
On Checking Versus Evaluation of Multiple Queries

William I. Gasarch∗ Lane A. Hemachandra† Albrecht Hoene‡

April 30, 1991

Abstract

The plausibility of computing the answers to many membership queries to

a hard set with few queries is the subject of the theory of terseness. In this paper,

we develop companion theories—both complexity-theoretic and recursion-theoretic—

of characteristic vector terseness. These theories ask whether the answers to

many membership queries to a hard set can be checked with fewer queries.

1 Introduction

In recursive function theory there is often no difference between checking and evaluating

a single instance of a function. However, the distinction between checking and evaluating

is fundamental in computational complexity theory. In its most popular version, this

distinction emerges as the P = NP question, but it also reappears in other problems of

the field [Val76,IT89]. We introduce the distinction between checking and evaluating to the

theory of terseness.

The theory of terseness studies whether it is possible—using only a few questions—

to compute the answers to many questions to an oracle. Pioneering research in this

area was done by Bārzdiņš [Bār68]—and, more recently, by Beigel, Gasarch, Gill, and

Owings [BGGO]—for a recursion-theoretic context, and by Amir and Gasarch [AG88] and

∗Institute for Advanced Computer Studies, Department of Computer Science, University of Maryland,
College Park, MD 20742. Research supported in part by the National Science Foundation under research
grants CCR-8803641 and CCR-9020079.

†University of Rochester, Department of Computer Science, Rochester, NY 14627. Research supported
in part by the National Science Foundation under research grants CCR-8809174, CCR-8996198, and CCR-
8957604.

‡Technische Universität Berlin, Fachbereich Informatik, D-1000 Berlin 10. Research supported in part
by a Deutsche Forschungsgemeinschaft Postdoktorandenstipendium.

1

Beigel [Bei87] for a polynomial-time framework. These papers study the complexity of

evaluating the values of (many) queries—that is, of computing the answers to the queries.

This paper develops a theory of characteristic vector terseness—the ‘checking’ counterpart

to the theory of terseness. Given a vector of queries to an oracle and proposed answers to

the queries, we want to know whether all the answers are correct; that is, we wish to

determine whether the vector of answers is the characteristic vector of the queries relative

to the considered language. The minimal number of queries that suffice for this purpose is

called the characteristic vector cost of the language considered.

Section 2 studies the problem for nonrecursive sets. In this context the appropriate

question for characteristic vector cost is: What is the minimum number j such that the

answers to n queries to A can be checked with j queries to A? We show that from a

result of [Rog67] it follows that the characteristic vector cost of K is exactly two. This

strengthens the result of [BGGO] (see also [Bār68]) that computing the solutions to two

queries to K requires two queries to K. Other results on the characteristic vector cost of

nonrecursive languages are also proven; in particular, for each k we show that there are sets

whose characteristic vectors can be checked with k queries but not with k − 1.

In the resource-bounded world of feasible computations, Section 3 explores the analogous

question for polynomial-time oracle machines, and finds that the characteristic vector cost

of a language is closely related to its basic set-theoretic properties. Our results show a

connection between characteristic vector costs and boolean hierarchies [Hau14,CGH+88,

CGH+89]. For reasonably well-behaved classes C, the characteristic vectors of sets in C

can be checked with one query if and only if the boolean hierarchy over C collapses in a

certain way.

We next consider the characteristic vector cost of NP. If characteristic vectors of NP

languages are recognizable uniformly (that is, via a single polynomial-time oracle machine)

with one query to a language of the same class, then we can derive a strong conclusion:

all languages polynomial-time truth-table reducible to a language L of the considered class

are in fact 1-truth-table reducible to L. Finally, we investigate some specific classes within

the boolean hierarchy over NP and show how their characteristic vector costs relate to the

existence of a proper boolean hierarchy over NP.

Before presenting our results, let us introduce some notation. 〈·, ·, . . . , ·〉 applied to k

arguments (k ≥ 2) denotes the polynomial-time computable k-ary pairing function from

Nk → N used in [Rog67]. We make use of these functions for strings as well by identifying

i ∈ N with string(i), which stands for the i-th binary string in lexicographical order;

2

henceforth, when we use the pairing functions on strings, we tacitly assume that the function

string and its inverse are being used to convert the strings to integers and to convert the

output of the pairing function back to a string. As to singleton arguments, by convention

we’ll consider 〈x〉 to represent x. For any language A ⊆ Σ∗, we denote by A its complement

and by Ak the set {〈x1, . . . , xk〉|xi ∈ A for 1 ≤ i ≤ k}. For sets Ai ⊆ Σ∗ the k-fold disjoint

union A1 ⊕A2 ⊕ . . .⊕Ak is defined by ∪k
i=1 {〈string(i), x〉|x ∈ Ai}.

P (NP) denotes the class of languages that can be accepted by deterministic (nondeterministic)

polynomial-time Turing machines [HU79]. PC and NPC refer to the analogous classes

relative to an oracle from the class C [BGS75]. If during such a computation only a limited

number of oracle queries are permitted (say k), we indicate that by the additional superscript

[k], for example, PNP[k] [PZ83]. In general, the classes dealt with are either well-known or

will be defined explicitly as needed.

We now propose and study an “answer checking” analog of the [Bār68,BGGO,AG88]

theory of terseness.

2 Recursion-Theoretic Results on Characteristic Vectors

We study the number of queries required to verify whether a given string is a characteristic

vector of a nonrecursive set.

Definition 2.1 If A ⊆ Σ∗ and x1, . . . , xi ∈ Σ∗ then let

FA
i (x1, . . . , xi) = 〈χA(x1), . . . , χA(xi)〉,

V A
i = {〈x1, . . . , xi, b1, . . . , bi〉 | (∀j)[χA(xj) = bj]},

and

V A
ω =

∞⋃

i=1

{〈i, v〉 | v ∈ V A
i }.

where χA is the characteristic function of A.

Definition 2.2 [BGGO] Let i ∈ N and let A be a set. Q(i, A) is the collection of all sets

B such that B ≤T A and this Turing-reduction can be performed by a machine that makes

at most i serial queries to A. Q||(i, A) is the collection of all sets B such that B ≤T A and

this Turing-reduction can be performed by a machine that makes at most i parallel (i.e.,

truth-table) queries to A.

3

A language L is said to be k-pterse [AG88] if a polynomial-time oracle machine cannot

in general compute the correct answers to an input set of k queries with fewer than k queries

to the oracle L; if L is k-pterse for each k ≥ 2 then it is pterse [AG88]. We now introduce a

notion—vterseness—original to this paper, that allows us to define and study the “checking”

analog of pterseness.

Definition 2.3 A set A is vterse if for all i ≥ 1, V A
i /∈ Q(i− 1, A).

Definition 2.3 defines vterseness in terms of sequential (adaptive) oracle queries. It

might also be natural to define vterseness in terms of parallel queries; that is, a set might

be said to be vterse|| if for all i ≥ 1, V A
i /∈ Q||(i − 1, A). However, we are concerned with

proving that certain sets are vterse; thus, the definition we adopt is more demanding, and

results about parallel vterseness follow implicitly.

We are interested in how many queries to A are required to decide the set V A
i (and V A

ω).

Naively it appears that for sets A that are nonrecursive, i queries might be required.

We first examine r.e. sets. How many queries are required to compute V A
i if queries to

an r.e. set other than A are allowed? Let K be the halting set: K = {i |Mi(i) halts}.

Theorem 2.4 If A is r.e. and i ∈ N , then V A
i ∈ Q||(2,K).

Proof: Given 〈x1, . . . , xi, b1, . . . , bi〉 create machinesMy1
andMy2

such thatMy1
enumerates

A and stops only if all the elements of {xj | bj = 1} appear, andMy2
enumerates A and stops

only if some element of {xj | bj = 0} appears. It is easy to see that 〈x1, . . . , xi, b1, . . . , bi〉 ∈

V A
i if and only if (y1 ∈ K) ∧ (y2 /∈ K).

The above proof in fact shows that V A
i is 2-r.e. (see [EHK81] for a definition of 2-r.e.).

Theorem 2.4 is optimal for A = K in that the set V K
2 requires two queries to K. The

following proof of Theorem 2.5, pointed out to us by Richard Chang, is more direct than

that found in earlier versions of this paper.

Theorem 2.5 V K
2 /∈ Q(1,K).

Proof: It is known (see [Rog67]) that the m-degree of K × K contains the m-degree of

K ⊕K properly. By the fact that K ×K many-one reduces to V K
2 , it follows that every

language in the m-degree of K × K many-one reduces to V K
2 . Since every language in

Q(1,K) many-one reduces to K ⊕K it follows that V K
2 /∈ Q(1,K).

4

It is easy to see that certain sets are necessarily vterse. For example, a class of sets

for which (∀i)[Ai+1 6∈ Q(i, A)]—namely the 1-generic sets (see [Joc79])—was identified

in [BGGO]; thus these sets are all vterse. Since the class of 1-generic sets is comeager [Joc79],

the class of vterse sets is also comeager.

The following theorem shows that non-vterse sets are ubiquitous.

Theorem 2.6 Every truth-table degree (see [Rog67]) contains a set A such that V A
ω ∈

Q(1, A).

Proof: Let D be any set. We construct A ≡tt D such that V A
ω ∈ Q(1, A). Let A0 = D.

For j ≥ 0 let Aj+1 = {〈y1, b1, m1, . . . , yw, bw, mw, w, j + 1〉 | w ≥ 1 and (∀h)[1 ≤ h ≤

w ⇒ [(0 ≤ mh ≤ j) and (F
Amh
1 (yh) = bh)]]. Set A = ∪∞j=1Aj (note that A0 is excluded).

It is easy to see that A ≡tt D and that

〈y1, . . . , yw, b1, . . . , bw〉 ∈ V
A
ω iff 〈y1, b1, q1, · · · , yw, bw, qw, w, q + 1〉 ∈ A,

where the q` are such that y` = 〈r`, q`〉 and q is the maximum value of the last component

of any yj (since we are adopting the recursively defined pairing functions of Rogers, this

can be written q = max1≤h≤j{qh | yh = 〈rh, qh〉}).

Combining a diagonalization scheme with an extension of the coding technique of

Theorem 2.6, we now generalize and strengthen the claim of Theorem 2.5. In particular,

for each k, we show that there are sets A whose (unbounded) characteristic vectors can be

checked with k parallel queries to A, but cannot be checked with k− 1 parallel queries—or

even k − 1 sequential queries—to A. That is, we show that, for each k, there exists a set

A such that V A
ω ∈ Q||(k,A) − Q(k − 1, A). In a certain sense, this is a strongest possible

separation.

To ensure that V A
ω ∈ Q||(k,A), our proof constructs A so that A codes information

about itself. Our construction will rely on the following machinery.

Notation 2.7 For each k ∈ N , fix partition schemes (based on k) and a function ck, as

specified below.

1. Recursively partition Σ∗ into k infinite parts Z1, . . . , Zk as follows (note that we’ll

tacitly use the correspondence between strings and natural numbers). For each 1 ≤

i ≤ k − 1, let Zi = {〈i, a, b〉 | a, b ∈ N}. Also, let Zk = {〈i, a, b〉 | a, b ∈ N, i ≥ k}.

2. For each 1 ≤ i ≤ k, recursively partition Zi into an infinite number of infinite parts

Zi1, Zi2, . . . as follows (we think of each Zi as an infinite matrix whose hth row consists

5

of the elements of Zih). For 1 ≤ i ≤ k − 1 and j ≥ 1, let Zij = {〈i, j, b〉 | b ∈ N}.

Also, for j ≥ 1 let Zkj = {〈i, j, b〉 | b ∈ N, i ≥ k}.

3. We call the elements of any Zij elements of rank j. For each j ≥ 2 and 1 ≤ i ≤ k,

let Q̂ij = {〈m, z, j〉 | (m ≥ 2) ∧ (∃ y1, . . . , ym ∈
⋃

d̂<j
Z

id̂
) (∃ b1, . . . , bm ∈ {0, 1})

[z = 〈y1, . . . , ym, b1, . . . , bm〉] }. Intuitively, Q̂ij is a “tag” of j together with all

tuples of queries/purported-answers such that each query name is a string of Zi and

of rank less that j.

We’ll now define ck(x) so that it map each Zij (1 ≤ i ≤ k, j ≥ 2) one-to-one onto Q̂ij ,

so that the elements of Zij can be interpreted as vectors of queries/purported-answers.

Eventually, this will allow us—in certain cases—to compress many membership queries/purported-

answers about Zi

⋂
A into a single query to some element of Zi. For j ≥ 2, 1 ≤ i ≤ k,

and x ∈ Zij , define ck(x) to be the lexicographically uth smallest string in Q̂ij , where

x is the uth smallest string lexicographically in Zij .

Note that ck is a recursive bijection from domain Σ∗ −
⋃

1≤i≤kZi1 onto the range
⋃

1≥i≤k, j≥2 Q̂ij . This bijection has the following “sub-bijection” property: for each

j ≥ 2 and 1 ≤ i ≤ k, it holds that ck restricted to Zij is a one-to-one onto map

between Zij and Q̂ij .

Since the functions ck defined above are recursive bijections (relative to the range and

domain specified), they have recursive inverses (c−1
k). We re-emphasize the fact that ck

always maps elements of rank j to strings of the form 〈m, 〈y1, . . . , ym, b1, . . . , bm〉, j〉 where

the yi are elements of rank strictly less than j (elements of rank 1 are not within the domain

of ck).

Definition 2.8 Let k ∈ N . Let ck be as defined above. A set A is k-self-coding if, for every

x of rank j ≥ 2,

x ∈ A if and only if (ck(x) = 〈m, z, j〉 and 〈m, z〉 ∈ V
A
ω).

(Intuitively, membership information in A for elements in the jth row of Zi can be obtained

from the first j − 1 rows of A ∩ Zi.)

Lemma 2.9 Let k ∈ N . If A is k-self-coding then V A
ω ∈ Q||(k,A).

Proof: Given 〈y1, . . . , ym, b1, . . . , bm〉—with yi ∈ Σ∗ and bi ∈ {0, 1} for 1 ≤ i ≤ m—we

may assume, by implicitly shuffling the labels of both the yjs and bjs, that there exists an

6

integer l, 1 ≤ l ≤ k, and integers m1,m2, . . . ,ml−1, 1 ≤ i1 < i2 < · · · < il ≤ k such that, in

the case l ≥ 2 (the l = 1 case is immediate):

y1, . . . , ym1
∈ Zi1 ,

ym1+1, . . . , ym2
∈ Zi2 ,

...

yml−1+1, . . . , ym ∈ Zil .

For each 1 ≤ p ≤ l, let rp be the maximum rank of any of the yj in Zip above. Note that

〈m, 〈y1, . . . , ym, b1, . . . , bm〉〉 ∈ V
A
ω if and only if

c−1
k (〈m1, 〈y1, . . . , ym1

, b1, . . . , bm1
〉, 1 + r1〉) ∈ A ∧

c−1
k (〈m2 −m1, 〈ym1+1, . . . , ym2

, bm1+1, . . . , bm2
〉, 1 + r2〉) ∈ A ∧

...

c−1
k (〈m−ml−1, 〈yml−1+1, . . . , ym, bml−1+1, . . . , bm〉, 1 + rl〉) ∈ A.

Hence V A
ω ∈ Q||(k,A).

Lemma 2.10 If A is k-self-coding then A ≤tt A
⋂
(
⋃

k
i=1Zi1) by a specific reduction f

such that if x ∈ Zi0 then all strings mentioned in f(x) are in Zi01. The reduction f below

works for any k-self-coding A. (Intuitively, A is truth-table reducible to the elements of A

of rank 1.)

Proof:

Let x be any string. If x is of rank 1 then x ∈ A if and only if x ∈ A
⋂
(
⋃

k
i=1Zi1). If

x is of rank j > 1, and x ∈ Zi0 , then x is of the form c−1
k (〈m, 〈y1, . . . , ym, b1, . . . , bm〉, j〉),

where all the yi are in Zi01
⋃
Zi02

⋃
· · ·

⋃
Zi0(j−1). Since A is k-self-coding,

x ∈ A if and only if (∀i : 1 ≤ i ≤ m)[χA(yi) = bi].

For each yi of rank greater than 1, each of the statements ‘χA(yi) = bi’ can be similarly

reduced. Eventually, the statement ‘x ∈ A’ is seen to be equivalent to a boolean combination

of statements of the form ‘y ∈ A’ where every y is in Zi01. Each such ‘y ∈ A’ is equivalent

to ‘y ∈ A
⋂
Zi01.’ Hence A ≤tt A

⋂
(
⋃

k
i=1Zi1) by a reduction f such that if x is in Zi0 ,

then all strings mentioned in f(x) are in Zi01.

Note that the truth-table reduction specified is correct for any k-self-coding set A.

By the above lemma, any k-self-coding set is determined by its rank 1 elements.

7

Theorem 2.11 For every k ∈ N there exists a set A ≤T K such that V A
ω ∈ Q||(k,A), but

Ak /∈ Q(k − 1, A).

Proof: Let M
()
0 ,M

()
1 ,M

()
2 , . . . be a standard list of all oracle Turing machines. If X is a set

and MX
i is total and 0-1 valued then let L(MX

i) be the language decided by MX
i .

We construct a k-self-coding set A that satisfies the requirements:

Re: (∀x)[M
A
e (x) makes ≤ k − 1 queries and converges]⇒ L(MA

e) 6= Ak.

At the end of every stage e we will have a pair of disjoint finite sets (A1
e, Â

1
e) such that

A1
e is the set of rank 1 elements we have determined are in A, and Â1

e is the set of rank 1

elements we have determined are not in A. The construction determines the membership

in A of all strings of rank 1, hence by Lemma 2.10 the membership in A of all strings has

been determined.

CONSTRUCTION OF A

Stage 0: A1
0 = ∅, Â1

0 = ∅.

Stage e+1: (We satisfy Re during this stage.) For 1 ≤ i ≤ k, let xi denote the least element

of Zi1 such that xi /∈ A
1
e

⋃
Â1

e. We ensure that either:

1. MA
e (〈x1, . . . , xk〉) diverges, or

2. the computation of MA
e (〈x1, . . . , xk〉) asks more than k − 1 questions, or

3. MA
e (〈x1, . . . , xk〉) = 1 and some xi /∈ A, or

4. MA
e (〈x1, . . . , xk〉) = 0 and for all i such that 1 ≤ i ≤ k, it holds that xi ∈ A.

It is easy to see that any of these outcomes ensure that Re is satisfied.

We simulate MA
e (〈x1, . . . , xk〉). Since we have only incomplete information about A,

we may determine A(x) for some values of x during the simulation. To avoid notational

difficulties the term A1
e (Â1

e) refers to the finite set A1
e (Â1

e) at the end of stage e, unioned

with all strings that have been placed into A1
e (Â1

e) at this stage (e + 1) up to the current

point.

Since we are merely required to ensure that A ≤T K, we may use K as an oracle during

the construction. Thus, we may assume that our simulation of MA
e (〈x1, . . . , xk〉) converges,

outputs either 0 or 1, and never makes more than k−1 queries. (That is, initially and after

each query is made and answered, we ask K, ‘Will the computation ask any more queries?’

and ‘Will the computation converge from the current configuration?’ If we ever discover

8

that either a kth query is to be asked, or that the computation does not converge, then

the simulation halts and outputs 0 (by convention). If the computation runs normally to

completion, then if the output is nonzero, change it to 1.) Our simulation will not mention

this explicitly.

We simulate MA
e (〈x1, . . . , xk〉) as follows. Run the computation. Whenever a query q

is encountered we do the following. Let i0 be such that q ∈ Zi0 . Since we intend that A be

k-self-coding we want, by Lemma 2.10,

q ∈ A if and only if ψ(z1, . . . , zm)

where ψ(z1, . . . , zm) is a boolean combination of statements (by Lemma 2.10’s “unrolling”

of applications of ck) of the form ‘zi ∈ A,’ and each zi is in Zi01. Put all elements of

{z1, . . . , zm} that are not in Â1
e into A1

e. (Note that since all the zi are in Zi01, at most one

of {x1, . . . , xk} was put into A
1
e, namely xi0 . This is because, by the definition above of the

xi, at most one xi is in each Zh.) Now the membership of q in A has been determined and

the query can be answered.

Since at most k − 1 queries are made, at most k − 1 of the xi are placed into A1
e (none

are placed into Â1
e) during the simulation. Hence there exists a j such that the status of xj

in A is not determined.

At the end of the simulation, ifMA
e (〈x1, . . . , xk〉) = 0 then let A1

e+1 be A
1
e

⋃
{x1, . . . , xk},

and Â1
e+1 be Â1

e If MA
e (〈x1, . . . , xk〉) = 1 then let Â1

e+1 be Â1
e

⋃
{xj}, and A1

e+1 be A1
e.

(Recall that, in to avoid notational problems, we let A1
e (Â1

e) be what A1
e (Â1

e) was at the

end of stage e, together with whatever strings we had added up to that point.)

END OF CONSTRUCTION

Let A be the k-self-coding set whose rank 1 elements are
⋃

e≥1A
1
e. That is, let A be

the set that satisfies (
⋃

i≥0Zi1)
⋂
A =

⋃
e≥1A

1
e and that is k-self-encoded by the fixed

ck and partition scheme of Notation 2.7. By the nature of the construction, it is clear

that A is k-self-coding, and that each Re is satisfied. Since A is k-self-coding it holds that

V A
ω ∈ Q||(k,A), but by construction Ak /∈ Q(k − 1, A).

Theorem 2.12 Let k ∈ N . Every Turing degree above (or equal) to that of K contains

a set A such that V A
ω ∈ Q||(k,A), but Ak /∈ Q(k − 1, A). Thus, in particular, V A

ω ∈

Q||(k,A)−Q(k − 1, A).

Proof:

9

Let b be a Turing degree above (or equal) to K, and let B ∈ b. We modify the proof

of Theorem 2.11 by initially recursively coding B into a recursive subset of Z11. Assume,

without loss of generality, that there exists infinite recursive sets U and V such that

Z11 = {x | (∃u ∈ U) [x = 0u]}
⋃
{x | (∃v ∈ V) [x = 1v]}.

Let d be a recursive bijection from U to Σ∗. During stage 0 of the construction let A1
0 =

{0u | d(u) ∈ B} and Â1
0 = {0u | d(u) /∈ B}. For the rest of the construction we think of A1

e

(Â1
e) as being a finite list of rank 1 elements, together with A1

0 (Â1
0). Whenever we need to

know if some z is in A1
e (Â1

e), if z /∈ 0U then we use the finite list; if z ∈ 0U then we use

the oracle B (i.e., if z = 0u, u ∈ U , then (1) z ∈ A1
e if and only if d(u) ∈ B, and (2) z ∈ Â1

e

iff d(u) /∈ B). Hence the construction is recursive in K ⊕B ≤T B, so A ≤T B.

By the coding at stage 0, B ≤m A: z ∈ B if and only if 0d−1(z) ∈ A.

Corollary 2.13 Let k ∈ N . For every Turing degree b such that K ≤T b there exists a

set A ∈ b such that V A
ω ∈ Q(k,A)−Q(k − 1, A).

We now examine vterseness for r.e. sets.

Theorem 2.14 Every r.e. Turing degree contains r.e. sets A and B such that V A
ω ∈

Q||(2, A) and B is vterse.

Proof: Every r.e. Turing degree contains an r.e. set that is semirecursive, i.e., a lower cut

of a recursive linear ordering [Joc68]. Let A be that set, and let < denote the recursive

linear ordering. We show that V A
ω ∈ Q||(2, A).

Given 〈x1, . . . , x
′
y, b1, . . . , b

′
y〉, check to see that for every repeated element we have

consistent claims about the element’s membership in the set (that is, check that xk = xl ⇒

bk = bl). If this is not the case, the given characteristic vector is not in V A
ω . Otherwise,

remove all but one copy of each duplicated element and rename the arguments such that

x̂1 < x̂2 < · · · < x̂y, and rename the bj ’s via the same permutation. If there is an i such that

b̂i = 0 and b̂i+1 = 1, then the given characteristic vector is not in V A
ω . If no such i exists,

then either (1) there exists a j such that b̂1 = b̂2 = · · · = b̂j = 1 and b̂j+1 = · · · = b̂i = 0

in which case it is easy to see that the given characteristic vector is in V A
ω if and only if

(x̂j ∈ A) ∧ (x̂j+1 /∈ A), or (2) b̂1 = b̂2 = · · · = b̂y = 0 in which case the given characteristic

vector is in V A
ω if and only if (x̂1 6∈ A), or (3) b̂1 = b̂2 = · · · = b̂y = 1 in which case the given

characteristic vector is in V A
ω if and only if (x̂y ∈ A).

10

In [BGGO] it was shown that every r.e. Turing degree contains an r.e. set B such that

for all i the set PARITYB
i+1 = {〈x1, . . . , xi+1〉 | B ∩{x1, . . . , xi+1} contains an even number

of elements} is not in Q(i, B). A careful examination of the proof reveals that B
i+1

is not

in Q(i, B). Hence for all i, V B
i+1 /∈ Q(i, B), so B is vterse.

By way of contrast, it follows easily from Theorem 2.5 that some m-degrees—e.g., that

of the r.e. complete sets—contain no sets A for which V A
ω ∈ Q(1, A). Though it follows

from Theorem 2.6 that every r.e. Turing degree contains a set A such that V A
ω ∈ Q(1, A), it

remains an open question whether every r.e. Turing degree contains a recursively enumerable

set A such that V A
ω ∈ Q(1, A).

3 Characteristic Vector Complexity and Boolean Hierarchies

To what extent do the results of the last section hold in a resource-bounded framework?

The last section’s questions about characteristic vector complexity become, in a time-

bounded world: Given a vector of queries and a vector of purported answers to the queries,

how many queries does a polynomial-time oracle machine need to check whether all the

answers are correct? We are primarily interested in classes that lie above P and are

reasonably well-behaved.

Definition 3.1 We call a class C interesting if:

1. P ⊆ C,

2. C is closed under disjoint union, i.e., if L1, . . . Lk ∈ C then L1⊕L2⊕ . . .⊕Lk ∈ C,

3. C is closed under cylindrification,1 i.e., for any language L ∈ C the sets L1 =

{〈x, y〉 |x ∈ L, y ∈ Σ∗ } and L2 = {〈x, y〉 |x ∈ Σ∗, y ∈ L} are in C, and

4. C is closed downwards under ≤p
m reductions, i.e., L′ ∈ C and L ≤p

m L′ implies L ∈ C.

We now define a complexity-theoretic notion of characteristic vector cost. Our approach

here differs from that of the previous section. That section, dealing with the recursion-

theoretic case, defined characteristic vector costs for sets. In contrast, we define complexity-

theoretic costs for classes—that is, when trying to test characteristic vectors of an (arbitrary)
1This is just for convenience, as closure under cylindrification follows from part 4. (The minor difficulty

that a non-onto pairing function would cause the cylindrification of Σ∗ not to many-one reduce to Σ∗ is

not a problem due to our onto pairing functions, or, alternatively, due to part 1’s guarantee that the class

contains sets other than the empty set and Σ∗.)

11

set from a class, we allow as our oracle any set from that class (and in particular, we allow

oracles other than the set actually being tested).

This has an effect on the form of our results. For example, though many queries to

any NP set can be checked with two queries to SAT, it is easy to construct relativized

worlds A in which specific NPA sets are relativized vterse. Our formulation blurs the latter

case—which reflects the complexity of computing with specific sets whose information is

not well-organized—in order to focus on the former case—which reflects the striking ability

of complete sets to provide a uniform and structured approach to the classes for which they

are complete.

Definition 3.2 Let C be any class of sets.

1. The characteristic vector cost of a class C is:

CVC(k) = min
i≥0

{ i : for allL ∈ C, V L
k ∈ PC[i] }.

2. CV +
C (k) = min

i≥0
{ i: for all L ∈ C, Lk ∈ PC[i] }.

3. CV −C (k) = min
i≥0
{ i: for all L ∈ C, L

k

∈ PC[i] }.

4. CVC = min
i≥0
{ i: for all L ∈ C, V L

ω ∈ PC[i] }.

We observe that the behavior of a class under basic set-theoretic operations is related to

its characteristic vector cost. Note that, in contrast with Section 2, the machines accessing

C here are constrained to run in polynomial time.

Proposition 3.3 Let C be an interesting class other than P. If C is closed under:

1. union (intersection) then for all k: CV −C (k) = 1 (CV +
C (k) = 1).

2. complement then for all k: CV +
C (k) = CV −C (k) = CVC(k).

3. union and complement (equivalently, intersection and complement) then for all k:

CVC(k) = 1 .

4. union and intersection then for all k: CVC(k) ≤ 2.

Proof:

1. By the assumption that C is different from P, we know that CV +
C (k) and CV −C (k) are

greater than 0 if k ≥ 1. Let L be a language in C. Since C is closed under cylindrification,

12

L′ = {〈x, y〉 |x ∈ L, y ∈ Σ∗ } and L′′ = {〈x, y〉 |x ∈ Σ∗, y ∈ L } are in C. By the

assumption that C is closed under union the set L′∪L′′ = {〈x, y〉 |x ∈ L or y ∈ L} belongs

to C. On an input 〈x, y〉 an oracle machine can check with one query to this oracle if both

x and y do not belong to L. This is easily seen to work for arbitrary k. For intersection the

proof is analogous.

2. It suffices to show that CVC(k) ≤ CV +
C (k). Let L ∈ C, C closed under complement.

Clearly V L
k ≤p

m (L⊕ L)k ∈ PC[CV +

C
(k)]. Thus CVC(k) ≤ CV +

C (k).

3. and 4. are immediate by 1. and 2. In particular, part 4 holds because in this case

CVC(k) ≤ CV +
C (k) + CV −C (k) ≤ 1 + 1.

The proposition indicates that the characteristic vector costs of a class reflect its closure

properties under the corresponding operations. Another way to view results such as Proposition 3.3

is as a study of which assumptions about C are needed to make CVC(k) coincide for different

k (right down to k = 1 or k = 2). For example, part 4 of Proposition 3.3 says that

CVC(k) = CVC(2) for all k ≥ 2, when C is closed under union and intersection. Similarly,

if C is closed under the constructions:

L→ {x1#x2# · · ·#xz | (∃i)[xi ∈ L]}

L→ {x1#x2# · · ·#xz | (∀i)[xi ∈ L]}

then CVC(k) = CVC(2) = CVC for all k ≥ 2.

Definition 3.4 We say that an interesting class C is cv-wee2 under complement if for all

k ≥ 1 : CV +
C (k) = CV −C (k) = CVC(k).

Definition 3.5 A class C has wee characteristic vector cost if, for all k ≥ 1, CVC(k) = 1.

From Proposition 3.3 it follows that among the classes with wee characteristic vector

cost are all interesting deterministic classes that are defined by time or space bounds,

parity polynomial time (⊕P, defined in [PZ83,GP86]), ZPP [Gil77], the ∆p
k-classes of the

polynomial hierarchy, and so on, because they are each closed under complement and union.

Also by Proposition 3.3 the characteristic vector cost is not higher than two for classes

such as NP, the Σp
k and Πp

k levels of the polynomial hierarchy [Sto77], and FewP ([AR88],

2We use the term “wee,” rather than “small,” to avoid confusion with the technical meaning sometimes

assigned to the word “small” (for example, in Rubinstein’s recent work on “small generalized Kolmogorov

complexity” [Rub90]).

13

see also [Rub88,CH90]), since they are closed under union and intersection. Among the

classes for which the number of queries can not be reduced straightforwardly are US (which

tests for unique solutions, [BG82], see also [GW87]) and the classes of the boolean hierarchy

over NP [CGH+88,CGH+89]. Their vector checking cost will be studied in Theorem 3.15

and its corollaries.

We’ve seen for many well-known classes C that CV C(k) ≤ 2. We now begin a series

of results, leading to the conclusion that CV C(k) ≤ 1 would imply surprising structural

consequences. For example, if CV NP(2) ≤ 1, then the polynomial hierarchy would collapse.

We now turn to boolean hierarchies over complexity classes. Among them, the boolean

hierarchy over NP has received the most attention [CGH+88,CGH+89]. However, the same

definitions can be used to define boolean hierarchies over arbitrary classes [Hau14,Wag88,

BBJ+]:

Definition 3.6 For a class C, we define:

1. BHC(1) = C.

2. BHC(k) = {L1 − L2 |L1 ∈ C, L2 ∈ BHC(k − 1)} for k > 1.

3. BHC represents the boolean closure of C; that is, the closure of C under boolean

operations (
⋃
,

⋂
, complementation).

For the case C = NP, it holds that BHNP =
⋃

k BHNP(k), and the definition of the

hierarchy’s levels given in Definition 3.6 is equivalent to many alternate definitions [CGH+88,

Sections 2.1 and 2.2]; however, this is not necessarily true for arbitrary classes C.

We state the following folk theorem related to the work of Beigel [Bei], Bertoni et.

al. [BBJ+], Cai et. al. [CGH+88], and Kobler et. al. [KSW87]; there has been much confusion

in the literature, due to the fact that the various definitions of the boolean hierarchy are

not interchangeable for arbitrary classes.

Proposition 3.7 Let C be any class of sets such that C−{∅, Σ∗} is non-empty and closed

downwards under many-one reductions. For all k ≥ 1 : PC[k] ⊆ BHC .

Proposition 3.7 holds since we may consider, by brute-force, all 2k possible sets of query

answers.

We observe that if there exists any k > 1 such that one can recognize characteristic

vectors of length k with one query then one can do the same for every length.

14

Proposition 3.8 Let C be an interesting class. If there is a k > 1 with CVC(k) = 1, then

for all i ≥ 1 it holds that CVC(i) = 1.

Proof: CVC(j) = 1 for j ≤ k, via repeating values. We proceed by induction. Suppose

CVC(j) = 1 for some j ≥ k. Let M be the machine that checks characteristic vectors

of length j for a language L ∈ C with one query to an oracle L′ ∈ C. Now vectors

(x1, . . . , xj+1, b1, . . . , bj+1) of L can be checked the following way: Run M on the vector

v = (x1, . . . , xj , b1, . . . , bj) pursuing both possible outcomes of the query but without

actually asking the query to the oracle. If both outcomes of the query q(v) are different

(otherwise the case is trivial), we know that v is a characteristic vector if and only if M

accepts on the ‘yes’ path and q(v) ∈ L′ or M accepts on the ‘no’ path and q(v) 6∈ L′. Since

C is closed under disjoint union there is a machine M ′ checking membership in V L⊕L′

2 with

one query to a language L′′ ∈ C. We run M ′ on (1q(v), 0xj+1, 1, bj+1) if M accepts v on

the ‘yes’ path, and on (1q(v), 0xj+1, 0, bj+1) if it accepts v on the ‘no’ path. Thus one

query to L′′ suffices to check vectors of length j + 1, and the claim follows.

The following theorem explores the consequences for these boolean hierarchies of wee

characteristic vector costs of their basic classes.

Theorem 3.9 Let C be an interesting class that contains P properly: (∃k > 1)[CVC(k) =

1] if and only if BHC = PC[1].

Proof:

If BHC = PC[1] then by Proposition 3.7 we get V L
k ∈ PC[1], which means that we can check

characteristic vectors of length k with one query to a language in C.

Now assume the left-hand side of the equivalence holds.

‘PC[1] ⊆ BHC ’: By Proposition 3.7.

‘BHC ⊆ PC[1]’: Fix S ∈ BHC . We will show that S ∈ PC[1]. By definition there is a k such

that S = S1 − (S2 − (· · · Sk−1 − Sk) · · ·), with Si ∈ C for all i ≤ k. This gives rise to a

boolean formula with

x ∈ S ⇐⇒ S1(x) ∧ ¬(S2(x) ∧ ¬(· · · ¬(Sk−1(x) ∧ ¬Sk(x)) · · ·)),

where Si(x) stands for x ∈ Si. The conjunctive normal form of this formula is of the form

cl1 ∧ cl2 ∧ · · · ∧ clj , where j and the number of literals in each clause cli are constant, i.e.,

they depend only on S but not on the individual input string x. Thus it is clear that there

is a machine that evaluates each clause cli = (Si1(x), . . . , Sis(x),¬Sis+1
(x), . . . , ¬Sir(x))

15

with one query to a C language: Since C is interesting S1⊕· · ·⊕Sk ∈ C and by Proposition

3.8 there is machineM that checks S1⊕· · ·⊕Sk-vectors of the maximal length of all clauses

cli with one query to a language L′ ∈ C. We runM on the vector vi = (〈string(i1), Si1(x)〉,

. . . , 〈string(ir), Sir(x)〉, 0, . . . , 0, 1, . . . , 1) with 0 repeated s times and 1 repeated r − s

times—exploiting the fact that vi is a characteristic vector of S1 ⊕ · · · ⊕ Sk if and only if

the value of the clause cli is false.

Without loss of generality we can assume that for any vector vi this machine queries

q(vi), accepts on one outcome of the query, and rejects on the other one. Thus the value of

cli is true if and only if either M accepts on the ‘yes’ path and q(vi) ∈ L
′, or M accepts on

the ‘no’ path and q(vi) /∈ L
′. In polynomial time we can precompute which queries M asks

for the different clauses, and which of the ‘yes’ or ‘no’ paths it accepts on.

This gives rise to the following procedure:

On input x with F (x) = cl1 ∧ cl2 ∧ · · · ∧ clj being the corresponding CNF formula (which

is fixed for each S).

• For each clause cli compute the vector vi and the query q(vi) the machine M asks. If

M accepts vi on the ‘yes’ path then bi := 0 else bi := 1.

• Check the vector (q(v1), q(v2), . . . , q(vj), b1, . . . , bj).

By assumption the last part is possible by running a polynomial-time oracle machine, with

an oracle L ∈ C that is queried only once. From the construction it follows that x ∈ S

if and only if F (x) = cl1 ∧ cl2 ∧ · · · ∧ clj is true if and only if for all i ≤ j it holds that

χL(q(vi)) = bi.

It follows that for classes with wee characteristic vector cost it is possible for deterministic

oracle machines to query the oracle only once, instead of a constant number of times, without

loss of power.

Corollary 3.10 Let C be an interesting class.

1. (∃k > 1)[CVC(k) = 1] if and only if PC[i] = PC[1] for all i ≥ 1.

16

2. (∃k > 1)[CVC(k) = 1] if and only if every language that is polynomial-time bounded-

truth-table reducible to a set in C is indeed polynomial-time one-truth-table reducible

to a set in C.

By a result of Papadimitriou and Zachos ([PZ83], see also [KSW87,AG88,CGH+88]), for

each i, PNP[i] is contained in the boolean hierarchy. This also holds for arbitrary interesting

classes (Proposition 3.7), and the same applies for bounded-truth-table degrees of interesting

classes. Thus Corollary 3.10 follows from Theorem 3.9.

Corollary 3.10 contrasts with a result of Chang and Kadin ([CK90a], see also [Kad88])

and Beigel [Bei88]: They gave a criterion that is equivalent to the collapse of the boolean

hierarchy of a class to its closure under polynomial-time many-one reductions. For C = NP,

Corollary 3.13 will provide a criterion that is equivalent to the coincidence of the closure

of NP under polynomial-time truth-table reductions with its closure under one-truth-table

reductions.

Theorem 3.9 immediately yields many results about well-known interesting complexity

classes (in the technical sense defined previously). We will illustrate and extend them in

the case of NP and some classes that are in its boolean hierarchy. The boolean hierarchy

over NP extends the study of sets that are the difference of two NP languages [PZ83,PY84],

and has been extensively investigated (see [CGH+88,CGH+89]). For NP itself we obtain

Corollary 3.11, which follows from the fact that NP is closed under union and intersection,

Proposition 3.3, Theorem 3.9, and the result of Chang and Kadin result that a collapse of

the boolean hierarchy implies one of the polynomial hierarchy ([CK90a], see also [Kad88]).

Corollary 3.11

1. CVNP ≤ 2. Indeed, the two queries can be parallel rather than sequential.

2. (∃k > 1)[CVNP(k) = 1] if and only if BHNP = PNP[1].

3. If there is a k > 1 such that CVNP(k) = 1, then the polynomial hierarchy collapses.

Up to here we studied the consequences of being able to recognize characteristic vectors

of a fixed constant length with one query to an oracle of the same class. The following

theorem explores the consequences of the stronger assumption that characteristic vectors of

variable length are uniformly checkable with one query.

Theorem 3.12 CVNP = 1 if and only if PNP[log n] = PNP[1].

17

Proof: The idea of the proof (left to right, the other direction is immediate since V SAT
ω ∈

PSAT [2]) is similar to that of Theorem 3.9: Run the machine M , which queries its oracle

L ∈ NP at most log n times, along every possible path arising from all answers that might

be given by the oracle (without querying the oracle). Each accepting path corresponds to

a candidate for a characteristic vector of at most log n components. M accepts the input

if and only if one of them is a characteristic vector. By assumption we can recognize these

vectors with a machine M ′ with one query to an NP language.

Now we runM ′ on each of those vectors without querying the oracle. M ′ asks a query q

for such a vector, and accepts it on the ‘yes’ path and rejects on the ‘no’ path or vice versa

(otherwise the case is trivial). The vector is a characteristic vector if and only if q is in the

oracle and the ‘yes’ path of M ′ accepts or q is not in the oracle if the ‘no’ path accepts.

Thus by checking the outcomes of M ′ on the different input vectors we obtain a vector of

new queries and new answers, knowing that M accepts if and only if at least one of the

answers is correct. Thus it follows that M accepts if and only if the vector consisting of the

same queries, and having exchanged ‘yes’ and ‘no’ answers, is not a characteristic vector,

which again by assumption we can check with one query.

The fact that the class of languages polynomial-time truth-table reducible to an NP

language equals PNP[log n] [Hem89,Wag90] yields the following corollary, which is interesting

when compared with Corollary 3.10, part 2.

Corollary 3.13 CVNP = 1 if and only if all languages that are polynomial-time truth-table

reducible to an NP language are indeed polynomial-time one-truth-table reducible to an NP

language.

Indeed, combining Theorem 3.12, the discussion following Proposition 3.3 (i.e., that

CVNP = CVNP(2)), and Corollary 3.11 part 2, one arrives at Corollary 3.14 below, recently

proven (by other means) by Chang and Kadin.

Corollary 3.14 [CK90b] BHNP = PNP[1] if and only if PNP[log n] = PNP[1].

Now let’s turn our attention to some classes that are located within the boolean hierarchy

over NP. Its levels are neither known nor believed to be closed under complement, intersection,

or union. In fact, by a result of Chang and Kadin, [CK90a], for any k ≥ 3 the closure of

BHNP(k) under one of those operations implies its collapse on the same level.

What are the consequences if vectors of languages of some level can be checked with

one query? The following two results display a connection between vector checking and

18

the more general structure of the boolean hierarchy. (Note that, since the collapse of the

boolean hierarchy implies the collapse of the polynomial hierarchy, the first part is related

to the structure of the polynomial hierarchy.)

Theorem 3.15 1. For all k > 1 it holds that: (∃i > 1)[CVBHNP(2k−1)(i) = 1] =⇒

BHNP = PNP[k].

2. Let COMP be any set that is ≤p
m-complete for BH(2) (see, e.g., [PY84,CM87]) and

let C be an arbitrary class of sets. (∀i)[V COMP
i ∈ PC[1]] ⇐⇒ BH ⊆ PC[1].

Proof: For the first part, let L ∈ BHNP(2
k) and L = L1 − L2 with L1 ∈ NP and L2 ∈

BHNP(2
k − 1). Furthermore let L̂ be any BHNP(2

k − 1)-complete problem (in [CGH+88]

it was shown that such problems exist) and f1, f2 be the corresponding reductions from L1

and L2 to it. Then x ∈ L if and only if (f1(x), f2(x), 1, 0) is a characteristic vector of L̂,

which can be checked with one query to L̂ itself, since L̂ is complete in BHNP(2
k−1). Using

the result of [AG88] that BHNP(2
k−1) ⊆ PNP[k] and thus PBHNP(2k−1)[1] ⊆ PNP[k] it follows

that BHNP(2
k) ⊆ PNP[k]. Since BHNP(2

k) ⊇ PNP[k] it follows that BHNP(2
k) = PNP[k] and

the boolean hierarchy collapses to that class, since in that case BHNP(2
k) is closed under

complement.

The second part is immediate from the fact all sets of the boolean hierarchy can be

expressed as unions of BH(2) sets [CGH+88].

We note that for almost all oracles, characteristic vectors of any class of the boolean

hierarchy cannot be checked with one query to an oracle of the same power. In particular,

it follows that with respect to a random oracle the bound of part 1 of Corollary 3.11 is

optimal.

Corollary 3.16 With probability one relative to a random oracle A,

(∀k ≥ 1)[CVBH
NPA (k) 6= 1].

This follows from the facts that the proof of Theorem 3.15 relativizes and the boolean

hierarchy over NP is infinite with respect to a random oracle [Cai89].

Another class located in the boolean hierarchy over NP is US (Unique Solutions): A

language belongs to US if it is accepted in polynomial time by a nondeterministic machine

that, by definition, accepts if and only if it has exactly one accepting path [BG82,GW87].

US is known to be closed under intersection, but does not seem to be closed under union or

complement. For this class Theorem 3.9 yields the following corollary (recall Definition 3.4):

19

Corollary 3.17

1. US is cv-wee under complement if and only if BHNP = PUS[1].

2. If US is cv-wee under complement then the polynomial hierarchy collapses.

Proof: First note that BHNP = BHUS, since US contains coNP [BG82], so BHNP ⊆ BHUS,

and thus, since US ⊆ BHNP(2) the two hierarchies are equal. Part 1 follows from this

observation and the fact that US is closed under intersection. Part 2 is a consequence of

the result of Chang and Kadin that a collapse of the boolean hierarchy over NP implies a

collapse of the polynomial hierarchy ([CK90a], see also [Kad88]).

Finally we observe that wee characteristic vector cost for a class within NP implies that

it is low. Low classes, intuitively, are sets carrying far less information than NP-complete

sets. In particular, a set L ∈ NP is in ̂low3 if PNPNP
L

= PNPNP

(̂low3 was first defined

in [KS85] as a generalization of the work of [Sch83]). Similarly, a class C ⊆ NP is said

to be ̂low3 if every L ∈ C is in ̂low3. Following Schöning’s seminal paper on the low

hierarchy, a number of papers have explored and refined its structure [KS85,BBS86,K8̈8],

culminating in the essentially optimal placement of classes within the low hierarchy [AH].

The following result shows that classes with wee characteristic vector cost are simple in the

sense of lowness.

Theorem 3.18 All classes C ⊆ NP with wee characteristic vector cost are ̂low3.

Proof: A sufficient condition for C to be ̂low3 is that for any L ∈ C there is an L′ ∈ C

such that {(x, y)|x ∈ L ∧ y /∈ L} ≤p
m {(x, y)|x /∈ L

′ ∨ y ∈ L′} [Cha89]. For L ∈ C with wee

characteristic vector cost it holds that {(x, y)|x ∈ L ∧ y /∈ L} ∈ PL′[1] for some L′ ∈ C. As

in the proof of Theorem 3.9, one can easily show that PL′[1] ≤p
m {(x, y)|x /∈ L′ ∨ y ∈ L′},

and thus the condition is fulfilled.

Acknowledgments

We wish to thank Gerd Wechsung, Garry Benson, Gerhard Buntrock, Katerina Chronaki,

Martin Farach, Sudhir Jha, Kathleen Romanik, Dirk Siefkes, and Hubert Wagener for

critically reading earlier versions of the paper, Richard Beigel, James Kadin, Klaus-Jörn

Lange, Leen Torenvliet and Paul Vitanyi for helpful conversations, Gerd Wechsung for

hosting the workshop at which this collaboration was started, and Richard Chang for

pointing out the modified proof of Theorem 2.5. We are particularly grateful to Peter

van Emde Boas and two anonymous referees for many helpful suggestions.

20

References

[AG88] A. Amir and W. Gasarch. Polynomial terse sets. Information and Computation,
77:37–56, 1988.

[AH] E. Allender and L. Hemachandra. Lower bounds for the low hierarchy. Journal
of the ACM. To appear.

[AR88] E. Allender and R. Rubinstein. P-printable sets. SIAM Journal on Computing,
17(6):1193–1202, 1988.

[Bār68] J. Bārzdiņš. Complexity of programs to determine whether natural numbers
not greater than n belong to a recursively enumerable set. Soviet Math. Dokl.,
9:1251–1254, 1968.

[BBJ+] A. Bertoni, D. Bruschi, D. Joseph, M. Sitharam, and P. Young. Generalized
boolean hierarchies and boolean hierarchy over RP. Technical Report
809, University of Wisc.–Madison Department of Computer Science, 1989.
Preliminary version appears in Proceedings Fundamentals of Computation

Theory, Springer-Verlag Lecture Notes in Computer Science #380, pp. 35–46.

[BBS86] J. Balcázar, R. Book, and U. Schöning. Sparse sets, lowness and highness. SIAM
Journal on Computing, 15(3):739–746, 1986.

[Bei] R. Beigel. Bounded queries to SAT and the boolean hierarchy. Theoretical

Computer Science. To appear.

[Bei87] R. Beigel. A structural theorem that depends quantitatively on the complexity
of SAT. In Proceedings of the 2nd Structure in Complexity Theory Conference,
pages 28–32. IEEE Computer Society Press, June 1987.

[Bei88] R. Beigel. NP-hard sets are P-superterse unless R=NP. Technical Report 88-04,
Johns Hopkins Department of Computer Science, August 1988.

[BG82] A. Blass and Y. Gurevich. On the unique satisfiability problem. Information

and Control, 55:80–88, 1982.

[BGGO] R. Beigel, W. Gasarch, J. Gill, and J. Owings. Terse, superterse, and verbose
sets. Information and Computation. To appear.

[BGS75] T. Baker, J. Gill, and R. Solovay. Relativizations of the P=?NP question. SIAM
Journal on Computing, 4(4):431–442, 1975.

[Cai89] J. Cai. With probability one, a random oracle separates PSPACE from the
polynomial-time hierarchy. Journal of Computer and System Sciences, 38(1):68–
85, 1989.

21

[CGH+88] J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sewelson,
K. Wagner, and G. Wechsung. The boolean hierarchy I: Structural properties.
SIAM Journal on Computing, 17(6):1232–1252, 1988.

[CGH+89] J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sewelson,
K. Wagner, and G. Wechsung. The boolean hierarchy II: Applications. SIAM

Journal on Computing, 18(1):95–111, 1989.

[CH90] J. Cai and L. Hemachandra. On the power of parity polynomial time.
Mathematical Systems Theory, 23:95–106, 1990.

[Cha89] R. Chang. On the structure of bounded queries to arbitrary NP sets. In
Proceedings of the 4th Structure in Complexity Theory Conference, pages 250–
258. IEEE Computer Science Press, June 1989.

[CK90a] R. Chang and J. Kadin. The boolean hierarchy and the polynomial hierarchy:
A closer connection. In Proceedings of the 5th Structure in Complexity Theory

Conference, pages 169–178. IEEE Computer Society Press, July 1990.

[CK90b] R. Chang and J. Kadin. On computing boolean connectives of characteristic
functions. Technical Report TR 90-1118, Department of Computer Science,
Cornell University, Ithaca, NY, May 1990.

[CM87] J. Cai and G. Meyer. Graph minimal uncolorability is DP-complete. SIAM

Journal on Computing, 16(2), 1987.

[EHK81] R. Epstein, R. Haas, and R. Kramer. Hierarchies of sets and degrees below
0′. In Logic Year 1979-80, the University of Connecticut, Lecture Notes in

Mathematics #859, pages 32–47. Springer Verlag, Berlin, 1981.

[Gil77] J. Gill. Computational complexity of probabilistic Turing machines. SIAM

Journal on Computing, 6(4):675–695, 1977.

[GP86] L. Goldschlager and I. Parberry. On the construction of parallel computers
from various bases of boolean functions. Theoretical Computer Science, 43:43–
58, 1986.

[GW87] T. Gundermann and G. Wechsung. Counting classes with finite acceptance
types. Computers and Artificial Intelligence, 6(5):395–409, 1987.

[Hau14] F. Hausdorff. Grundzüge der Mengenlehre. Leipzig, 1914.

[Hem89] L. Hemachandra. The strong exponential hierarchy collapses. Journal of

Computer and System Sciences, 39(3):299–322, 1989.

[HU79] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley, 1979.

22

[IT89] R. Impagliazzo and G. Tardos. Decision versus search problems in
super-polynomial time. In Proceedings of the 30th IEEE Symposium on

Foundations of Computer Science, pages 222–227. IEEE Computer Society
Press, October/November 1989.

[Joc68] C. Jockusch. Semirecursive sets and positive reducibility. Transactions of the

AMS, 131(2):420–436, 1968.

[Joc79] C. Jockusch. Recursion theory: Its generalizations and applications. In
Proccedings of the Logic Colloquium, Leeds, pages 140–157. Cambridge
University Press, 1979.

[K8̈8] J. Kämper. Non-uniform proof systems: a new framework to describe non-
uniform and probabilistic complexity classes. In Proceeings of the 8th Conference

on Foundations of Software Technology and Theoretical Computer Science, pages
193–210. Springer-Verlag Lecture Notes in Computer Science #338, December
1988.

[Kad88] J. Kadin. The polynomial time hierarchy collapses if the boolean hierarchy
collapses. SIAM Journal on Computing, 17(6):1263–1282, 1988.

[KS85] K. Ko and U. Schöning. On circuit-size complexity and the low hierarchy in NP.
SIAM Journal on Computing, 14(1):41–51, 1985.

[KSW87] J. Köbler, U. Schöning, and K. Wagner. The difference and truth-table
hierarchies for NP. R.A.I.R.O. Informatique théorique et Applications, 21:419–
435, 1987.

[PY84] C. Papadimitriou and M. Yannakakis. The complexity of facets (and some facets
of complexity). Journal of Computer and System Sciences, 28(2):244–259, 1984.

[PZ83] C. Papadimitriou and S. Zachos. Two remarks on the power of counting. In
Proceedings 6th GI Conference on Theoretical Computer Science, pages 269–276.
Springer-Verlag Lecture Notes in Computer Science #145, 1983.

[Rog67] H. Rogers, Jr. The Theory of Recursive Functions and Effective Computability.
McGraw-Hill, 1967.

[Rub88] R. Rubinstein. Structural Complexity Classes of Sparse Sets: Intractability, Data

Compression and Printability. PhD thesis, Northeastern University, Boston,
MA, August 1988.

[Rub90] R. Rubinstein. Relativizations of the P-printable sets and the sets with
small generalized Kolmogorov complexity. Technical Report WPI-CS-TR-90-
3, Worcester Polytechnic Institute, Worcester, MA, March 1990.

23

[Sch83] U. Schöning. A low and a high hierarchy in NP. Journal of Computer and

System Sciences., 27:14–28, 1983.

[Sto77] L. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science,
3:1–22, 1977.

[Val76] L. Valiant. The relative complexity of checking and evaluating. Information

Processing Letters, 5:20–23, 1976.

[Wag88] K. Wagner. Bounded query computation. In Proceedings of the 3rd Structure in

Complexity Theory Conference, pages 260–277. IEEE Computer Society Press,
June 1988.

[Wag90] K. Wagner. Bounded query classes. SIAM Journal on Computing, 19(5):833–
846, 1990.

24

