Terse, Superterse, and Verbose Sets' ?

by
Richard Beigel® William I. Gasarch*
Yale University University of Maryland
Inst. for Adv. Comp. Studies
John Gill® James C. Owings®
Stanford University University of Maryland

This paper 1s dedicated to the memory of Louise E. Hay, 1955-1989.

ABSTRACT

Let A be a subset of the natural numbers, and let F2(zy,...,2,) =
(xa(z1),...,xa(®n)), where x4 is the characteristic function of A. An
oracle Turing machine with oracle A could certainly compute F with
n queries to A. There are some sets A (e.g., the halting set) for which
FA can be computed with substantially fewer than n queries. One key
reason for this is that the questions asked to the oracle can depend on
previous answers, 1.e., the questions are adaptive. We examine when it is
possible to save queries. A set A is terse if the computation of FA from
A requires n queries. A set A is superterse if the computation of F from
any set requires n queries. A set A is verbose if Ffs _, can be computed
with n queries to A. The range of possible query savings is limited
by the following theorem: F cannot be computed with only [logn]
queries to a set X unless A is recursive. In addition we produce the
following: (1) a verbose set in each truth-table degree and a superterse
set in each nonzero truth-table degree; and (2) an r.e. verbose set in each
r.e. truth-table degree and an r.e. terse set in each nonzero r.e. Turing
degree.

!Some of this research has appeared in the first author’s doctoral dissertation, which
was prepared at Stanford University, with support from an NSF fellowship, a Hertz Foun-
dation fellowship, and a General Electric Corporation forgivable loan.

2Although much of our research on bounded query classes in a complexity-theoretic
framework has already appeared in print, this recursion-theoretic research actually pre-
ceded it.

3Dept. of Computer Science, P.O. Box 2158, Yale Station, New Haven, CT 06520-2158.
Supported by NSF grants CCR-8808949 and CCR-8958528. This paper was prepared while
this author was at the Johns Hopkins University.

4Dept. of Computer Science, University of Maryland, College Park, MD, 20742. Sup-
ported by NSF grant CCR-8803641.

®Dept. of Electrical Engineering, Stanford University, Stanford, CA, 94305.

®Dept. of Mathematics, University of Maryland, College Park, MD, 20742.

1



1. Introduction

Consider K, the halting set. If one is presented with n numbers z4, ..., z,, and asked
to determine which of these numbers are in K, this can clearly be done using n queries
to K, namely the z;’s themselves. Yet one can be far more economical in the questions
one asks to K. With just [log,(n + 1)] queries to K one can determine how many of the
z;’s are in K, and then enumerate K until that many elements have appeared. (This
observation appears in [7] but was known to Louise Hay before 1980.)

The ability to answer n queries by using fewer than n queries may appear contradic-
tory, but in fact there is a very important distinction between the n queries being simulated
and the [log,(n 4+ 1)] queries used in the simulation. The initial n queries are presented
in parallel, that is, they are all specified in advance. The [log,(n + 1)] queries in the sim-
ulation are sequential, that is, each query depends on the answers to all queries preceding
it. Thus, sequential queries can be exponentially more powerful than parallel queries. (In
another terminology [8,16] sequential queries are called “adaptive” and parallel queries are
called “nonadaptive.”)

There are sets for which the difference between parallel queries and sequential queries
is nonexistent. Consider a suitably random set R. It is intuitively obvious that n parallel
queries to R cannot be answered with n — 1 sequential queries to R (or to any other set).

We now formalize our notions.

Definition: If A C N (the natural numbers) and z1,...,z, € N then let

Ff(:(;l, cosxn) = (xalz1),. .., xalzn))

where x 4 i1s the characteristic function of A.

Definition: If A C N then a query to A is a question of the form “x € A?” If f is a
function from N to N then a query to f is a question of the form “What is the value of

f(2)?” (In both cases, we usually identify the natural number = with the query.)

2



Definition: Let n € N and let f be a function mapping N to N. Then FQ(n, f) is the
collection of all functions ¢ such that ¢ is recursive in f via an algorithm that makes
at most n sequential queries to f. If A C N then FQ(n,x4) is denoted FQ(n,A), and
A€ FQ(n, f) means ya € FQ(n, f).

Definition: A set A is terse if for all n > 0, F2 ¢ FQ(n — 1, A). A is superterse if,
for all n > 0 and for all X C N, FA ¢ FQ(n — 1,X). A is verbose if, for all n > 0,
Fii_, € FQ(n,A) (equivalently, for all n > 0, F2 € FQ([log,(n + 1)], 4)).

In Section 2 we show that nonrecursive verbose sets exist and, in fact, that every truth-
table (tt) degree contains a verbose set. In Section 3 we show that if A is a nonrecursive
set then Fji ¢ FQ(n,A), which motivates our definition of verboseness: only recursive
sets are “less terse” then a verbose set. In Sections 4 and 5 we explore which kinds of sets
are terse. In particular we show that 1-generic sets and the jumps of nonrecursive sets are
terse, that every nonzero r.e. Turing (T) degree contains an r.e. terse set, and that every
nonzero tt-degree contains a superterse set.

Throughout this paper {0}0,{1}0, ... is a list of all oracle Turing machines. The
machine {e}0(<?) is identical to {e}!), except that if it attempts to make more than i
queries to the oracle then it diverges without making further queries. A subscript of s on
any of these machines means that we run its computations for only s steps. Let {e} denote
{e}?. We also let {e} denote the partial function computed by Turing machine {e}; usage
will be clear from context. Let W, denote the e'" recursively enumerable set, i.e., the
domain of {e}. Let W, ; be W, after s stages,i.e., W, s ={0,1,2,...,s} N{z : {e}s(z) |}.
Let K denote the halting set, i.e., {e: e € W,}.

We denote a fixed recursive bijection from N U (N x N)U(N x N x N)U--- to N
by (—,---,—). That is, the ordered k-tuple (z1,...,2%) is coded by the natural number
(x1,...,25). We assume that for all tuples (x1,...,zx) and all ¢, we have x; < (x1,...,zg).
Since the tupling function is a recursive bijection, it has a recursive inverse. Most of
the other functions in this paper have domain N but we abbreviate “f({z1,...,2,))” by
“f(x1,...,2,).” We also abbreviate “{e}((x1,...,zn))" by “{e}(z1,...,2,).”

A string o is a finite sequence of 0’s and 1’s. The length of o is denoted |o|. If

0 <i < |o| then o(i) denotes the i*! bit of o, where we begin counting at 0.

3



All logarithms in this paper are base 2.

Applications of our work to recursive graph theory appear in [5,6]. Questions con-
cerning Q(n, A), the class of sets B such that yp = {€}4(<™) for some e, are considered
in [3,4,7]. Similar questions have been considered in a polynomial time framework. See [1]

for a list of references.

2. Verbose Sets

An important question is whether all nonrecursive sets are terse. They are not: in
fact the halting set is verbose [7]. In this section we show that every tt-degree contains a
verbose set, and that every r.e. tt-degree contains an r.e. verbose set.

For the sake of completeness, we include a proof that K is verbose.

PRrROPOSITION 1. [7] K is verbose.

Proof: Recall that K is recursively isomorphic to the set of all Turing machines that halt
on the empty tape. Given Turing machines zq,...,z9n_1 we can, for any m, formulate
a query to the halting set which asks if at least m of z1,...,29n_; are in K. We can
use these questions to perform a binary search which will determine in n queries to K
exactly how many of the machines halt. Once we know how many halt, we dovetail the
computations of the machines until that many halt. These are the ones that belong to K;

all the others do not. XI

In the algorithm above, if incorrect answers are supplied by the oracle, then the
computation may diverge. The question arises, “Is it possible to obtain Fix _, € FQ(n, K)

ys

— or merely F ‘_1_1 € FQ(n,X) for some X — via an oracle Turing machine such that, no

n
matter what answers are supplied, the machine halts (possibly with the wrong answer)?”
This is not the case: Using the (n 4 1)-ary recursion theorem it is easy to construct
machines z1,...,2,41 that deterministically simulate the n-query reduction for all 27
possible sequences of oracle answers and then halt or diverge so as to defeat the reduction.

It follows from our definitions that verboseness and terseness are invariant under

complementation and under many-one equivalence (indeed, these properties are invariant

4



under 1-tt equivalence, which is truth table equivalence with only one query allowed). In
particular, all ¥;-complete and all II;-complete sets are verbose.

We were able to apply binary search in proving that K is verbose because we were
able to test the necessary thresholds by making a single query to K. This technique can
be used more generally. Given any r.e. set A, we construct an r.e. set B =4 A such that

B is the closure of A under thresholds. Define by induction
By =A{{{z1),...,(xn),m)  |JAN{z1,..., 20} > m}

k
Biy1 = {{z1,...,xn,m)  |BpN{z1,...,2,}| > m} U UBi
=0

Let B = U2, B;. It is easily seen that B is r.e. and verbose; hence every r.e. tt-
degree contains an r.e. verbose set. By considering Jockusch’s semirecursive sets, we obtain
another proof of this statement, and we extend the result to arbitrary tt-degrees.

A set A C N is semurecursive [14] if there exists a recursive function f(z,y) such that

o f(z,y) € {z,y}, and
o if {z,y} N A% then f(z,y) € A.

Jockusch [14] shows that every (r.e.) tt-degree contains a (r.e.) semirecursive set; he

credits McLaughlin and Appel with showing that A is semirecursive iff A is an initial

segment of some recursive linear ordering of N.

ProrosIiTION 2. If A is semirecursive then A is verbose.

Proof:  Suppose A is an initial segment of a recursive linear ordering <. Given 2" — 1
distinct natural numbers x1,...,29»_1, first order them by < and rename them so that
Ty < Ty < .-+ < Tyn_1. By using binary search we can, in n queries to A, locate the

largest ¢ such that x; € A. (If none of x1,...,29n_y are in A then ¢ = 0.) We then output

the information that zy,...,z; are in A, and x;41,...,22n»_1 are not. XI

(Note that, unlike the halting set, semirecursive sets are verbose via an algorithm
that terminates regardless of oracle answers.) Since every (r.e.) tt-degree contains a (r.e.)

semirecursive set, we obtain:



THEOREM 3. Every (r.e.) tt-degree contains a (r.e.) verbose set.

Except for the halting set K, the verbose sets we have presented so far are arguably
contrived examples. Lest the reader think that verbose sets are somehow “unnatural,” we
point out that Jockusch’s work shows that the set of truth stages of an r.e. set (defined
below) is semirecursive, and hence verbose. Truth stages are of importance in recursion
theory. They were first defined in [10], and were used in showing that every r.e. T-degree
contains a hypersimple set. They were later used in infinite injury priority arguments (see
[19]).

Definition: Let A be an r.e. set, let ay,a2,as,... be a recursive enumeration of A, and
let Ay = {a1,a2,...,as}. The set of truth stages of A is {s: As[as] = Alas]}, where S[n]
denotes the first n bits of the characteristic sequence of the set S. The complement of the

set of truth stages is called the set of deficiency stages.

Definition: A set A is retraceable [11] if there exists a total recursive function f such that
if + € A and =z is not the smallest element of A then f(z) is the largest element of A that
is less than .

The set of truth stages and the set of deficiency stages are Turing-equivalent to A,
and furthermore the set of deficiency stages is r.e. Jockusch has shown that the set of
truth stages is retraceable, and that every co-r.e. retraceable set is semirecursive. Hence
the set of truth stages is semirecursive, therefore so is its complement, and consequently

both sets are verbose.
COROLLARY 4. If A is an r.e. set then the set of deficiency stages of A is verbose.

Thus every r.e. T-degree contains a “natural” r.e. verbose set.

Even if A is terse it need not be superterse, e.g., it may be possible that Fj. , can
be computed with a small number of queries to some other set B. The next two results
(which follow from results in [7]) are simple examples of this phenomenon. We include

self-contained proofs for the sake of completeness.

PROPOSITION 5. If A is r.e. then for all n, F5i _, € FQ(n, K).

6



Proof: Since A <,,, K this follows immediately from the fact that K is verbose. X

In Section 4, we will construct an r.e. terse set. Thus it is possible to have for all n,

FA e FQ([log(n +1)],K) but F2A ¢ FQ(n — 1, A).

PROPOSITION 6. If A is weakly m-r.e. [12,13] then Fys € FQ(n + [log(m + 1)], K).

Proof: The characteristic function of a weakly m-r.e. set is the limit of a recursive function
that changes its mind at most m times [12]. Given (z1,...,22) we formulate (but do
not ask) the following questions to K: “Does f change its mind on z; at least j times?”
(1 <:<2™1 <35 <m). Since K is verbose, these 2"m queries can be answered with
[log (2"m + 1)] = n + [log(m +27")] = n + [log(m + 1)] queries to K. The answers to

these queries immediately determine whether each z; belongs to A. X

The reader may verify that the preceding result is in fact tight, by considering a

and 6.11(1) of [7].

3. Lower bound: For all nonrecursive 4 and all B, F3} ¢ FQ(n, B)

We have shown that verbose sets exist in abundance. The main theorem of this
section shows that verbose sets are as non-terse as possible: it is impossible to obtain a
nonrecursive set A4 such that Fji € FQ(n, A).

To prove this we need to look at FQ(n,A) in a different light:

Definition: A function f is computable by a set of partial functions S if for all z there is
a ¢ € S such that p(z) = f(z). If |S| = n and every element of S is a partial recursive

function, then we say that f is computable by a set of n partial recursive functions.

LEMMA 7. If a function f is in FQ(n,B) then f is computable by a set of 2™ partial
recursive functions. Conversely, if a function f is computed by a set of 2™ partial recursive

functions then there exists an oracle X =7 f such that f € FQ(1, F:).

Proof: Assume f € FQ(n,B). Let {e}0(<") be the oracle machine such that {e}B(<m)

computes f. Let wg, wy,...,wen_1 be the elements of {0,1}". For 0 < < 2" —1 we define

7



a partial recursive function ; as follows: @;(z) is computed by running {e}0(<™)(z) and
using the bits of w; consecutively for the query answers. Since one of the sequences is
correct (i.e., would be the sequence of answers if B was used for the oracle) ¢;(z) is equal

to f(z) for some 1.

Conversely, assume that f is computed by a set of 2" partial recursive functions. Let

the functions be g, @1,...,©an_1. Let

() = the first ¢ found (by dovetailing) such that ¢;(z) = f(z),

X = {(z,7) : the ' bit of the binary representation of 7 is 1},

The function f is in FQ(1, F.X) since to compute f(x) one need only know the answers to
the questions “(z,1) € X?7, “(x,2) € X?7.....“(z,n) € X?” X

We are trying to show that Fy is not in FQ(n, B) for any B. By the above lemma,
that is the same as showing that Fj} cannot be computed by a set of 2" partial recursive
functions. More generally, we will show that F* cannot be computed by a set of n partial
recursive functions for any n. The next lemma is the key to the proof of this section’s

main theorem.

LEMMA 8. Let g and h be any total functions from N to N and let f(z,y) = (g(x), h(y)).
If f is computable by a set of p + 1 partial recursive functions then ¢ is computable by a

set of p partial recursive functions or else h is recursive.

Proof: Assume that f is computed by a set S = {¢1,...,¢p41} consisting of p + 1 partial

recursive functions. Define 7((u,v)) = u. We consider two cases:

Case 1: For all = there exists y such that two of the p + 1 partial functions in S converge

and the outputs agree on the first component. Formally:

(Vz)(y, 7, k) jzx [((z,y) € dom(p;) Ndom(pr)) A (7(pi(z,y)) = 7(wr(z,y)))].

Intuitively, we can save one function since two of the ¢;’s agreed. Formally, we describe a

set T'= {41,...,%,} consisting of p partial recursive functions of one variable. On input

8



x, the computation of ; first searches for y, j, k that have the above property. Then ),

outputs the value of
m(pi(z,y)) ife <k
m(pit1(z,y)) ik <i<p.

On any input z one of the ¢;’s is correct, so one of the ;’s must be correct. Hence the set
of functions T' computes g. (Since j and k may depend on the input, 7' is not necessarily

obtained by choosing p functions in S and restricting them to their first component. )

Case 2 (the negation of Case 1): There exists x such that for every y all of the functions

in S either diverge or disagree on the first component when evaluated at (z,y). Formally:

(32)(Vy. , k) jzl((z, ) € dom(p;) N dom(pr)) = 7(o5(x,y)) # wlpa(z,y))]

We show that h is recursive. We may encode into our algorithm the number z, mentioned
in the condition of Case 2, and the value of g(z). Intuitively, only one of the ¢;’s gives the
right answer for z; it must also give the right answer for y. To compute h(y), search for a
J such that (z,y) € dom(p;) and 7(¢;(z,y)) = g(x). Then h(y) is the second coordinate
of j(z,y). X

THEOREM 9. (Nonspeedup Theorem) If A, B C N, n € N, and Fj} € FQ(n, B), then A is
recursive.

Proof: If Fjt € FQ(n,B) then, by Lemma 7, Fy5 is computable by a set of 2" partial
recursive functions. Applying Lemma 8 with ¢ = Fj} | and h = x4, we find that Fj} |
is computable by a set of 2" — 1 partial recursive functions or y 4 is recursive. In either
case Fj5 | is computable by a set of 2" — 1 partial recursive functions. Repeating this
argument 2" — 2 more times, we find that F{* is computable by a set containing 1 partial
recursive function. This function is total because F}! is total. But F{® = y4. Thus A is

recursive. XI

The proof of the Nonspeedup Theorem is nonuniform in that one cannot use it to
recursively compute an index of a machine that decides A from an index for a set of 2"
machines that compute Fj% (in the manner that a set of partial functions computes a

function as discussed above). In fact no such construction is possible:

9



PRrROPOSITION 10. There is no partial recursive function f that takes as input indices e;
and ey for total recursive functions and produces an index for the characteristic function
of a set A, if one exists, such that F5! is computed by the set of functions {{e;},{e2}}. (If
no such set A exists then f may produce any answer or may diverge. If several such sets

A exist then f may produce an index for any one of them.”)

Proof: In fact we prove that there is no partial recursive function ¢ with inputs e; and es

that has the following properties:

o If ¢; and e9 are not indices for total functions or if there is no set A such that FQA is
computed by {{e1},{e2}}, then ¢ may produce an arbitrary result or may diverge.

o If ¢; and ey are indices for total functions and there is a unique set A such that FQA
is computed by {{e1},{e2}}, then (1) if A = 0 then g(e1,e2) =0, and (2) if A =N
then g(eq,e2) = 1.

e In all other cases, g may produce an arbitrary result, but must converge.

For the sake of contradiction, suppose that there exists an f as in the statement of this
proposition. Then there exists a g with the above properties: let g(e1,e2) = {f(e1,e2)}(0).
Now let W, and W, be any pair of recursively inseparable sets. We will use ¢ to recursively
separate W, and W,, a contradiction.

Define total recursive functions h; and hs such that for all =

0> if z € WI’U_HJ
1

) otherwise.

ifzeW, Jutv
otherwise.

N (o) = { )

If 2 € W, (hence z ¢ W,) then ) is the unique set A such that F;' computed by
{{Rh1(2)},{h2(2)}}. If z € W, (hence z ¢ W,) then N is the unique set A such that Fy'

T Although not relevant to the current proposition, the reader may verify that for fixed
€1,...,en there are at most n sets A such that F4 is computed by {{e1},...,{en}}, by
the separation lemma in [18]. Obviously this is tight.

10



is computed by {{h1(z)},{h2(2)}}. If = ¢ W, UW, then () and N are both computed by

{h1()}, {ha(2)}}. Let
R={z: g(hi(2), ho(2)) = 0)

It is easy to see that R is a recursive set that contains W, and is disjoint from W,,. X

4. Terse Sets and Degrees

We are interested in determining which sets are terse and which degrees contain terse
sets. In this section we show that all 1-generic sets (defined in [15]) are terse and that
every nonzero r.e. T-degree contains an r.e. terse set. In Section 5, we will see that every
nonzero tt-degree contains a terse set.

First we sketch a proof that all 1-generic sets are terse. We actually prove that if A
is 1-generic then A"t! ¢ FQ(n, A) for all n. This is not surprising, because a set A with
that property can be constructed by an initial segment argument. Formally, we want to

show that every 1-generic set A satisfies, for every (e, n), the requirement
Rieny - Antl A {e}A(S").

By standard techniques described in [15], it suffices to show that for every string ¢ and

every (e,n), there exists a string 7 such that any set whose characteristic sequence is

an extension of o7 satisfies R, ). For 1 < i < n +1, let z; = lo| — 1 + 4. Simulate

{e}OEM) (), ... 2p11), using o(q) as the answer to any query ¢ that is numerically less

than the length of o and using 1 as the answer to all other queries. Let y1,...,yx (kK < n)

be all the queries that are numerically greater than or equal to the length of . Let 7 be

such that

(1) For 1 < <k, or(y;) = 1.

(2) If the computation rejects then o7(z1) = o7(22) =+ = o7(2p41) = 1.

(3) For all numbers x that are not determined by (1) or (2) and are less than or equal to
max(M, x,41), where M is the largest number queried, let o7(z) = 0.

Note that at least one of the numbers zy,..., 2,41 was not queried. Then it is easy to

see that any set that extends o7 will satisfy requirement R ,y. By standard techniques,

as described in [15], it follows now that every 1-generic set A satisfies A"T! ¢ FQ(n, A)

11



for all n. Consequently, all 1-generic sets are terse. Jockusch [15] has shown that the
set of 1-generic sets is co-meager. (See [20] for more on co-meager sets. The intuition is
that co-meager sets are topologically large.) Therefore the set of terse sets is co-meager.
Intuitively, this means that most sets are terse.

Similarly, one may show that all 1-generic sets are in fact superterse (use the require-
ments R ) : F,;A_H is not computed by the et set of 2" partial recursive functions). The
proof is left to the reader.

We now show that every r.e. T-degree contains an r.e. terse set. In fact, we prove

slightly more.

Definition: Let n € N, and let A be any set.

PARITY;?(:Q, ceyTp) = Z xa(z;) mod 2.
1<i<n

THEOREM 11. Every nonrecursive r.e. T-degree contains an r.e. set A such that, for all ¢,
PARITYZ,, ¢ FQ(i, A).

Proof. Let d be a nonrecursive r.e. T-degree and let D be an r.e. set in d. We use a finite
injury priority argument to construct the desired r.e. set A =p D. We obtain A <7 D by
a permitting argument. We obtain D <7 A by coding D into A via the even numbers in

a manner to be described later.

To ensure for all 7 that PARI']_’Yfi_1 ¢ FQ(1,A), we construct A to satisfy the following
requirements:

Riciy: {e}*S) total = {e}(=9 £ PARITY],,.
With every R ;y, we associate an infinite set of sets of odd numbers
{z(e,i, k) : k € N}
such that |z(e,7, k)] = ¢+ 1 and the sets
{z(e,i, k) e,i,k € N}

form a recursive partition of the odd numbers. If z(e,:, k) appears as the argument of

a function then the intended argument is the (¢ + 1)-tuple of elements that is formed by

12



taking the elements of z(e, 7, k) in increasing order. We intend to satisfy R, ;, by making
{e}(2(e,i, k)) # PARITYfi_l(z(e,i, k)) for some k.

We use the even numbers to code D into A. Informally, we have to satisfy the
requirements

P; : if j € D then code this fact into A.

We will explain forthwith precisely how we intend to accomplish this. We use a priority
argument with priority ordering Ry, Py, Ry, P1, Ry, P, . . ..

Let nr(y) be the function such that nr((e,¢)) = . Let

NR(j)= Y nr(k).
0<k<j

The symbol “nr” stands for “number restrained.” We will later see that during any single
stage, R; cannot restrain more than nr(j) numbers from being in A. Hence the number of
elements restrained by requirements of priority higher than P; is at most NR(j). Therefore
if we give P; more than NR(j) numbers to work with, then P; will always be able to choose

one number that is not restrained by requirements of higher priority. Let

{code(y): 7 € N}

be a recursive partition of the even numbers such that |code(j)] = NR(j) + 1 for each j.

Now we can formally state requirements P; for j =1,2,....
P;:if j € D then AN code(y) # 0.

During the construction only P; will be able to place elements of code(j) into A (although
other requirements will be able to restrain elements of code(y) from entering A). Hence, if

P; is satisfied then we know that
J €D AN code(j) # 0.

The construction proceeds in stages. Let Ag denote A at the end of stage s. Let
res((e,),s) be the set of numbers that R, ;y wants to restrain from A at the end of stage

s. Let

RES((e,i),s) = U res(7,8).

i< (e,

13



We assume that we are given a recursive enumeration dy,ds,ds,... of D. Let Dy =

{d1,...,ds}. We construct A as follows:

CONSTRUCTION
Stage 0: Set Ay = (). For all (e,7) set res({e,7),0) = § and mark requirement R ;y as
unsatisfied.
Stage s + 1:
I) (First we code D into A.) Let j = ds. Let z be the least element in code(j) that
is not in RES(j,s). (We prove later that such an = exists.) We enumerate z into
A; declare Pj satisfied; and for every (e,i) > j such that R ;y has been previously
satisfied, declare R, ;y not satisfied and set res({(e,z),s +1) = 0.
IT) (Second, we attempt to satisfy some R ;y.) Find the least number (e,z) < s such
that the following are all true (or go to stage s 4+ 2 if no such number exists):
a) Ry ;) is not satisfied.
b) For some k the computation of {e}?s(gi)(z(e, i,k)) converges in such a way that

we can attempt to satisfy R ;). Formally there exists k < s such that

{e}?s(gi)(z(e,é, k)) l="0b where b € {0,1}, and
z(eyi, k) N RES({e i) —1,s) = z(e,i, k)N As = 0.
¢) Let y be the least element of z(e, ¢, k) such that y is not queried in the {e}fs(gi)(z(e, i, k))
computation. Such a y exists since the {e}?s(gi)(z(e, i, k)) computation makes at
most ¢ queries and |z(e, i, k)| =7+ 1. We require y > ds. (This is the permitting
strategy that will make A <r D.)
If such an (e, ) exists then we handle two cases:
b = 0: Enumerate y into A;
b= 1: We need not take any action since z(e,i, k) N A = {) and no other requirement can
place any element of z(e,7, k) into A.

In either case, we declare R ;, satisfied and set
. . . A, (<d) .
res({e,1),s + 1) = {x : = is queried in the {e}s computation };

and for all (¢',i') > (e, i) declare R ;;y unsatisfied and set res((¢','),s + 1) = . For all

14



(€' 1") < (e,1) set res((e',i"),s + 1) = res({e',1'),s).
END OF CONSTRUCTION

We show that each P; is satisfied. The requirement R, ;y restrains at most ¢ elements
at any stage, since it only restrains numbers from A that are queried by one computation
of the form {e}fs(si)(z(e,i, k)). Therefore |res(j,s)| < nr(j), |[RES(j,s)] < NR(jy) <
|code(7)|, and part I of the construction can always be executed. Hence every P; is satisfied.
By the comments made about the coding, we have D <;; A. By the usual permitting

argument we have A <7 D. Standard finite injury techniques yield that each R; is
satisfied. X

In the proof, the permitting ensures that A is weak truth-table reducible to D. (Weak
truth-table reductions are defined in [18].) Therefore the preceding result holds for weak
truth-table degrees as well. Furthermore, if PARITYﬁH ¢ FQ(1,A) then certainly Ffi_l ¢
FQ(i,A). Hence we have the following corollary:

COROLLARY 12. Every nonrecursive r.e. weak truth-table degree contains an r.e. terse set.

5. Superterse Sets
Recall that a set A is superterse if, for all n and all B, F;! | ¢ FQ(n,B). Using the
Nonspeedup Theorem, we can show that every nonzero tt-degree contains a superterse set.

The following lemma is central to the proof.

LEMMA 13. Let A be a nonrecursive set. If Fi_, € FQ(n,B) via a fixed algorithm A

that works for all n, then there exists a superterse set C' <7 B.

Proof. Let

C = {(z,7) : on input x, A makes at least ¢ queries to B and the ith oracle answer is “yes”}.
Clearly C <7 B. Furthermore, the oracle answers required by A on input x can be
determined by making the single query F¢({(z,1),...,(z,n)) instead of making n serial
queries to B. Therefore Fyi_, € FQ(1, FS). If C were not superterse then we would have
FY ¢ FQ(n —1,D) for some n and D, but then Fi_, € FQ(n — 1, D), which violates the
Nonspeedup Theorem because 2% — 1 > 2771, X

15



THEOREM 14. Every nonzero tt-degree contains a superterse set.

Proof: Every nonzero tt-degree contains a semirecursive set A. The proof of Proposition 2
provides an algorithm A such that F/s_ |, € FQ(n, A) via A, and A terminates regardless
of oracle answers. Let C be the superterse set constructed in Lemma 13 (with B = A).
Since A terminates regardless of oracle answers, it follows from the definition of C' that
C <u B = A. By looking at the case n = 1 it is easy to see that A <,,, C (alternatively,
note that A @ C has the desired properties). X

Degtev [9] has shown that every nonzero truth-table degree contains at least two

bounded truth-table degrees. We extend this somewhat.

Definition: A set B is bounded weak truth-table reducible to a set A if B € FQ(1, F{) for
some k.

Note that truth-table reductions must converge even if incorrect oracle answers are
supplied; hence a bounded weak truth-table reduction need not even be a truth-table

reduction [17].

COROLLARY 15. Every nonzero truth-table degree contains two sets that are inequivalent

under bounded weak truth-table reductions.

Proof: By Theorem 3 and Theorem 14, every non-zero truth-table degree contains a verbose
set A and a superterse set B. Suppose that C' is some set that is bounded weak truth-
table reducible to A, i.e., that C € FQ(1,F{) for some k. Then F¢ € FQ(1,F2) C
FQ([log(kn +1)],A), so C is not superterse. In particular, B must not be bounded weak
truth-table reducible to A. X

We have natural examples of superterse sets, because the jump of every nonrecursive

set 1s superterse.

THEOREM 16. If A is nonrecursive then A’ is superterse.

Proof. Assume that A’ is not superterse. Then there exists a natural number n and a
set B such that F,;A_;_l € FQ(n,B). Since A <,, A', we have F/s € FQ(2",B & A").
We show that Fys € FQ(n,B @ A'), contradicting the Nonspeedup Theorem. Suppose

16



m > n and Fji € FQ(m,B @ A'). Then Fj% is computable by a set of 2™ partial
recursive functions by Lemma 7. Therefore, by the same lemma, there exists an oracle
X =7 A such that Fji € FQ(1,FX). Since X <p A, we have X <,, A'. Therefore
Fil € FQ(l,F,;é/) C FQ(m —1,B ¢ A') because m > n and F,f_il_l € FQ(n,B). Now a
simple induction shows that Fy% € FQ(n,B & A'). X

COROLLARY 17. Let n > 1. If A is ¥,,-complete or II,-complete then A is superterse.
Since K is verbose, we have the following corollary:

COROLLARY 18. A is recursive if and only if A’ is verbose. A is nonrecursive if and only if

A’ is superterse.

6. Amplifying Non-superterseness

In this section we show that if a set A is non-superterse, then A is “very” non-
superterse. That is, if Flﬁi—l € FQ(k, B) for some k and B then F ¢ FQ(O(logn),C)
for some C'. Intuitively this means that every non-superterse set is “nearly” verbose. By
defining variants of the semirecursive sets, we show that this result is tight. As a corollary,
we show that all Kolmogorov-random sets are superterse, and hence that almost all sets
are superterse.

Let (7;) denote the binomial coefficient “n choose 7 and let
n
S = )
mi= 5 (1)
0<i<k—1

The following lemma has appeared in [4]. A complexity-theoretic variant with essentially

the same proof has appeared in [2].

LEMMA 19. [4] If F#! is computable by a set of 2% — 1 partial recursive functions then, for

all n, F2 is computable by a set of S(n, k) partial recursive functions.

We note that the set of S(n, k) functions obtained in [4] is in fact obtained uniformly

n n.

17



If A is not superterse then there exists a natural number k and a set B such that
F,f € FQ(k —1,B), so F,f is computable by a set of 2871 partial recursive functions by
Lemma 7. Applying Lemma 8 with ¢ = F{* | and h = y we find that F{! | is computable
by a set of 28=1 — 1 partial recursive functions. Thus by the preceding lemma, for all n,

FA is computable by a set of S(n,k — 1) partial recursive functions. Therefore for all n,

there exists X,, = A such that FA € FQ(1, F()ngZ)log n-to(log n)), by Lemma 7. Since the
set of S(n, k) functions in the preceding lemma is obtained uniformly in n, the reduction
from X, to A is uniform in n. Let X be the recursive join of all the X;’s. Then X =7 A

and FA ¢ FQ(1, Fx

(k—2) log n-+o(log n)). In particular, we have

THEOREM 20. If A is not superterse then there exists a set X =7 A such that F4 €
FQ(17 FOX(log n))

Except for superterse sets, we have not given examples of sets A for which F/ requires
more than logn plus a constant number of queries. However, by analogy to semirecursive
sets, we can define sets that require logn times a constant number of queries. For any
natural number k we define a set A that is an initial segment of a recursive partial ordering
of N with k incomparable chains. Then F{ € FQ([klog(n 4+ 1)],4), and it is not hard to
construct A so that no smaller number of queries to any oracle is sufficient. Thus Theorem
20 1s tight.

In [4] there appears a result of some interest that is similar to Theorem 20, but which
does not require a change of oracle: if A is not terse then there is a real number r < 1
such that for all n, FA € FQ(n", A). A complexity-theoretic version of that theorem is
also proved in [4].

For a fixed universal Turing machine, the Kolmogorov complezity of a string =, denoted
K(xz), is the length of the shortest program that outputs z on empty input. A set A is
Kolmogorov-random if there exists a ¢ such that for infinitely many n, K(A[n]) > n — ¢,

where A[n] denotes the first n bits of the characteristic sequence of A.

CoOROLLARY 21. All Kolmogorov-random sets are superterse.

Proof: Suppose that A is not superterse. Then by Theorem 20 there exists a set X and an

18



oracle Turing machine M such that F4 € FQ(1, FX

Olog n)) via M. A[n] can be encoded by

specifying n, the machine M, and the answers to the O(logn) queries to X that are asked.
Hence A[n] can be encoded with O(logn) bits. Therefore A is not Kolmogorov-random.X

In particular, this implies that almost all sets are superterse. The converse of the
preceding corollary is easily seen to be false: not every superterse set is algorithmically
random. For example, if A is superterse, then so is Q = {2? : z € A}. But Q is somewhat
sparse and is therefore a nonrandom set; the first n? bits of Q can be described by an

input of length n 4+ O(1).

7. Open Problems

There are many open questions about terseness and verboseness not touched upon in
this paper. One interesting question is “does every nonzero 2-r.e. (m-r.e.) T-degree contain
a terse 2-r.e. (m-r.e.) set?” The proof we use for r.e. sets involves permitting, which does
not seem to work with 2-r.e. sets. Another question is whether every nonzero r.e. tt-degree
contains an r.e. terse set.

Recall that the Nonspeedup Theorem says we cannot determine which of 2" num-
bers belong to a nonrecursive set A by performing an FQ(n,X ) computation. Is there a
nonrecursive set A for which we can determine how many of 2" numbers belong to A by
performing an FQ(n,X ) computation? We conjecture that no such A exists. Along these

lines, Owings [18] has shown that necessarily n > 1 and A <7 K.

8. Acknowledgments
We would like to thank Carl Smith for suggesting the name “terse,” Larry Herman
and Mark Pleszkoch for proofreading, and Stuart Kurtz for asking whether the proof of

the Nonspeedup Theorem is necessarily nonuniform.

REFERENCES
1. Amir, A., BeigeL, R., AND GasarcH, W. I. Some Connections between Bounded
Query Classes and Non-Uniform Complexity. Proceedings of the Fifth Annual Con-
ference on Structure in Complexity Theory, IEEE Computer Society Press (1990).

19



10.

11.

12.

13.

14.

. BEiGEL, R. A Structural Theorem that Depends Quantitatively on the Complexity

of SAT. Proceedings of the Second Annual Conference on Structure in Complexity
Theory , IEEE Computer Society Press (1987), 28-32.

BeiGeL, R. When are k + 1 Queries Better Than k7 The Johns Hopkins University,
Department of Computer Science, TR-6 (1988).

BeiGEL, R. Query Limited Reducibilities. Ph.D thesis, Stanford University (1987).

BeiGEL, R. AND GasarcH, W. 1. On the Complexity of Finding the Chromatic Num-
ber of a Recursive Graph I: The Bounded Case. Annals of Pure and Applied Logic
45 (November 1989), 1-38.

BeiGEL, R. AND GasarcH, W. 1. On the Complexity of Finding the Chromatic Num-
ber of a Recursive Graph II: The Unbounded Case. Annals of Pure and Applied Logic
45 (December 1989), 227-247.

BeiGeL, R., GasarcH, W. ., aND Hay, L. Bounded Queries Classes and the Difference

Hierarchy. Archive for Math. Logic 29 (December 1989), 69-84.

Book, R. V. anD Ko, KEr-I. On Sets Truth-Table Reducible to Sparse Sets. SIAM
Journal of Computing, 17 (1988), 903-919.

DrecTEV, A. N. Three Theorems on tt-degrees. Algebra and Logic 17 (1978), 187-194.

DEkkER, J. C. E. A theorem on hypersimple sets. Proceedings American Math

Society 5 (1954), 791-796.

DEKKER, J. C. E. AND MYHILL, J. Retraceable Sets. Canadian Journal of Mathematics

10 (1958), 357-373.

EpsTeEIN, R. L., Haas, R., anD KraMER, R. L. Logic Year 1979-80. Hierarchies of
sets and degrees below (' (1981), 32-48. Lecture Notes in Mathematics 859, Springer-

Verlag, Berlin.

Ersnov, A. A Hierarchy of Sets LILIII. Algebra and Logic (1968a, 1968b, 1970).
Vol. 7 (1) 25-43, Vol. 7 (4) 212-232, Vol. 9 (1) 20-31.

JockuscH, C. G. Semirecursive sets and positive reducibility. Transactions of the

AMS 131 (May 1968), 420-436.

20



15.

16.

17.

18.

19.

20.

JockuscH, C. G. Degrees of Generic Sets. Recursion Theory: its Generalisations and

Applications, Proceedings of Logic Colloquium 1979, Leeds (August 1979), 140-157.

Ko, KeEr-I. On Adaptive Versus Nonadaptive Bounded Query Machines. Theoretical
Computer Science (To appear in 1991).

Lacuran, A. H. Some Notions of Reducibility and Productiveness. Zeitsch. f. math.
Logik und Grundlagen d. Math. 11 (1965), 17-44.

Owings, J. C. A Cardinality Version of Beigel’s Nonspeedup Theorem. .Journal of
Symbolic Logic 54 (September 1989), 761-767.

SoaRrE, R. I. Recursively Enumerable Sets and Degrees. Springer Verlag (Omega
Series), Berlin, 1987.

STROMBERG, K. R. An Introduction to Classical Real Analysis. Wadsworth Interna-

tional Mathematics Series, Belmont, California, 1981.

21



