) A <py B iff A < B and there is a fixed n
such that k, < n for all z.

In this case, we write A <, B and call n the norm of the reduction; clearly
A <y Biff A <, B for some n.

Definition 2.2

i. (weak truth-table reducibility) A <y B iff there is an e and a recursive function
g such that x4 = {e}? and for each z, g(z) = (y1,...,yx,) is a list which
includes all queries used in the computation of {e}?(z).

ii. (bounded weak truth-table reducibility) A <pwie B iff A <y B and there is a
fixed n such that k£, < n for all z.

In this case, we write A <, B and call n the norm of the reduction; clearly
A <iwie Bl A <t B for some n.

Note that in the definition of weak truth-table reducibility, what is missing is the
Boolean function f,. While the entire set of queries must be produced before any
answers are obtained, we are not given a total recursive specification that indicates
how the answers to the queries about membership in B determine whether x is a
member of A. It is possible for the weak-tt reduction ya(z) = {e}?(z) to be total
while {e}(z) relative to some other oracle C' may diverge. (In fact, if xy4(z) =
{e}P(x) and {e}“ is a characteristic function for all oracles (| it follows that A <, B
[Rog67, Theorem 9-XIX]). That <y and <y are distinct reducibilities even on the
r.e. sets was shown in [Lac65] where r.e. sets A, B are constructed such that A is
weak truth-table reducible to B with norm 1 while A is not truth-table reducible to B
(even with unbounded truth tables). To illustrate the subtleties involved, we sketch
Lachlan’s construction. Let B be the union of two disjoint r.e. sets A and £. Then
A <y_wie B via the following reduction: To decide if + € A, the only query made is
“is @ in B?” If the answer is no, then = ¢ A, since A C B. If the answer is yes, then
r € AU E. Enumerate the r.e. sets A and F simultaneously; = will either appear in
A or in E, and in the latter case, x € A. Thus A is weak truth-table reducible to
B with norm 1, while there is no obvious truth-table reduction of A to Bj; indeed,
[Lac65] constructs sets A, £, B = AU FE using a priority argument that “defeats”
every possible (bounded or unbounded) tt-reduction of A to B. It is evident that in
the reduction procedure given above, if B is replaced by an arbitrary oracle €', the
procedure will terminate only for t € AU E U C.

3 The Bounded Query Classes

We say that n queries to an oracle are made in parallel (or that n parallel queries are
made) if a list of all n queries is produced before any of them is made. Otherwise we
say that n queries are made in series (or that n serial queries are made, or simply that
n queries are made). The essential difference is that computation is allowed between
serial queries to an oracle; the answer to an earlier query may determine what query
is to be made next.

Definition 3.1

1.

ii.

iil.

If {e}# is an oracle Turing machine, {e}*(<") is identical to {e}4 except that
if it tries to make more than n queries to its oracle then it diverges.

f is n-Turing reducible to g (denoted f <,-t g) if f = {e}*(= for some e.

A is n- Turing reducible to B (denoted A <,.p B) if y4 = {e}BA=n) (equiva-
lently, xa <n-1 XB)-

Definition 3.2

1.

ii.

f is n-parallel-query reducible to ¢ if f <,-1 ¢ and the queries are made in
parallel.

A is n-parallel-query reducible to B if A <, B and the queries are made in
parallel.

Since this definition is evidently equivalent to Definition 2.2(ii), we can use
A <,-witt B to denote that A is n-parallel-query reducible to B. By analogy, we
will use f <,-wt ¢ to denote that f is n-parallel-query reducible to g.

(Some closely related notions are the partial truth-table reducibilities of [PR77]
and [PR79], and the branch-finite bounded enumeration reducibility of [Coo8T].)

We can now define the bounded-query classes as follows:

Definition 3.3 (Serial query classes)

1.

il.

1.

v.

FQ(n, f) is the class of all partial functions ¢ such that ¢ <,-1 f.

Q(n, f) is the class of all (characteristic functions of) sets in FQ(n, f).

)
Q(n, f) is the class of Turing degrees of sets in Q(n, f).
Q(n,

Q(

n

denotes Q(n, x4), the class of all sets B such that B <,.1 A.

S

)
) denotes Q(n, x4), the class of Turing degrees of sets in Q(n, A).

?

Similarly, we have

Definition 3.4 (Parallel query classes)

1.
ii.
iil.

v.

FQ)(n, f) is the class of all partial functions g such that g <,y f.
Qy(n, f) is the class of all (characteristic functions of) sets in FQ(n, f).
Q| (n, f) is the class of Turing degrees of sets in Q(n, f).

Q(n, A) denotes Qi(n, x4), the class of all sets B such that B <,y A.

b}

v. Q)(n, A) denotes Qy(n, x4), the class of Turing degrees of sets in Q(n, A).

We note here some simple lemmas about the bounded query classes which will be
needed later, and which are easily verified.

Lemma 3.5 (Transitivity Lemma)
i. If f e FQ(m,g) and g € FQ(n,h), then f € FQ(mn,h).
a. If f € ¥Qy(m,g) and g € FQy(n, k), then f € FQ(mn, k).

Definition 3.6 For any set A and each n, let

FA(z1, .. 2.) = (xalz1), .. xalz,)).
Thus F2 computes the results of n parallel queries to A.

Lemma 3.7 FQ(1,F7) = FQ(n, A).

4 A Tradeoff Between Serial Queries and Parallel
Queries to K

In this section we exhibit a tradeoff between the number of parallel queries to K
needed in order to compute a function and the number of serial queries to K needed
in order to compute the same function. The tradeoff is roughly logarithmic, reflecting
the use of binary search to find a number in a sequence.

Given an oracle A, we define some functions which are useful in analyzing bounded
query classes relative to A.

Definition 4.1 #%(zy,...,2,) = |[AN{z1,..., 2, }|.

Thus #2 determines how many of n integers are elements of A.
Definition 4.2 GEQ” = {((i,21,...,2,)) : #2 (21, ..., 2,) > i}

Thus GEQ* determines if at least i out of n integers are elements of A.

Lemma 4.3 #2 € FQ([log (n + 1)], GEQ?).

Proof: #4(zy,...,x,)isan integer k such that 0 < k < n. For any 1, a single query
to GEQ* will tell us whether k& > . Let m = [log (n 4+ 1)], i.e., 2771 <n <27 — 1,
m > 1. Thus k is an element of a sequence of at most 2 numbers, and can be located

by binary search as follows: One query (“is k > 2™~17”) identifies which half of the
sequence k is in, hence locates k as an element of a sequence of length at most 21,

[terating inductively, at most m queries will locate k as an element of a sequence of
length at most 1 and hence will compute k. |
Lemma 4.4 If A is r.e. then

i. GEQ? is r.e.

i. FA4 e FQ(1,#2).

Proof:

i If Aisre, |[AN{xy,...,2,}| > @ is evidently an r.e. condition.

ii. We can determine which of z,...,z, are in A as follows: Compute
#4(zy,...,x,) = k, say; let s be the least stage in the enumeration of A
such that exactly k elements from zy,...,z, € A;. Then z; € A if and only if
x; € As.

|

Lemma 4.5
i. GEQ" € Q(1, K).
ii. #5 € FQ([log(n+1)],K).
iii. FQ(n, K) C FQ(1, #K).
Proof:

1. By Lemma 4.4, GEQ¥ is r.e. and hence GEQ® <, K, which in turn implies
GEQ™ € Q(1, K).

ii. By Lemma 4.3, #X € FQ([log (n + 1)], GEQ™). The result now follows from
(i) by the transitivity lemma (Lemma 3.5).

iii. Assume f € FQ(n, K). By Lemma3.7, f € FQ(1,FX); hence by Lemma 4.4(ii)
and the transitivity lemma, f € FQ(1, #5).

Lemma 4.6 FQ(n, K) C FQ([log (n + 1)], K).

Proof: By Lemma 4.5(iii,ii) and the transitivity lemma. |

Corollary 4.7 FQ,(2" — 1, K) C FQ(n, K).

Thus in reductions to K, 2" — 1 parallel queries can be replaced by n serial
queries. The reverse inclusion was originally proved in [Bei87]. Since the proof uses
substantially different techniques, it is deferred to Section 8. For our purposes, it is
sufficient to prove the reverse only for total functions; this will be done in the next
section.

5 Limiting Recursive Functions

The notion of bounded “mind changes” in recursive approximations to functions was
introduced independently in [Put65] (which called them “k-trial predicates”) and in
[Gol65], which gave essentially the following definition:

Definition 5.1 A (partial) function g is n-limiting recursive (abbreviated n-l.r.) if
there exists a two-place partial recursive function f such that for all

lim,—. f(z,5) = g(x) (ive., (Fs0) (Vs > s0)[f (2,) = g(a)])
{s: fla,s) # fla,s+ 1)} <n

We adopt the convention that if two functions both diverge, then their values are
equal. If exactly one of them converges, then their values are unequal.

We say that f is an approximation to g if f(z,-) agrees with ¢g(z) in the limit; we
say that f changes its mind at s if f(z,s) # f(z,s+1). Observe that ¢ is n-l.r. iff ¢
is approximated by a function f that changes its mind at most n times.

Actually, our definition of n-l.r. is more general than Gold’s original definition,
because Gold’s definition required that f and g both be total functions. The following
is easily verified:

Proposition 5.2 If g is n-l.r. then g has an approximation f(x,s) which changes its
mind at most n times and such that {s : f(x,s) converges} is an initial segment of

N.

In particular, if g(z) converges, f(x,s) will be a total function of s. It follows that
our definition of n-l.r. is consistent with Gold’s original definition in the case when ¢
is a total n-l.r. function.

Definition 5.3

i. Let LR,, denote the class of (partial) n-l.r. functions.

i1. Let TLR,, denote the class of total n-l.r. functions.
The notion of n-l.r. ties in with bounded queries to K as follows:
Lemma 5.4 If f(x,s) is a total recursive function, let

(2,1) = 1 if f(x,s) changes its mind at least ¢ times
A=Y 0 otherwise.

Then ¢ € FQ(1,K).

Proof: Since f is total recursive, [{s : f(z,s) # f(x,s+ 1)}| > ¢ is evidently an
r.e. condition. Therefore ¢ € FQ(1,K). |

Theorem 5.5 Let TFQ)(n, K) denote the class of total functions in FQy(n, K).
Then

ii. TFQy(n, K) = TLR,.

Proof:

i. First we show that every function in FQ(n, K) is n-L.r. Let g € FQ)(n, K) be

computed by {e}*(£") where all queries are produced before any of them is
made. We define an approximation f as follows:

fla,s) = {e} ().

Then f(z,s) converges to g(x). The approximation can change its mind only
when the oracle provides different information. Since the parallel queries made
by {e}¥=(") do not depend on s, and

Ko CK CEyCoov)
the sequence of n-tuples of oracle answers is monotone in each component.

Thus at most n + 1 different n-tuples of oracle answers can be received and the
approximation cannot change its mind more than n times.

That the inclusion is proper will follow from Proposition 5.6(i,iii).

ii. By (i), TFQy(n,K) C TLR,, hence it suffices to show that TLR, C
TFQy(n, K). Let g be a total n-Lr. function. By Proposition 5.2 we may
assume f is a total recursive approximation to g. By Lemma 5.4, a single
query to K tells us whether f changes its mind at least ¢ times. By computing
c(x,1),...,¢(x,n) simultaneously, n parallel queries to K allow us to determine
the exact number ¢ of times f changes its mind. We can now compute g(z) by
evaluating f(z,s) for s = 1,2,... until f has changed its mind ¢ times. Hence
n parallel queries to K allow us to compute ¢, so ¢ is in TFQ)(n, K).

Proposition 5.6 Let INF = {e¢: W, is infinite}, and define

h(x):{ 1 if z € INF

undefined otherwise.
Then
i. hois 1-lr.,
. if h = {e}* then INF <t AN K, the recursive join of A and K,
iti. (Ve)(h # {e}™).
Proof:

i. h is approximated by the partial recursive function

f)1 if |Wy|>s

(2,5) = undefined otherwise.

The function f(z,s) changes its mind at most once (when s = |W,| if W, is
finite, at which point f(x,s) becomes and remains undefined); therefore h is
1-Lr.

ii. Suppose that & = {¢}#. Then INF = WA so INF is r.e. in A. Since INF € II9,
INF is co-r.e. in K. Thus, INF is r.e. in A A K and also co-r.e. in A A K.
Therefore INF is recursive in A A K.

iii. follows from (ii) because INF is II9-complete and hence not Turing-reducible to

K.

10

Proposition 5.6(i) implies that A is n-l.r. for all n, but Proposition 5.6(iii) implies
that £ is not in FQy(m, K) or FQ(m, K) for any m. It may be of interest to note
that every n-Lr. function ¢g(z) can be computed using a single query to INF followed
by at most n parallel queries to K. (Using Proposition 5.2, let f(z,s) be a partial
recursive approximation to ¢g(z) in which W, = {s : f(z,s) converges} is an initial
segment. Then one query to INF determines if W, is infinite and hence whether ¢(z)
converges. If it does, we can then compute ¢g(z) as in the proof of Theorem 5.5(ii).)
Proposition 5.6 shows that this is in some sense the best possible result for partial
n-l.r. functions.

Lemma 5.7 FQ(n, K) g LRgn_4

Proof: Let g be in FQ(n, K), and let ¢ be computed by {e}*{<", As before, we
define an approximation f as follows:

fla,s) = {e} 5V ().

The approximation can change its mind only when the oracle provides different
information. While the queries made by {e}**(5") are no longer independent of s
(since a query may depend on the answer to a prior query), there are only 2" possible
sequences of n oracle answers. Since

Ko C Ky CK,...

the infinite sequence of sequences of n oracle answers has no repetitions except for
blocks of identical answers. (This can be seen as follows: Consider sequences of “yes”
or “no” answers as Boolean sequences of 0’s and 1’s of length n, arranged in increasing
lexicographic order. As s increases, an oracle answer string can only move to the right,
since the answer to the query “a; € K 7”7 can change from 0 to 1, but the answer
can change from 1 to 0 only if the query itself changes; this can only happen if the
answer to a prior query changes, while the answer to the first query can only go from
0 to 1). Therefore f(z,s) changes at most 2" — 1 different times, so g is (2" — 1)-L.r.
Strict inclusion follows from Proposition 5.6(i,iii). |1

Theorem 5.8 (Tradeoff Theorem for Sets) Q(n, K) = Q2" — 1, K).
Proof: For C, assume 5 € Q(n,K). Then ys € FQ(n, K), hence is (2" — 1)-L.r.

by Lemma 5.7. Since xs is total, Theorem 5.5(ii) implies that xys € TFQ;(2" — 1, K);
therefore S € Q) (2" — 1, K). The reverse inclusion follows from Corollary 4.7. |

11

6 The Difference Hierarchy

In this section we show that the bounded query classes interleave the difference hi-
erarchy, and consequently we obtain separation results. The difference hierarchy was
first studied in detail in [Ers68], where the connection with the “k-trial predicates” of
[Put65] was noted. The n-r.e. sets and weakly n-r.e. sets were introduced in [EpsT9]
and [EHKS8I1] respectively, where their Turing degrees were considered.

Definition 6.1
i. A set B is weakly n-r.e. it xg is n-l.r.

ii. A set Bis n-r.e.if B is weakly n-r.e. via an approximation function f such that

f(z,0) =0.
iii. A Turing degree is (weakly) n-r.e. if it contains an (weakly) n-r.e. set.

With no loss of generality, we will always assume that y4 is approximated by a
0,1-valued total function.

Definition 6.2
i. The levels of the difference hierarchy (on the r.e. sets) are defined by

D; = {X:Xisrel},
Doyi = {X=Y:Xisre, Y eD,}.

ii. co-D, ={X:XeD,}.

iii. D, is the class of Turing degrees of sets in D,,.
iv. V, =D, Nco-D,.

v. V,, is the class of Turing degrees of sets in V,,.

The following facts follow from [Ers68] and [EHKS81] (The case D, g D; is due
to Cooper [CooTl]):

Fact 6.3
i. D, = the class of n-r.e. sets.
it. Vyy1 = the class of weakly n-r.e. sets.

iii. Dy C Vg1 C Doy
z gt

12

. Dn C Dn 1-
Z +

Although [EHKS81] separated the n-r.e. degrees, the question of how the n-r.e.
degrees interleave with the weakly n-r.e. degrees was not considered (other than the
observation that every weakly n-r.e. degree is (n+1)-r.e.). We will show that there
are (n 4 1)-r.e. degrees that are not weakly n-r.e.

Theorem 6.4
i. The n-r.e. sets and the weakly n-r.e. sets have the same 1-truth-table degrees.
it. D, =V,.1.

Proof:

i. This can be deduced from [Ers68, Corollary 1 to Proposition 3], where it is
shown that A € V,,41 if and only if there exists sets B,C € D,, and a recursive
set R such that AN R = B and AN R = C. A self-contained proof follows:
Every n-r.e. set is 1-truth-table equivalent to a weakly n-r.e. set, namely itself.
Conversely, assume that A is weakly n-r.e., and let f be an approximation to
X4. Let B be the set of all « such that f(z,s) changes its mind an odd number
of times; thus B is n-r.e. via the approximation function f(z,s)& f(z,0). Since

xs(z) = f(z,0) © xa(z)

and
xa(z) = f(z,0) © xp(2),
A and B are 1-truth-table equivalent.

ii. follows from (i) and Fact 6.3.

Corollary 6.5 For all n, there is an (n+41)-r.e. degree that is not weakly n-r.e.
Proof: Fact 6.3(iv) and Theorem 6.4(ii) imply that V, 44 g | DRI |
Corollary 6.6 foralln>1, V, g Vg1

Proof: By Theorem 6.4(ii) and Fact 6.3(iv). 1

Definition 6.7 PARITY(zy,...,2,) = #2(z1,...,x,) mod 2.

n

13

Thus PARITY# determines if an odd number of n integers are elements of A.

Lemma 6.8 If A is weakly n-r.e. then
i. Ac Q(1,PARITYH).
1. A<, K.
Proof: Assume that Ais weakly n-r.e.; thus y 4 is approximated by a total function

f(z,s) that changes its mind at most n times. Let N(x) denote the number of times
that f changes its mind when its first argument is z, and let

P(z) = N(z) mod 2.
Note that
xa(z) = P(z) @ f(z,0)

Proceeding as in Lemma 5.4, we define for each k, 1 < k < n, an oblivious program
{ex} that simulates f(x,s) for s = 1,2,... and halts as soon as f makes its kth mind
change. Thus {e} halts if and only if N(x) > k. Then ey,..., e, can be effectively
computed, and

P(z) = PARITY (e, ..., en),

so that)
ya(z) = PARITY (e1,...,¢,) @ f(x,0).

This implies both results. |
We can now show that n-tt and n-wtt reducibilities to K coincide.
Theorem 6.9 The following are equivalent:

. A Sn-wtt [(;

-~

. A e Qyn, K),
it. A s weakly n-r.e.,
. A€ Q(1,PARITYE),
v. A<, K.
Proof: (i) and (ii) are equivalent by definition. (ii) implies (iii) by Theorem 5.5(i)

and Definition 6.1. (iii) implies (iv) and (v) by Lemma 6.8. (v) implies (i) by defini-
tion. |1

14

In contrast, recall that Lachlan showed that relative to some oracles n-wtt re-

ducibility need not imply n-tt reducibility or even unbounded tt-reducibility, even
when n =1 [Lac65]. In [Rog67, Exercise 9-45], it was shown that if K < B then

(A <t B) = (A <tt B)E

hence, in particular

(A <yue K) = (A <y K).

In Rogers’s proof sketch, however, the tt-reduction uses more queries than the wtt-
reduction, and thus his methods do not directly yield our result that n-wtt reducibility
to K is equivalent to n-tt reducibility to K.

That tt-reducibility to K via a fized truth table of norm n implies membership in
Q(1, PARITY?) also follows from [Hay78], where it is shown that A <,-, K via a

reduction whose truth table is independent of the input if and only if

(A <, PARITY®) or (A <, PARITYZE).

Corollary 6.10
Q(n, K) = Q2" — 1, K) = Van = the class of weakly (2" — 1)-r.e. sets.

Proof: This follows from Theorem 6.9 and Theorem 5.8. 1

Theorem 6.11 (Separation)
7. Q”(n,K) g Q”(n + 1,[&7).
ii. Q(n,K) g Qln+1,K).

Proof:

i. By Theorem 5.5, Q)(n, K) = V41, hence Q)(n, K) = V1. The result follows
by Corollary 6.6.

ii. It follows from (i) that Q)(2" — 1, K) g Q) (2! — 1, K). The result follows by

Theorem 5.8.

We have thus obtained the following interleaving of the hierarchies:

15

Theorem 6.12 The sels and degrees of the Q and Q| hierarchies interleave with
those of the difference hierarchy as follows:

Dy ¢ QLK) =Q(LK)=V,CD: C Q2 K)=Vs ¢
Ds C 3K)=Q(2,K)=V,CDs CQu4,K)=VsC - C
3¢Q||() =Q(2,K) 4¢4¢Q||() 3G G
D, C K)=V,11 CDypy C T 1,K) =V C-- C
G Q(n, K) #1 G Dng1 G Q(n) 2G G
C (
#

S
|
L

ANARRNE

Dy = Q)L

7 Mixing Serial and Parallel Queries

We ask next what total functions we can compute if we are allowed to make n; parallel
queries to K, followed by ny parallel queries to K, ..., followed by n, parallel queries
to K. We present a normal form for such computations in terms of a single round of
queries to K. This result can be extended to partial functions using techniques to be
developed in the next section.

We define the composition of sets of functions in the natural way:

Definition 7.1 If C; and C; are two sets of functions then
CioCy={fiofy: fi € Cyand fy € Cy}.

We now show that composition of two bounded-query classes corresponds to al-
lowing a number of queries to one oracle followed by a number of queries to a second
oracle.

Proposition 7.2 A partial function g can be computed by making at most ny parallel
queries to fi, followed by at most ny parallel queries to f, ..., followed by at most
n, parallel queries to f,. if and only if

g€ FQH(nrafT) o FQH(nT—th—l) 00 FQ||(n1,f1)-

Proof: Assume that g can be computed by an oracle Turing machine that makes
at most n; parallel queries to fi, followed by at most n, parallel queries to fs, ...,
followed by at most n, parallel queries to f.. We can define g; as follows: g¢;’s input

16

is an instantaneous description of ¢ (i.e., a tape configuration and internal state).
Starting from that instantaneous description, g; simulates ¢g until ¢ is about to make
some parallel queries. If the parallel queries are to f;, and ¢ is not attempting to
make more than n; of them, then g; makes the queries; otherwise ¢g; diverges. g¢;
then continues the simulation of ¢ until ¢ has terminated or is about to make more
queries. If g is about to make more queries, then ¢; prints the current instantaneous
description of ¢ and halts. Thus

g=g,0--0g1 € FQH(”MfT) 0--+0 FQH(nhfl)

The converse is immediate. |

The following generalization of Lemma 4.3 is the key to classifying compositions
of bounded query classes:

Lemma 7.3

1) (mer1)—1 € FQ(n,, GEQ*) 0 -+ 0 FQ(n1, GEQ™)

Proof: Let N=(n;+1)---(n,+1). Now #ﬁ_l is a function whose result k has
one of N possible values (0 < k < N —1). For any t, a single query to GEQ* will
tell us whether k& > ¢t. With ny parallel queries, we ask whether & > N/(n; + 1),
k> 2N/(n1 + 1), ..., k > niN/(ny + 1). These queries restrict k£ to a range of
N/(n1 + 1) possible values. Similarly, our next ny parallel queries can restrict k& to
a range of N/((n1 4+ 1)(n2 + 1)) possible values. Continuing inductively, our final n,
parallel queries restrict k to a range of N/((nq1 4+ 1)---(n, + 1)) = 1 possible value.
The theorem now follows from Proposition 7.2. |

Lemma 7.4
FQ (i + 1)+ (n, +1) = 1, K) CFQy(n,, K) 0 -+ 0 FQ)(n1, K).

Proof: Let N = (ny+1)---(n, +1) — 1. By Lemma 4.5(i), GEQX € Q(1,K);

hence by Lemma 7.3 and the transitivity lemma,
Ke FQy(n,, K)o+ o FQ(ni, K).

By Lemma 4.5(iii), ,

the result now follows from the transitivity lemma. |

Next we prove a converse:

Lemma 7.5 Every total function in FQ) (b, K) o FQ(a, K') belongs to

17

Proof: By Theorem 5.5(ii), it suffices to show that the composition of an a-
l.r. function with a b-Lr. function is ((a + 1)(b 4+ 1) — 1)-l.r. Let ¢; be a-l.r. with
approximation function fi, and let g3 be b-l.r. with approximation function f;. Then
we can define an approximation to ¢ by

f(@,8) = filfo(z,5),5).
It is readily verified that ¢ is ((¢ + 1)(b4+ 1) — 1)-l.r. 1
Lemma 7.6 Fvery total function in FQ(n,, K)o ---oFQ(n1, K) belongs to

Proof: By induction on r. The base case (r = 1) is trivial. Assume the lemma

holds for r — 1. Let g be a total function in FQ(n,, K)o --- o FQy(ni, K). Then
9=9:09,

where ¢’ is a total function in FQ(n,—1, K)o --- 0 FQ)(ni, K) and g, € FQy(n,, K).
By the inductive hypothesis,

g € FQ((nai+ 1)+ (npmr + 1) = 1, K).
Therefore
g=g,04 € FQ(ny, K)o FQu((n1 + 1)+ (np1 + 1) = 1, K).
Since ¢ is total, Lemma 7.5 implies that

g€ FQ(ni+ 1) (n, +1) = 1, K).

Theorem 7.7 (Normal Form)

. Bvery decision problem in FQy(n,, K)o - o FQ(n1, K) belongs to
Q(ny+1)---(n, +1) - 1,K).

Proof:
i. This follows from Lemma 7.4.

ii. Since decision problems are total functions, this follows from Lemma 7.6.

18

The Normal Form Theorem allows a corollary about computations that are allowed
to make n rounds of parallel queries, with at most p queries per round.

Corollary 7.8

Qi+ 1)" = LK) CFQ(p, K)o o FQy(p, K)

n

it. Every decision problem in FQH(p, k)o---o FQ”(p7 K) belongs to

’I’L

Qi(p+1)" —1,K).
iii. Q([nlog, (p+ 1)), K) € FQ(p, K)o -+ - 0 FQy(p, K)

n

. Every decision problem in FQH(p, K)o---o0 FQH(p, K) belongs to

n

Q([nlog, (p+1)], K).

Proof: (i) and (ii) follow by letting n; = p in Theorem 7.7. (iii) and (iv) follow
from (i) and (ii) by Theorem 5.8. |}

& Tradeoff Revisited

We now give the proof of the reverse inclusion to that in Corollary 4.7.
Lemma 8.1 FQ(n, K) C FQ(2" — 1, K).

Proof: Let f € FQ(n,K), f = {e}*(E", For each i, 1 < i < n, independently
of the oracle A queried by {e}*(<") there are at most 2"~ possibilities for the ith
query — one for each sequence of answers to the previous ¢ — 1 queries. Summing
over 1 < < n, this gives an a priori bound of 2" — 1 different queries that could be

<7) on any input, regardless of the answers given

made in the computation of {e}4!
by the oracle. It is not in general possible to pre-compute what all these queries
might be, since some purported sequence of oracle answers might force {e}4(<")

a non-terminating computation for some oracles A.

into

However, we can construct a query that has the same answer as the ith query if
an tth query is actually made. For each ¢,1 < 2 < n, consider Boolean sequences «
of ¢ — 1 potential answers (where 0 and 1 correspond to “no” and “yes” respectively).
For each such «, define a Turing machine {e,} which computes as follows: {e,}(x)
simulates {e}4(<")(z), except that instead of making calls to the oracle, {e,}(z) uses
the sequence « to answer the first ¢ — 1 queries, until an ith query ¢ is produced. (If

19

the computation halts before an ith query is produced, or if an 2th query is never
made, {e,}(z) diverges). {e,} then enumerates K and halts if and when ¢ appears in
K; otherwise, {e,}(x) diverges. Note that {e,} makes no queries to an oracle, and,
if a is a correct sequence of i — 1 answers for {e}4(%)(z) when the oracle is K, then
{e,}(x) halts if and only if {e}(<")(z) makes at least i queries and the answer to
the 1th query is “yes”.

Thus, for each sequence of potential answers to the first ¢ — 1 queries, we have
shown how to produce a query to K (“does {e,}(x) halt?”) that has the same answer
as the ith query of {e}*{<")(z) if the first ¢ — 1 answers given by « are correct and
if ¢ queries are actually made. (If the first ¢ — 1 answers are not all correct for K or
if {e}(=)(z) makes fewer than 7 queries, we do not care about the answer to the
query that we produce).

By determining for each Boolean sequence « of length ¢,1 < ¢ < n, whether
{ea}(x) halts, we determine the answer to all the possible queries made by
{e}(EM (). Thus the following algorithm simulates {e}*(<")(z) by making
Son 271 = 27 — 1 parallel queries to K: Simultaneously ask, for each 7,1 < ¢ < n,
and each « of length 7 — 1, whether {e,}(z) halts. Then simulate {e}*(")(z) with
no further queries, inductively using the answer to the question “does {e,}(z) halt?”
as the answer to the ith query if « is the sequence of answers to the first : — 1 queries.

Thus f e FQ (2" - 1,K). 1
Hence we have
Theorem 8.2 (Tradeoff theorem for functions) For each n,
FQ(n, K) = FQ,(2" — 1, K).

Using similar techniques, it is not hard to extend the results of the preceding
section to partial functions:

Theorem 8.3 (Normal Form)

9 Acknowledgments

The authors would like to thank Robert Floyd, John Gill, and Jim Owings for helpful
comments.

References

[ABG90] Amihood Amir, Richard Beigel, and William 1. Gasarch. Some connec-
tions between bounded query classes and nonuniform complexity. In Pro-
ceedings of the 5th Annual Conference on Structure in Complexity Theory,
pages 232-243, 1990.

20

[Add65)

[AGSS]

[Bei8T]

[Bei88a]

[Bei88h]

[Bei90]

[Bei9l]

[BGGOY3)

[BH91]

[CGH*8S]

[CooTl]

[Coo8T]

[EHKS1]

[EpsT9]

J. W. Addison. The method of alternating chains. In Theory of Models,
pages 1-16, Amsterdam, 1965. North-Holland Publishing Co.

Amihood Amir and William I. Gasarch. Polynomial terse sets. Inf. &
Comp., T7:37-56, April 1988.

Richard Beigel. Query-Limited Reducibilities. PhD thesis, Stanford Uni-
versity, 1987. Also available as Report No. STAN-CS-88-1221.

Richard Beigel. NP-hard sets are p-superterse unless R = NP. Technical
Report 88-04, The Johns Hopkins University, Dept. of Computer Science,
1988.

Richard Beigel. When are k£ 4 1 queries better than k7 Technical Report
88-06, The Johns Hopkins University, Dept. of Computer Science, 1988.

Richard Beigel. Bi-immunity results for cheatable sets. Theoretical Com-

puter Science, 73(3):249-263, 1990.

Richard Beigel. Bounded queries to SAT and the Boolean hierarchy. The-
oretical Computer Science, 84(2):199-223, July 1991.

Richard Beigel, William 1. Gasarch, John T. Gill, and James C. Owings.
Terse, superterse, and verbose sets. Inf. & Comp., 103:68-85, 1993.

Sam R. Buss and Louise E. Hay. On truth table reducibility to SAT. Inf.
& Comp., 91(1):86-102, March 1991.

J. Cai, T. Gundermann, J. Hartmanis, L. A. Hemachandra, V. Sewelson,
K. W. Wagner, and G. Wechsung. The Boolean hierarchy I: structural
properties. SICOMP, 17(6):1232-1252, December 1988.

S. B. Cooper. Degrees of Unsolvability. PhD thesis, Leicester University,
1971.

S. Barry Cooper. Enumeration reducibility using bounded information:
counting minimal covers. Zeitsch. f. math. Logik und Grundlagen d.

Math., 33:537-560, 1987.

Richard L. Epstein, Richard Haas, and Richard L. Kramer. Hierarchies
of sets and degrees below 0. In Logic Year 1979-80, volume 859 of Lec-
ture Notes in Mathematics, pages 32-48, Berlin, 1981. Springer-Verlag.
Volume 859 of Lecture Notes in Mathematics.

Richard L. Epstein. Degrees of Unsolvability: Structure and Theory, vol-
ume 759 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1979.

21

[Ers68]

[Gol65]

[Hay 78]

[KSWS7]

[Lac65]

[PRT77]

[PRT79]

[Put65]

[Rog67]

[Wag88]

[WW85]

Yu. L. Ershov. A hierarchy of sets, 1. Algebra i Logika, 7(1):47-74,
January—February 1968. English Translation, Consultants Bureau, NY,
pp- 25-43.

E Mark Gold. Limiting recursion. JSL, 30(1):28-48, March 1965.

Louise Hay. Convex subsets of 2" and bounded truth-table reducibility.
Discrete Mathematics, 21(1):31-46, January 1978.

Johannes Kobler, Uwe Schoning, and Klaus W. Wagner. The difference
and truth-table hierarchies for NP. RAIRO Theoretical Informatics and
Applications, 21:419-435, 1987.

Alistair H. Lachlan. Some notions of reducibility and productiveness.

Zeitsch. f. math. Logik und Grundlagen d. Math., 11:17-44, 1965.

E. A. Polyakov and M. G. Rozinas. Enumeration reducibilities. Stberian
Mathematical Journal, 18(4):594-599, 1977.

E. A. Poljakov and M. G. Rozinas. Relationships between different forms
of relative computability. Mathematics of the USSR-Sbornik, 35(3):425—
436, 1979.

Hilary Putnam. Trial and error predicates and the solution to a problem

of Mostowski. JSL, 30(1):49-57, March 1965.

Hartley Rogers, Jr. Theory of Recursive Functions and Effective Com-
putability. McGraw Hill, New York, 1967.

Klaus W. Wagner. Bounded query computations. In Proceedings of the
3rd Annual Conference on Structure in Complexity Theory, pages 260—
277. IEEE Computer Society Press, June 1988.

G. Wechsung and K. Wagner. On the Boolean closure of NP. In Proceed-
ings of the 1985 International Conference on Fundamentals of Computa-
tion Theory, pages 485-493. Springer-Verlag, 1985. Volume 199 of Lecture
Notes in Computer Science.

22

