
The Communication Complexity of Enumeration,
Elimination, and Selection

Andris Ambainis
Dept. of C.S., Univ. of CA at Berkeley, Berkeley, CA 94720, U.S.A Supported in part by

Berkeley Fellowship for Graduate Studies and in part NSF grant CCR-98-00024.
ambainis@cs.berkeley.edu

and

Harry Buhrman
CWI, P.O. Box 94709, Amsterdam, The Netherlands. Supported in part by the EU fifth

framework program projects QAIP IST-1999-11234. buhrman@cwi.nl

and

William Gasarch
Dept. of C.S. and Inst. for Adv. Comp. Stud., Univ. of MD., College Park, MD 20742,

U.S.A. Supported in part by NSF grant CCR–9732692. gasarch@cs.umd.edu

and

Bala Kalyanasundaram
Dept. of C.S. Georgetown Univ., Washington, DC 20057, U.S.A. Supported in part by NSF

Grant CCR-9734927. kalyan@cs.georgetown.edu.

and

Leen Torenvliet
Dept. of C.S., Univ. of Amsterdam, 24 Plantage Muidergracht, Amsterdam, The

Netherlands, leen@wins.uva.nl.

1



2 AMBAINIS, BUHRMAN, GASARCH, KALYANSUNDARAM, TORENVLIET

Let k, n ∈ N and f : {0, 1}n × {0, 1}n → {0, 1}. Assume Alice has

x1, . . . , xk ∈ {0, 1}n, Bob has y1, . . . , yk ∈ {0, 1}n, and they want to

compute fk(x1x2 · · ·xk, y1y2 · · · yk) = (f(x1, y1), · · · , f(xk, yk)) (henceforth

f(x1, y1) · · · f(xk, yk)) communicating as few bits as possible. The Di-

rect Sum Conjecture (henceforth DSC) of Karchmer, Raz, and Wigder-

son, states that the obvious way to compute it (computing f(x1, y1), then

f(x2, y2), etc.) is, roughly speaking, the best. This conjecture arose in the

study of circuits since a variant of it implies NC1 6= NC2. We consider two

related problems.

Enumeration: Alice and Bob output e ≤ 2k − 1 elements of {0, 1}k, one of

which is f(x1, y1) · · · f(xk, yk).

Elimination: Alice and Bob output ~b such that ~b 6= f(x1, y1) · · · f(xk, yk).

Selection: (k = 2) Alice and Bob output i ∈ {1, 2} such that if f(x1, y1) =

1 ∨ f(x2, y2) = 1 then f(xi, yi) = 1.

a) We devise the Enumeration Conjecture (henceforth ENC) and the Elim-

ination Conjecture (henceforth ELC) which roughly state that the obvious

ways to compute Enumeration and Elimination are the best. We use these

conjectures to formulate an attack on DSC.

b) For several natural functions f , any deterministic protocol for the elim-

ination problem for fk requires Ω(n) bits. This establishes a weak form of

ELC for these functions.

c) For several graph properties f we show that any deterministic protocol

for the elimination problem for fk requires Ω(|V |) bits. To accomplish

this we establish some very general theorems about the communication

complexity of graph properties which are of independent interest.

d) For several natural functions f , any randomized protocol for the elimi-

nation problem for fk requires Ω( n
(log log(n))(log(n))

) bits. This establishes a

weak randomized version of ELC for these functions.

e) Under a reasonable (but unproven) assumption, the elimination problem

for f2 requires Ω(D(f)) bits, where D(f) is the deterministic complexity of

f . This links a weak version of ELC to other assumptions.
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0. INTRODUCTION

Let f : {0, 1}n × {0, 1}n → {0, 1}. Assume Alice has x ∈ {0, 1}n, Bob has
y ∈ {0, 1}n, and both have unlimited computational power. They want to compute
f(x, y) transmiting as few bits as possible. Both need the correct answer at the end
of the protocol. Let D(f) be the minimum number of bits they need to transmit
to compute f . D(f) ≤ n + 1 since Alice can transmit x to Bob, Bob can compute
f(x, y) and transmit it to Alice. Communication complexity investigates D(f) and
variants thereof [34, 37, 54].

Let k ∈ N and let fk(x1 · · ·xk, y1 · · · yk) = f(x1, y1) · · · f(xk, yk) (where |xi| =
|yi| = n). Now Alice has x1, . . . , xk, Bob has y1, . . . , yk, and they want to compute
fk(x1 . . . xk, y1 . . . yk). Clearly D(fk) ≤ kD(f). Does D(fk) = kD(f)? There is a
counterexample: For x ∈ {0, 1}n let |x|1 be the number of 1’s in x. Let f(x, y) = 1
iff |x|1+|y|1 ≥ n. Let n = 2m. One can show D(f) = m+2. (The 2m+1+1 inputs in
{(1i02m−i, 12m−i0i) | 0 ≤ i ≤ 2m}∪{(1i02m−i, 12m−i−10i+1) | 0 ≤ i ≤ 2m−1} all go
to different leaves, hence there is some branch of length

⌈
log(2m+1 + 1)

⌉
= m + 2.)

For fk consider that Bob need only transmit to Alice k numbers that are between 0
and n = 2m (which takes

⌈
log(2m + 1)k

⌉
= dk log(2m + 1)e) and Alice then has to

transmit back the answers (using k bits). Hence D(fk) ≤ dk log(2m + 1)e+ k. For
m large enough, log(2m + 1) ≤ m + 1

k , hence we get D(fk) ≤ km + k + 1. However
kD(f) = km + 2k, so kD(f)−D(fk) ≥ k − 1.

Despite the counterexample there is a general notion that D(fk) should be close
to kD(f). This notion is refered to as the Direct Sum Conjecture (henceforth DSC),
however the literature does not seem to have a formal statement. Before making a
formal statement we need to adapt some conventions.

Convention: A function f : {0, 1}n × {0, 1}n → {0, 1} is actually a family of
functions, one for each n. We think of n as growing.

We take the following formal statement which is implicit in [29] to be DSC:

Direct Sum Conjecture (DSC): If f : {0, 1}n × {0, 1}n → {0, 1} then D(fk) =
k(D(f)−O(1)). (Formally (∃N)(∃K)(∃c)(∀n ≥ N)(∀k ≥ K)[D(fk) ≥ k(D(f)−c)].)

DSC is interesting for two reasons. (1) It is quite natural to compare solving k

problems seperately to solving them together. The complexity of doing k instances
of a problem has been looked at in a variety of fields including decision trees [9, 40],
computability [7, 22], complexity [2, 10, 11, 31], straightline programs [15, 14, 21,
52], and circuits [43]. (2) This conjecture arose in the study of circuits since a
variant of it implies NC1 6= NC2 (see [29, 28] for connections to circuits, and
see [34, Pages 42-48] for a more recent discussion). The reasons for the form
D(fk) = k(D(f) − O(1)) are (a) the counterexample above still satisfies D(fk) ≥
k(D(f)−O(1)), and (b) the variant needed for NC1 6= NC2 allows for an additive
constant. While there are no counterexamples to this conjecture there is some
evidence against it [20].

What if Alice and Bob scale down their goals? We consider three such downscal-
ings.

Notation: The notation x ∈ {{0, 1}n}k is used to emphasize that x is thought
of as a concatenation of k strings of length n. The notation x = x1x2 . . . xk is
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understood to imply that |x1| = |x2| = · · · = |xk| = n. Similar conventions hold for
{{0, 1}n}i, {{0, 1}n−1}i, and {{0, 1}n}k−i.

Definition 0.1. Let e, k, n, t ≥ 1. Let f : {0, 1}n × {0, 1}n → {0, 1}. Let E be
the set of nonempty subsets of {0, 1}k of size ≤ e.

1. Enumeration: Alice and Bob output e ≤ 2k − 1 candidates, one of which is
the answer. Formally let ENUM(e, fk) ⊆ {{0, 1}n}k ×{{0, 1}n}k ×E be defined by
(x, y, E) ∈ ENUM(e, fk) iff fk(x, y) ∈ E.

2. Elimination: Alice and Bob output a vector that is not the answer. Formally
let ELIM(fk) ⊆ {{0, 1}n}k×{{0, 1}n}k×{0, 1}k be defined by (x, y, b) ∈ ELIM(fk)
iff fk(x, y) 6= b. Note that this is the same as ENUM(2k − 1, fk).

3. Selection: (k = 2) Alice and Bob output i ∈ {1, 2} such that if f(x1, y1) =
1 ∨ f(x2, y2) = 1 then f(xi, yi) = 1. Formally let SELECT(f2) ⊆ {{0, 1}n}2 ×
{{0, 1}n}2 × {1, 2} be defined by (x1x2, y1y2, i) ∈ SELECT(f2) iff (f(x1, y1) =
1∨ f(x2, y2) = 1) ⇒ f(xi, yi) = 1. Selection is equivalent to elimination where you
are forced to eliminate one of {01, 10}.

The complexity of enumeration, elimination, and selection has been studied in
the context of both polynomial time [1, 2, 10, 16, 17, 25, 30, 48, 50, 49, 51] and
computability theory [8, 7, 22, 26, 32].

Let i ≤ k. Clearly D(ENUM(2k−i, fk)) ≤ iD(f): Alice and Bob can transmit
iD(f) bits to compute b1b2 · · · bi = f i(x1x2 · · ·xi, y1y2 · · · yi) and output the set of
strings b1b2 · · · bi{0, 1}k−i as candidates. We state (for the first time) the following
conjectures.

Let f : {0, 1}n × {0, 1}n → {0, 1} and i ≤ k.

1. Enumeration Conjecture (ENC):

D(ENUM(2k−i − 1, fk)) = (i + 1)(D(f)−O(1)).

2. Weak Enumeration Conjecture (WENC):

D(ENUM(2k−i − 1, fk)) ≥ Ω
(

(i + 1)D(f)
log(D(f))

)
.

3. Elimination Conjecture (ELC):

D(ELIM(fk)) = D(f)−O(1).

4. Weak Elimination Conjecture (WELC):

D(ELIM(fk)) ≥ Ω
(

D(f)
log(D(f))

)
.

DSC is the special case of ENC when i = k − 1. ELC is the i = 0 case of ENC.
An approach to DSC would be to prove ENC, perhaps by induction on i. In this
case ELC would be the base case. Although DSC is a special case of ENC, it is
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sometimes easier to prove a stronger theorem (e.g., strengthening the induction
hypothesis).

1. DEFINITIONS AND LEMMAS
In the following definition a protocol is a decision tree where, at each node, one

of the players uses the knowledge of the string he has and the bits he has seen
to transmit a bit string to the other player. We consider nondeterministic and
randomized protocols for relations. These concept are not well studied; hence we
define our terms carefully.

Definition 1.1. Let S be a relation on X × Y × Z such that, (∀x ∈ X)(∀y ∈
Y )(∃z ∈ Z)[S(x, y, z)]. We think of Alice as having x and Bob as having y.

1. D(S) ≤ t if there is a t-bit deterministic protocol that will, on input (x, y),
output some z such that S(x, y, z). Formally this means that there is a decision
tree such that the following hold.

(i) The top node is labeled either ALICE or BOB. If a non-leaf node is labeled
ALICE (BOB) then its children are labeled BOB (ALICE).

(ii) If v is a non-leaf BOB-node then there are 2n children of v, indexed by the
input x that BOB sees. That is, for each x ∈ {0, 1}n there is a child of v labeled
(x,w) where w ∈∗. The label (x, w) is interpreted as saying that if Bob has x then
he sends Alice w. Note that node v describes what Bob has seen up to this point. If
v is a non-leaf ALICE-node then its labelled in the exact same way, and interpreted
as Alice sending Bob w.

(iii) If v is a leaf then v is labeled with an element of Z.

(iv) Let x ∈ {0, 1}n and y ∈ {0, 1}n. If the decision tree is executed on (x, y)
in the obvious way then (1) the sums of the lengths of all the messages is ≤ t, and
(2) the leaf arrived at will be labeled z where S(x, y, z).

This definition is equivalent to saying that there exist sets X1, . . . , X2t ⊆ X, and
Y1, . . . , Y2t ⊆ Y , and z1, . . . , z2t ∈ Z such that (1) X × Y =

⋃2t

i=1 Xi × Yi, (2)
(∀i)(∀x ∈ Xi)(∀y ∈ Yi)[S(x, y, zi)], (3) The sets Xi × Yi are all disjoint. The
collection X1×Y1, . . ., X2t ×Y2t is called a partition. The equivalence follows from
the fact that in any deterministic protocol every leaf corresponds to a set of the
form A×B (See [34].)

2. N(S) ≤ t if there is a t-bit non-deterministic protocol such that on input (x, y)
some leaf outputs a z such that S(x, y, z). Formally this means that there is a
decision tree such that the following hold.

(i) The top node is labeled either ALICE or BOB. If a non-leaf node is labeled
ALICE (BOB) then its children are labeled BOB (ALICE).

(ii) If v is a non-leaf BOB-node then there are 2n sets of children of v, indexed
by the input x that BOB sees. That is, for each x ∈ {0, 1}n there is a set of children
of v labeled (x,W ) where W ⊆∗. The label (x, W ) is interpreted as saying that if
Bob has x then he nondeterministically sends Alice some w ∈ W . Note that node
v describes what Bob has seen up to this point. If v is a non-leaf ALICE-node then
its labelled in the exact same way, and interpreted as Alice sending Bob w. We
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count each nondeterministic choice as a bit of communication, hence if w ∈ W is
chosen then we count the length of the messages sent as |w|+ dlog2(|W |)e.

(iii) If v is a leaf then v is labeled with an element of Z.

(iv) Let x ∈ {0, 1}n and y ∈ {0, 1}n. If the decision tree is executed on (x, y)
in the obvious way then (1) the sums of the lengths of all the messages is ≤ t (using
the convention of counting lengths mentioned above), and (2) the leaf arrived at
will be labeled z where S(x, y, z).

(v) If v is a leaf then v is labeled with an element of Z or with the phrase “I
DON’T KNOW!”

(vi) Let x ∈ {0, 1}n and y ∈ {0, 1}n. If the decision tree is executed on (x, y) in
the obvious way then (1) the sum of the messages and the choice nodes encountered
is ≤ t, (2) all the leaves that the computation can arrive at are either labeled “I
DON’T KNOW” or with a z such that S(x, y, z), (3) at least one of the leaves the
computation can arrive at is labeled z where S(x, y, z).

This definition is equivalent to saying that there exists sets X1, . . . , X2t ⊆ X, and
Y1, . . . , Y2t ⊆ Y , and z1, . . . , z2t ∈ Z such that (1) X × Y ⊆

⋃2t

i=1 Xi × Yi, and (2)
(∀i)(∀x ∈ Xi)(∀y ∈ Yi)[S(x, y, zi)]. Note that, in contrast to the deterministic case,
the Xi×Yi sets need not be disjoint. The collection X1×Y1, . . ., X2t ×Y2t is called
a covering. The equivalence follows from the fact that in any nondeterministic
protocol every leaf corresponds to a set of the form A×B (See [34].)

The definition of a nondeterministic protocol to compute a function is not ob-
tained by applying the definition for a relation. Hence we define it below.

Definition 1.2. Let f : {0, 1}n × {0, 1}n → {0, 1}.

1. D(f) ≤ t is defined by viewing f as a relation and using Definition 1.1.1.
2. N(f) ≤ t if there is a t-bit non-deterministic protocol for f . Formally this is

similar to the definition of N(S) ≤ t except that, if f(x, y) = 0, we do not require
that some leaf output 0.

3. coN(f) ≤ t if N(f) ≤ t.

Definition 1.3. Let S be a relation on X × Y × Z such that, (∀x ∈ X)(y ∈
Y )(∃z ∈ Z)[S(x, y, z)]. Let 0 < ε < 1

2 . We think of Alice as having x and Bob as
having y.

1. Rpub
ε (S) ≤ t if there is a t-bit randomized protocol such that (1) Alice and

Bob get to observe the coin flips of a referee without being charged any bits for
the privilege (the ‘pub’ stands for ‘public’ in that the coins are fliped publicly not
privately), (2) for any x ∈ X and y ∈ Y , the probability that the protocol outputs
some z with S(x, y, z) is at least 1 − ε. Formally this means that there is a set of
deterministic t-bit protocols T such that the following hold.

(i) All of them are labeled as in the definition of D(S) ≤ t.

(ii) Fix x ∈ {0, 1}n and y ∈ {0, 1}n. Consider the following probabilistic
experiment: pick a protocol from T at random and execute it on (x, y). The
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probability that the leaf arrived at is a z such that S(x, y, z) is greater than 1− ε.
(The probability of error is < ε.)

2. Rpub
ε N(S) ≤ t if there is a t-bit randomized nondeterministic protocol such

that (1) Alice and Bob get to observe the coin flips of a referee without being
charged any bits for the privilege, and (2) for any x ∈ X and y ∈ Y , the probability
that the protocol has some path that outputs some z with S(x, y, z) is at least 1−ε.
Formally this means that there is a set of nondeterministic t-bit protocols T such
that the following hold.

(i) All of them are labeled as in the definition of N(S) ≤ t.

(ii) Fix x ∈ {0, 1}n and y ∈ {0, 1}n. Consider the following probabilistic
experiment: pick a protocol from T at random and execute it on (x, y). The
probability that there is some computation path leaf arrived at is a z such S(x, y, z)
is greater than 1− ε.

Note: The class of Boolean functions f such that Rpub
ε (f) ≤ t looks similar to

randomized polynomial time; however, there is one important difference. With
randomized polynomial time, an error of 1

4 can be made into 1
2n by repeating the

procedure O(n) times and taking a majority. This works because multipling a
polynomial by n is not a large increase in the polynomial setting. However, the
same trick would multiply the communication complexity by n, which is quite
large in the communication complexity setting. Hence Rpub

1/4 (f) ≤ t does not imply

Rpub
1/2n(f) ≤ t. However, using standard techniques, some amplification (at some

cost) can be achieved. We state this rigorously in Lemma 6.1.

Lemma 1.1. Let f : {0, 1}n×{0, 1}n → {0, 1}. Let C ⊆ {{0, 1}n}k×{{0, 1}n}k.
If N(ELIM(fk)) ≤ t then there is A ⊆ {{0, 1}n}k and B ⊆ {{0, 1}n}k such that

1.|C ∩ (A×B)| ≥ |C|/2t, and
2.(∃b ∈ {0, 1}k)(∀x ∈ A)(∀y ∈ B)[fk(x, y) 6= b].

Proof. Since N(ELIM(fk)) ≤ t we can, using Definition 1.1.2, cover {{0, 1}n}k×
{{0, 1}n}k with a set of 2t sets of the form A×B (which may overlap). These sets
also cover C (and of course may also cover points outside of C). Since every element
of C is covered, some set must cover |C|/2t elements of C.

Lemma 1.2. Let f : {0, 1}n × {0, 1}n → {0, 1}, let g = 1 − f , and let k ∈ N.
Then D(ELIM(fk)) = D(ELIM(gk)).

Proof. If P is a deterministic protocol for ELIM(fk) then let P ′ be the protocol
that runs P and if the output is b1b2 · · · bk, outputs (1− b1)(1− b2) · · · (1− bk). P ′

is a deterministic protocol for g.

2. SUMMARY OF RESULTS
We state a subset of our results, in a weak form, for better readability. Assume

throughout that Alice and Bob both get a k-tuple of strings of length n. We need
the following definitions to state our results.

Definition 2.1.
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1. EQ : {0, 1}n × {0, 1}n → {0, 1} is defined by EQ(x, y) =
{

1 if x = y;
0 if x 6= y.

2. NE : {0, 1}n × {0, 1}n → {0, 1} is defined by NE(x, y) = 1− EQ(x, y).
3. IP : {0, 1}n × {0, 1}n → {0, 1} is defined by IP(x1x2 · · ·xn, y1y2 · · · yn) =∑n
i=1 xiyi (mod 2). (“IP” stands for “Inner Product.”)
4. We can view x ∈ {0, 1}n as a bit vector representation of a subset of {1, . . . , n}.

With this in mind DISJ(x, y) =
{

1 if x ∩ y = ∅;
0 if x ∩ y 6= ∅.

5. INTER(x, y) = 1−DISJ(x, y).

Note: For f = EQ,NE, IP,DISJ and INTER it is known that D(f) = n + 1
(see [34]).

Note For f = INTER, IP it is known that Rpub
ε (f) = Ω(n) (see [34]).

Results about Particular Functions
In the statement of results below the implicit constant in the O() does not depend

on k.

1. D(ELIM(EQk)) ≥ n, D(ELIM(NEk)) ≥ n, and D(ELIM(IPk)) ≥ n (Theo-
rem 3.1, Corollary 3.1, Theorem 5.1). Hence, by Note 2, ELC holds for EQ, NE,
and IP.

2. D(ELIM(DISJk)) ≥ n − O(log n) and D(ELIM(INTERk)) ≥ n − O(log n)
(Theorem 3.2 and Corollary 3.2). Hence, by Note 2, WELC holds for DISJ and
INTER.

3. For many graph properties f , D(f) ≤ O(|V | log |V |) and D(ELIM(fk)) ≥
Ω(|V |), hence D(fk) ≥ Ω( D(f)

log D(f) ) (Theorems 4.1). Therefore WELC holds for
these graph properties. For another large class of graph properties we obtain
D(ELIM(fk)) ≥ Ω(|V |), hence D(fk) ≥ Ω(

√
D(f)). To prove these results we

established some very general theorems about the communication complexity of
graph properties. These theorems are of independent interest.

4. If k is constant and ε < 1
2k then Rpub

ε (ELIM(IPk)) ≥ Ω( n
(log log(n))(log(n)) )

and Rpub
ε (ELIM(INTERk)) ≥ Ω( n

(log log(n))(log(n)) ) (Theorems 6.1,6.2). Hence, by
Note 2, a randomized weak version of ELC holds for IP and DISJ.

Note: The lower bounds on EQk, DISJk, IPk, and some of the graph properties
also hold for nondeterministic computation.

Results about General Functions

1. Assume that computing fm but allowing one mistake requires m
2 D(f) bits for

some (even) m. Then D(ELIM(f2)) requires Ω(D(f)) bits. (Corollary 7.2)
2. N(SELECT(f2)) ≥ N(f) − log(n) − 1 where N(f) is the nondeterministic

communication complexity of f . (Theorem 10.2)
3. If DSC is true then D(SELECT(f2)) ≥ D(f)

3 −O(1). (Corollary 10.1)
4. If DSC is true then D(ENUM(k, fk)) ≥ D(f)−O(1).

Note These results link ELC (and variants) to other conjectures that seem reason-
able, and thus also provides evidence for its truth.
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3. THE COMPLEXITY OF ELIM(EQk) AND ELIM(DISJK)

We show that N(ELIM(EQk)) ≥ n and use this to show N(ELIM(DISJk)) ≥
n−O(log n). This will establish ELC for EQ,NE and WELC for DISJ, INTER.

Lemma 3.1. Let i, n ∈ N. Let A,B ⊆ {{0, 1}n}i be such that

(∀x1x2 · · ·xi ∈ A)(∀y1y2 · · · yi ∈ B)(∃j)[EQ(xj , yj) = 1].

Then |A||B| ≤ 22n(i−1).

Proof. We use induction on n. The base case of n = 1 is nontrivial, hence we
present it. Assume A,B ⊆ {0, 1}i and the hypothesis holds. Assume, by way of
contradiction, that |A||B| > 22(i−1). We can assume, without loss of generality,
that |A| > 2i−1. Let |A| = 2i−1 +a where a > 0. Note that for every x ∈ A, x /∈ B.
(Recall that z means take z and replace the 0’s with 1’s and the 1’s with 0’s.)
Hence |B| ≤ 2i − (2i−1 + a) = 2i−1 − a. Therefore |A||B| ≤ (2i−1 + a)(2i−1 − a) =
22(i−1) − a2 < 22(i−1). This is a contradiction.

Assume the lemma is true for all n′ < n and that n ≥ 2. Let A,B satisfy the
hypothesis with parameter n. Let

A1 = {z1z2 · · · zi ∈ {{0, 1}n−1}i : (∃b1b2 · · · bi ∈ {0, 1}i)[z1b1z2b2 · · · zibi ∈ A]}
B1 = {z1z2 · · · zi ∈ {{0, 1}n−1}i : (∃b1b2 · · · bi ∈ {0, 1}i)[z1b1z2b2 · · · zibi ∈ B]}
A2 = {b1b2 · · · bi ∈ {0, 1}i : (∃z1z2 · · · zi ∈ {{0, 1}n−1}i)[z1b1z2b2 · · · zibi ∈ A]}
B2 = {b1b2 · · · bi ∈ {0, 1}i : (∃z1z2 · · · zi ∈ {{0, 1}n−1}i)[z1b1z2b2 · · · zibi ∈ B]}

Note that A1, B1 satisfies the premise with parameter n− 1, A2, B2 satisfies the
premise with parameter 1 < n. Also note that |A| ≤ |A1||A2|, and |B| ≤ |B1||B2|.
By the induction hypothesis |A1||B1| ≤ 22(n−1)(i−1), and |A2||B2| ≤ 22(i−1). Hence
|A||B| ≤ |A1||A2||B1||B2| ≤ |A||B| ≤ |A1||B1||A2||B2| ≤ 22(n−1)(i−1) × 22(i−1) =
22n(i−1).

Lemma 3.2. Let k, n ∈ N. If D ⊆ {{0, 1}n}k and |D| > 2(k−1)n then (∀b ∈
{0, 1}k)(∃x, y ∈ D)[EQk(x, y) = b].

Proof. By reordering the components of both b and the strings in D we need
only consider b = 1k−i0i for 0 ≤ i ≤ k. Fix such an i, and hence such a b.

For each z ∈ {{0, 1}n}k−i let Dz = z{{0, 1}n}i ∩ D. Since |D| > 2(k−1)n and
the Dz’s partition D into at most 2(k−i)n parts, there exists z such that |Dz| >

2(i−1)n. Let A = {w ∈ {{0, 1}n}i : zw ∈ D}. Note that |A| = |Dz| > 2(i−1)n.
By (the contrapositive of) Lemma 3.1 (∃x′, y′ ∈ A)(∀j)[EQ(x′j , y

′
j) = 0]. Clearly

EQk(zx′, zy′) = 1k−i0i.

Theorem 3.1. For all k, n ∈ N, N(ELIM(EQk)) ≥ n.

Proof. Assume, by way of contradiction, that N(ELIM(EQk)) = t < n via
protocol P .

Let C = {(x, x) | x ∈ {{0, 1}n}k}. By Lemma 1.1 there exists A ⊆ {{0, 1}n}k and
B ⊆ {{0, 1}n}k such that (1) |C ∩ (A×B)| ≥ 2−t|C| = 2kn−t and (2) there is a real
leaf L (i.e., a leaf that does not say I DON’T KNOW) such that for all (x, y) ∈ A×B

there is a nondeterministic computation path of P (x, y) that terminates at L. Let
the label of L be b ∈ {0, 1}k. Hence we know that (∀x ∈ A)(∀y ∈ B)[EQk(x, y) 6= b].
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Let D = A∩B. Note that |D| = |C∩(D×D)| = |C∩(A×B)| ≥ 2kn−t > 2kn−n =
2n(k−1). We can now apply Lemma 3.2 to obtain that (∃x, y ∈ D)[EQk(x, y) = b].
This is a contradiction.

Corollary 3.1. For all k, n ∈ N, D(ELIM(NEk)) ≥ n.

Proof. This follows from Theorem 3.1 and Lemma 1.2.

Theorem 3.2. For all k, n ∈ N, N(ELIM(DISJk)) ≥ n−O(log n).

Proof. We take n to be even. The proof for n odd is similar but is notationally
harder. Let L =

⌊
log2(

(
n

n/2

)
)
⌋
∼ n − O(log n). Let ELIM(EQk

L) be ELIM(EQk)

on k-tuples of {0, 1}L. By Theorem 3.1 N(ELIM(EQk
L)) ≥ L. We show that

N(ELIM(EQk
L)) ≤ N(ELIM(DISJk)).

There are
(

n
n/2

)
subsets of {1, . . . , n} of size n

2 . Each one can be represented
as a string in {0, 1}L. Let F map {0, 1}L to {0, 1}n by mapping a representa-
tion of an n

2 -sized subset of {1, . . . , n} to its bit vector form. Let G(x) be the
complement of F (x). If EQ(x, y) then F (x) and G(y) = F (x) are complements,
hence DISJ(F (x), G(y)). (Recall that z means take z and replace the 0’s with
1’s and the 1’s with 0’s.) If ¬EQ(x, y) then F (x) and G(y) are not comple-
ments of each other. Since both are sets of exactly n

2 elements they must in-
tersect, hence ¬DISJ(F (x), G(y)). Hence EQ(x, y) iff DISJ(F (x), G(y)). Hence
EQk(x1 · · ·xk, y1 · · · yk) 6= b iff DISJk(F (x1) · · ·F (xk), G(y1) · · ·G(yk)) 6= b.

The following nondeterministic protocol for ELIM(EQk
L) transmits N(ELIM(DISJk))

bits, thus showing N(ELIM(EQk
L)) ≤ N(ELIM(DISJk)). Alice gets x1x2 · · ·xk ∈

{{0, 1}L}k and Bob gets y1y2 · · · yk ∈ {{0, 1}L}k. Alice and Bob run the optimal
nondeterministic protocol for ELIM(DISJk) on (F (x1) · · ·F (xk), G(y1) · · ·G(yk)).

Corollary 3.2. For all k, n ∈ N, D(ELIM(INTERk)) ≥ n−O(log n).

Proof. This follows from Theorem 3.2 and Lemma 1.2.

Note: Babai et al. [3] defined reductions between problems in communication
complexity. The proof of Theorem 3.2 actually showed EQ ≤cc DISJ, which enabled
us to transfer our lower bound for ELIM(EQk) to a lower bound for ELIM(DISJk).
Babai et al. [3] also defined Pcc and NPcc, analogs of P and NP. Since we have
D(ELIM(NEk)) ≥ n and D(ELIM(EQk)) ≥ n, and NE ∈ NPcc, EQ ∈ co-NPcc, we
can get lower bounds for any NP-hard or coNP-hard problem in communication
complexity. (We do this for graph properties in Section 4.) Since the reductions
in [3] allow size n inputs to map to size 2polylog n the results will not be as good as
those in Theorem 3.2.

4. GRAPH PROPERTIES
In this section we prove some general theorems about the communication com-

plexity of graph properties. We then apply them to obtain WELC for many graph
properties.

Alice and Bob try to compute a graph property f . Each of them is given a graph
on {1, . . . , n} and they need to compute whether the union of the graphs has the
property. Formally Alice and Bob will both be given graphs on {1, . . . , n} and they
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will try to determine if some property holds of the union of the two graphs. Hence
it is possible that (say) they both find out that (1, 8) is an edge, though neither one
knows that the other knows. This model of the communication complexity of graph
properties is due to [23]. Other models have also been studied [35]. The notion of
the communication complexity of graph properties has been generalized in [38].

Notation: In this section n is not the length of the input. Instead it is the number
of vertices.

Definition 4.1. If H and G are graphs then H is a minor of G if one can obtain
H from G by removing vertices, removing edges, or contracting an edge (removing
the edge and merging the two endpoints). We denote this by H � G.

Definition 4.2. A property f of graphs is closed under minors if, for all G, if
f(G) = 1 and H � G then f(H) = 1.

The Graph Minor Theorem states that the set of graphs with the ordering� forms
a well quasi ordering (see [45] for a proof or [19] if all you want are definitions).
The following is an easy corollary of the Graph Minor Theorem that ([45], see also
[19]).

Lemma 4.1. Let f be a property of graphs closed under minors. There ex-
ist graphs H1, . . . ,Hk such that f(G) = 0 iff (∃i)[Hi � G]. (The set of graphs
{H1, . . . ,Hk} is called an obstruction set. Intuitively a graph G has the property
unless there is a good reason, in the form of one of the Hi, that it does not.)

Example 4.1. Here are three examples of sets of graphs closed under minor (g
and k are constants).

PLANAR = {G | G is Planar}
GENUSg = {G | G has genus g}

V Ck = {G | G has a vertex cover of size k}

1. For PLANAR it is known that the obstruction set is {K5,K3,3} (this is not
Kuratowski’s theorem [13, 33], that a graph is nonplanar iff it does not have K5 or
K3,3 as a homeomorphic subgraph, but is easily derivable from it). For the other
sets in the example the only proof that there is an obstruction set comes from the
Lemma 4.1.

2. Let H be a fixed graph. It is known [46] that testing if H � G can be done in
O(|V |3) steps. Using this and Lemma 4.1 one can obtain O(|V |3) algorithms for all
graph properties closed under minor. The case of V Ck is particularly interesting
since it would seem that O(|V |k+1) is needed. The O(|V |3) algorithm for V Ck is
not very useful (big constants and nonconstructive), however, it inspired far more
useful algorithms which run in time O(kn + g(k)) for a variety of exponential g.
See [19] for details.

Definition 4.3. Let TRIVa,b be the graph that is a isolated vertices unioned
with b disjoint edges.
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We will show that graph properties are hard by using reductions. We first need
to define reductions formally.

Definition 4.4. [3] Let fn : {0, 1}n×{0, 1}n → {0, 1} and gn : {0, 1}n×{0, 1}n →
{0, 1} be infinite families of functions. f ≤cc g means that there are functions T1, T2

and L such that L : N → N, L(n) ≤ 2polylog n, and T1, T2 : {0, 1}n → {0, 1}L(n)

such that f(x, y) = 1 iff g(T1(x), T2(y)) = 1. If L(n) = O(n) then we say that
f ≤cc g via a linear reduction.

Note: In Definition 4.4 we first bound L(n) by 2polylog n but then, for our purposes,
bound it by O(n). The reason for this is historical. When reductions were first
defined in [3] they were making an analog between D(f) ≤ 2polylogn and P. Hence
they needed reduction to not care about mere polylog factors.

We leave the following lemma to the reader.

Lemma 4.2. If f ≤cc g by a linear reduction then (1) D(g) = Ω(D(f)), (2)
N(g) = Ω(N(f)), (3) D(ELIM(gk)) = Ω(D(ELIM(fk)), and (4) N(ELIM(gk)) =
Ω(N(ELIM(fk)).

Notation: Let V (G) be the set of vertices in G and E(G) be the set of edges in
G.

The following lemma was first shown by Mader [39]; however the interested reader
may also see [12, Chapter 7, Theorem 1.16]).

Lemma 4.3. Let p ∈ N. There exists a number cp such that for any graph
G = (V,E), if |E| ≥ cp|V | then Kp � G.

Note: It is known that cp ≤ 8(p − 2) blog(p− 2)c. In Theorem 1.14 of Chapter 7
of [12] is an easy proof of the weaker result that cp ≤ 2p−3. There is some evidence
that cp = p−2 or at least cp = O(p); however, this is still open. See [12, Page 378].

Lemma 4.4. If f is a property of graphs that is closed under minors then, for
all G = (V,E) such that f(G) = 1, |E| = O(|V |).

Proof. By Lemma 4.1 there exist graphs H1, . . . ,Hk such that f(G) = 0 iff
(∃i)[Hi � G]. Let p = min{|V (H1)|, . . . , |V (Hk)|}. Let cp be as in Lemma 4.3.
For any G, if |E(G)| > cp|V (G)|, then G has Kp as a minor; however, this implies
that some Hi is a minor, hence f(G) = 0. By the contrapositive, if f(G) = 1 then
|E(G)| ≤ cp|V (G)| = O(|V (G)|).

Theorem 4.1. Let f be a property of graphs closed under minors such that
(∀a, b)[f(TRIVa,b) = 1]. Let g = 1− f . Then the following occur.

1.D(f) ≤ O(n log n).
2.DISJ ≤cc f by a linear reduction.
3.N(f) ≥ Ω(n).
4.N(ELIM(fk)) ≥ Ω(n).
5.D(g) ≤ O(n log n).
6.INTER ≤cc g by a linear reduction.
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7.D(g) ≥ Ω(n).
8.D(ELIM(gk)) ≥ Ω(n).
9.D(ELIM(fk)) ≥ Ω( D(f)

log(D(f)) ).

10.D(ELIM(gk)) ≥ Ω( D(g)
log(D(g)) ).

Proof.
We prove items 1 and 2. We then easily derive items 3,4,5,6,7,8,9,10 from items

1,2 and prior results.
Proof of 1: We show D(f) ≤ O(n log n). By Lemma 4.4 there exists a constant

c such that any graph with f(G) = 1 has ≤ cn edges.
Here is the protocol: Alice looks at how many edges she has. If she has more

than cn edges then she sends Bob a 0, and they both know f(G) = 0. If not she
sends Bob a 1 and then sends him a list of the edges she has. Since each edge takes
2 log n bits to send and there are only cn edges, this takes 2cn log n = O(n log n)
bits.

Proof of 2: We show that DISJ ≤cc f by a reduction that maps a pair of n-
bit strings to an O(n)-node graph. By the Graph Minor Theorem [45] there exist
graphs H1, . . . ,Hk such that f(G) = 0 iff (∃i)[Hi � G]. Note that the Hi’s could
be disconnected; however, none of the Hi’s can be TRIVa,b.

Let H1 be the graph that has the smallest largest connected component, where
we measure size by number of edges. We view H1 as being in two parts: TRIVa,b∪A

where A does not share any edges or vertices with TRIVa,b. It is possible a = 0
or b = 0 or both. The graph A must have a connected component with ≥ 2 edges
in it. Break up the edge set of A into two disjoint sets such that every connected
component of A with ≥ 2 edges is broken up. Call these two parts A1 and A2.

We define the reduction T1 (respectively T2). On input (x1 · · ·xn) (respectively
(y1 · · · yn)) T1 does the following.

1. Put TRIVa,b on the first a + 2b vertices. (Same with T2). Break up the
remaining vertices into n groups of |V (A)| vertices each. (Same with T2.)

2. For all i ∈ {1, . . . , n} do the following. If xi = 1 then put A1 on the ith group
of vertices. If xi = 0 then do not put those edges in. (If yi = 1 then put A2 on the
ith group of vertices. If yi = 0 then do not put those edges in.)

If DISJ(x1 · · ·xn, y1 · · · yn) = 0 then there exists i such that xi = yi = 1. Hence
G will have TRIVa,b ∪A = H1 as a minor so f(G) = 0.

If DISJ(x1 · · ·xn, y1 · · · yn) = 1 then there is no such i. G will be TRIVa,b unioned
with graphs all of whose connected components are smaller than the smallest largest
connected component of a forbidden minor. Hence G cannot have any of H1, . . . ,Hk

as minors, so f(G) = 1.
Proof of 3,4,5,6,7,8,9,10: Items 3 and 4 follow from item 2, Theorem 3.2, and

Lemma 4.2. Items 5,6, and 7 are easy consequences of items 1,2,3. Item 8 follows
from item 4, Corollary 3.2, and Lemma 1.2. (Alternatively, item 8 follows from
item 6 and Lemma 4.2.) Item 9 follows from items 1,4. Item 10 follows from items
5,8.

Note: Theorem 4.1 raises the question of whether some non-trivial graph property
f closed under minors has D(f) << n. The answer is yes: If f(G) returns yes
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iff G has fewer than 64 edges then D(f) = O(1). Theorem 4.1 also raises the
question of whether some non-trivial graph property f closed under minors such
that (∃a)(∃b)[f(TRIVa,b) = 0] has D(f) = Ω(n). The answer is yes: Let f(G) = 1
iff G does not have TRIV0,2 as a minor. Note that f is closed under minors
and f(TRIV0,2) = 0. We show that INTER ≤cc f by a linear reduction. Given
(x1 . . . xn, y1 . . . yn) Alice constructs the graph that places an edge between ai and
bi iff xi = 1. Bob constructs the graph that places an edge between bi and ci iff
yi = 1. Let this graph be G. Clearly INTER(x1 . . . xn, y1 . . . yn) = 1 iff TRIV0,2 is
a minor of G. Since D(INTER) ≥ n and INTER ≥ n we have D(f) ≥ Ω(n). The
question of which properties closed under minors have sublinear communication
complexity looks like it will not have a clean answer.

Theorem 4.1 covers many graph properties; however, there are some properties
that are not covered. One example is Hamiltonicity. Hence we look at another type
of graph property.

Definition 4.5. A property of graphs f is delicate if, for almost all n, there exists
a graph Gn = (Vn, En) such that (1) |Vn| = Θ(n), (2) |En| ≥ n, (3) f(Gn) = 1,
and (4) for every nonempty E′ ⊆ En, f((Vn, En − E′)) = 0.

Example 4.2. The following graph properties are delicate.

HAM = {G | G has a Hamiltonian Cycle}
HAMP = {G | G has a Hamiltonian Path}
EULER = {G | G has an Eulerian Cycle}

EULERP = {G | G has an Eulerian Path}
NOTCOL2 = {G | G is not 2-colorable}
NOTCOLk = {G | G is not k-colorable}

CONN = {G | G is connected}

For HAM and EULER take Gn to be the cycle on n vertices. For HAMP, EULERP ,
and CONN take Gn to be the path on n vertices. For NOTCOL2 take the cycle
on n vertices if n is odd, and the cycle on n + 1 if n is even. For NOTCOLk do
the following. Let x, y ∈ N be such that k + 1 = 3x + 2y and y ∈ {0, 1, 2}. Let
nx be the element of {dn/xe, dn/xe + 1} which is odd. Let Gn = (Vn, En) be the
graph formed by taking x cycles of length nx, y edges, and for all pairs of vertices
a, b where a and b come from different parts of the graph, put in the edge (a, b).
Since odd length cycles require 3 colors, Gn is 3x + 2y = k + 1-colorable. It is easy
to see that if you remove any (nonempty) set of edges then the resulting graph is
k-colorable. Note that |Vn| = xnx +2y = Θ(n), |En| = xnx + y +

(
x
2

)
n2

x +4
(
y
2

)
≥ n,

Note that these properties and their complements are not closed under minor,
hence Theorem 4.1 would not apply to them.

Theorem 4.2. Let f be a delicate property of graphs. Let g = 1− f .

1.DISJ ≤cc f by a linear reduction.
2.N(f) ≥ Ω(n).
3.N(ELIM(fk)) ≥ Ω(n).
4.INTER ≤cc g by a linear reduction.
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5.D(g) ≥ Ω(n).
6.D(ELIM(gk)) ≥ Ω(n).
7.D(ELIM(fk)) ≥ Ω(

√
D(f)).

8.D(ELIM(gk)) ≥ Ω(
√

D(g)).

Proof. We will prove item 1. Items 2,3,4,5,6,7,8 will follow from item 1 and
prior results.

Proof of part 1: Let n ∈ N and let Gn = (Vn, En) be as in Definition 4.5. Let
En = {e1, . . . , en, . . . , e|En|}. We show that DISJ ≤cc f by a linear reduction. Map
(x, y) ∈ {0, 1}n ×{0, 1}n to the pair of graphs ((V1, E1), (V2, E2)) where V1 = V2 =
Vn, E1 = {ei | xi = 0 ∨ i ≥ n + 1}, and E2 = {ei | yi = 0 ∨ i ≥ n + 1}. If
DISJ(x, y) = 1 then (∀i)[xi = 0 ∨ yi = 0] so (V1 ∪ V2, E1 ∪ E2) = (Vn, En) = Gn

hence f((V1 ∪ V2, E1 ∪ E2)) = 1. If DISJ(x, y) = 0 then (∃i)[xi = yi = 1] so
(V1 ∪ V2, E1 ∪E2) = (Vn, En −E′) where E′ 6= ∅ since ei ∈ E′, so (by the nature of
Gn) f((V1 ∪ V2, E1 ∪ E2)) = 0.

Proof of parts 2,3,4,5,6,7,8: Items 2 and 3 follow from item 1, Theorem 3.2, and
Lemma 4.2. Items 4 and 5 follow from items 1,2. Item 6 follows from item 3,
Corollary 3.2, and Lemma 1.2. Items 7,8 follow from items 2,5, and the fact that
for any graph property h D(h) ≤ O(|V |2).

Note: It is known that D(CONN) = Θ(n log n) [23]. Hence, by Theorem 4.2,
D(ELIM(CONNk)) = Ω( D(f)

log(D(f)) )

5. THE COMPLEXITY OF ELIM(IPk)

We show that N(ELIM(IPk)) ≥ n, hence ELC holds for IP. For this we need
a lemma. We state the lemma, then from it prove the theorem, then return to
proving the lemma.

Lemma 5.1. Let A,B ⊆ {{0, 1}n − 0n}k be such that |A||B| > pH2k where
p = 1

2n−4 and H = 2n − 1. Then, for any z ∈ {0, 1}k, there are x ∈ A, y ∈ B such
that IPk(x, y) = z.

Theorem 5.1. For all k, for all n ≥ 4, N(ELIM(IPk)) ≥ n.

Proof. Let p and H be as in Lemma 5.1. Assume that N(ELIM(IPk)) = t.
Let C = {{0, 1}n − 0n}k × {{0, 1}n − 0n}k. Note that |C| = H2k. By Lemma 1.1
there is an A ⊆ {{0, 1}n}k, a B ⊆ {{0, 1}n}k, and a vector b ∈ {0, 1}k, such that
|C ∩ (A × B)| ≥ |H|2k/2t and (∀x ∈ A)(∀y ∈ B)[IPk(x, y) 6= b]. By the nature of
C we can assume A,B ⊆ {{0, 1}n − 0n}k. By Lemma 5.1 if |A||B| > pH2k then
(∃x ∈ A)(∃y ∈ B)[IPk(x, y) = b]. Since b is eliminated from being IPk(x, y) we
have |A||B| ≤ pH2k. Therefore H2k

2t ≤ pH2k, 1
p ≤ 2t, and 2n − 4 ≤ 2t. Since n ≥ 4

we have t ≥ n.

Note: Theorem 5.1 is proven for n ≥ 4. For n = 1, 2 the theorem is true and easy.
The case of n = 3 is open, though we suspect it holds there as well.

We first prove the lemma for the k = 1 case.

Lemma 5.2. Let A,B ⊆ {0, 1}n − 0n and let i ∈ {0, . . . , n}. If |A| ≥ 2i and
|B| ≥ 2n−i−1 then (∃x ∈ A)(∃y ∈ B)[IP(x, y) = 1].
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Proof. Let A′ be the linear subspace of {0, 1}n spanned by A. Then, |A′| ≥
|A| + 1 ≥ 2i + 1 because A ⊆ A′ and 0n ∈ A′ − A. Therefore, the dimension of
A′ is at least i + 1. This means that the dimension of (A′)⊥ (the set of all vectors
perpendicular to all vectors in A′) is at most n−i−1 and |(A′)⊥−0n| ≤ 2n−i−1−1.
Hence, there is an x ∈ B and y1, . . . , yk ∈ A such that x and

∑k
i=1 yi ∈ A′ are not

perpendicular. Hence there must be an i such that IP(x, yi) = 1.

Lemma 5.3. Let A,B ⊆ {0, 1}n−0n and let i ∈ {1, . . . , n+1}. If |A| ≥ 2i−2 +1
and |B| ≥ 2n−i + 1 then (∃x ∈ A)(∃y ∈ B)[IP(x, y) = 0].

Proof. Assume, by way of contradiction, that for every x ∈ A and y ∈ B we
have IP(x, y) = 1. Fix x0 ∈ A and y0 ∈ B. Let A′ = {x − x0 | x ∈ A} and B′ =
{y − y0 | y ∈ B}. For every y ∈ B, IP(x− x0, y) = IP(x, y)− IP(x0, y) = 1− 1 = 0
and IP(x − x0, y − y0) = IP(x − x0, y) − IP(x − x0, y0) = 0. Therefore, A′ and
B′′ = B ∪ B′ are perpendicular. Moreover, the subspaces spanned by A′ and B′′

are perpendicular.
The sets B and B′ do not overlap: if y ∈ B and y−y0 ∈ B then IP(x0, y−y0) = 1,

so IP(x0, y) − IP(x0, y0) = 1, and since IP(x0, y0) = 1 we get IP(x0, y) = 0. The
sets B and B′ are the same size since the function y → y−y0 is a bijection between
them.

The dimension of the subspace spanned by A′ is at least i − 1 because |A′| =
|A| ≥ 2i−2 + 1. The dimension of the subspace spanned by B′′ is at least n− i + 2
because |B′′| = |B|+ |B′| = 2|B| = 2n−i+1 +2. The sum of these two dimensions is
at least (i− 1) + (n− i + 2) = n + 1. However, if two subspaces are perpendicular,
the sum of their dimensions is at most n. This is a contradiction.

We now restate and prove the lemma.

Lemma 5.4. Let A,B ⊆ {{0, 1}n − 0n}k be such that |A||B| > pH2k where
p = 1

2n−4 and H = 2n − 1. Then, for any z ∈ {0, 1}k, there are x ∈ A, y ∈ B such
that IPk(x, y) = z.

Proof. By induction. The base case is k = 1: A,B ⊆ {{0, 1}n − 0n}. and
|A||B| > pH2 ≥ 2n. By Lemmas 5.2 and 5.3, this implies that there are x1, x2 ∈ A,
y1, y2 ∈ B with IP(x1, y1) = 0 and IP(x2, y2) = 1.

For the induction step there are two cases: zk = 0 and zk = 1. We prove the
zk = 0 case in detail, and then sketch the zk = 1 case which is similar.

I) What if zk = 0?
Assume k > 1. Let
A1 = {x1 · · ·xk−1 | x1 · · ·xk ∈ A for at least one xk}.
For i ∈ {2, . . . , n + 1} let
Ai = {x1 · · ·xk−1 | x1 · · ·xk ∈ A for at least 2i−2 + 1 xk}.
The sets Bi for i ∈ {1, . . . , n + 1} are defined similarly.
We consider two cases:

Case 1: |Ai||Bn+2−i| > pH2(k−1) for some i ∈ {1, . . . , n + 1}.
Then, by inductive assumption, there are x1 · · ·xk−1 ∈ Ai and y1 · · · yk−1 ∈ Bn−i

such that IP(x1, y1) = z1, . . ., IP(xk−1, yk−1) = zk−1. We fix x1, y1, . . . , xk−1, yk−1

with this property. Let C = {xk | x1 · · ·xk ∈ Ai}, D = {yk | y1 · · · yk ∈ Bn−i}.
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Then, |C| ≥ 2i−2 + 1 and |D| ≥ 2n−i + 1. By Lemma 5.3, this means that there
are xk ∈ C, yk ∈ D such that IP(xk, yk) = 0 = zk.
Case 2: For all i ∈ {1, . . . , n + 1}, |Ai||Bn+2−i| ≤ pH2(k−1). We will show that
this implies |A||B| ≤ pH2k, and hence cannot occur.

Note that A1 ⊇ A2 ⊇ · · · ⊇ An+1. For every x1 · · ·xk ∈ A we know that
x1 · · ·xk−1 is either in A1 − A2 or A2 − A3 or · · · or An − An+1 or An+1. For
1 ≤ i ≤ n, for every x1 · · ·xk−1 ∈ Ai − Ai+1 there are at most 2i−1 extensions of
it that are in A (by the definition of Ai+1). For every x1 · · ·xk−1 ∈ An+1 there are
at most 2n − 1 extensions of it that are in A since there are only 2n − 1 elements
in {0, 1}n − 0n.

Hence we have

|A| ≤ (|A1| − |A2|)20 + (|A2| − |A3|)21 + · · ·+ (|An −An+1)2n−1 + |An+1|(2n − 1).

(1)

By grouping the terms with the same |Ai| together we can rewrite (1) as

|A| ≤ 20|A1|+ (21 − 20)|A2|+ · · ·+ (2n−1 − 2n−2)|An|+ (2n − 1− 2n−1)|An+1|
= 20|A1|+ 20|A2|+ 21|A3|+ · · ·+ 2n−2|An|+ (2n−1 − 1)|An+1|. (2)

Similarly,

|B| ≤ 20|B1|+ 20|B2|+ 21|B3|+ · · ·+ 2n−2|Bn|+ (2n−1 − 1)|Bn+1|. (3)

Let a = |A|
Hk , b = |B|

Hk , ai = |Ai|
Hk−1 , bi = |Bi|

Hk−1 .
Note that we want ab ≤ p. We have

a ≤ 1
H

(20a1 + 20a2 + 21a3 + 22a4 + · · ·+ 2n−2an + (2n−1 − 1)an+1)

b ≤ 1
H

(20b1 + 20b2 + 21b3 + 22b4 + · · ·+ 2n−2bn + (2n−1 − 1)bn+1).

Hence we want

(20a1 + 20a2 + 21a3 + 22a4 + · · ·+ 2n−2an + (2n−1 − 1)an+1) ×
(20b1 + 20b2 + 21b3 + 22b4 + · · ·+ 2n−2bn + (2n−1 − 1)bn+1) ≤ pH2.

Note that 1 ≥ a1 ≥ a2 ≥ · · · ≥ an+1. and 1 ≥ b1 ≥ b2 ≥ · · · ≥ bn+1. Then, to
show that Lemma 5.1 is true for k, we prove the following lemma.

Lemma 5.5. Let 1 ≥ a1 ≥ a2 ≥ · · · ≥ an+1, and 1 ≥ b1 ≥ · · · ≥ bn+1 be such
that aibn+2−i ≤ p for all i ∈ {1, . . . , n + 1}. Then,

(20a1 + 20a2 + 21a3 + 22a4 · · ·+ 2n−2an + (2n−1 − 1)an+1) ×
(20b1 + 20b2 + 21b3 + 22b4 · · ·+ 2n−2bn + (2n−1 − 1)bn+1) ≤ pH2. (4)

Proof. We first claim that we can take ai ≥ p. Assume ai < p. The only
constraints involving ai are aibn+2−i ≤ p and ai ≤ 1. The only other constraint
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involving bn+2−i is bn+2−i ≤ 1. Hence if you lifted ai to p you would not loosen
the constraints on bn+2−i. Hence there is no reason not to lift ai up to p.

We can assume that bi = p/an+2−i for all i ∈ {1, . . . , n + 1} (because we have
bi ≤ p/an+2−i and increasing bi can only increase the expression on the left-hand
side of (4)). Denote

f(a1, . . . , an+1) = (20a1 + 20a2 + 21a3 + 22a4 + · · ·+ 2n−2an + (2n−1 − 1)an+1)×
(20 p

an+1
+ 20 p

an
+ 21 p

an−1
+ 22 p

an−2
+ · · ·+ 2n−2 p

a2
+ (2n−1 − 1) p

a1
)

Then, we have to show that f(a1, . . . , an+1) ≤ pH2 for all a1, . . . , an+1 satisfying
1 ≥ a1 ≥ a2 ≥ · · · ≥ an+1.

We show that f(a1, . . . , an+1) is maximized by taking a1 = · · · = ai, ai+1 = · · · =
an+1 for some i. Let ai > ai+1 = ai+2 = · · · = aj > aj+1 for some 1 ≤ i < j ≤ n+1.
Then, one can increase f as follows.

Let g(x) = f(a1, . . . , ai, x, . . . , x, aj+1, . . . , an+1), x ∈ [aj+1, ai]. Then, g(x) =
bx+ c+ d

x for some b, c, d ∈ R. For any interval [aj+1, ai], g(x) is maximized by one
of its endpoints. Therefore, one can increase f(a1, . . . , an+1) by setting ai+1, . . . , aj

all equal to ai or aj+1.
We show that if a1 = · · · = ai > ai+1 = · · · = an+1, then a1 = 1 and an+1 = p.

Look at g(x) = f(x, . . . , x, ai+1, . . . , an+1). Again g(x) = bx + c + d
x for some

b, c, d ∈ R and g is maximized either by x = ai+1 or x = 1. Since ai > ai+1 we need
to take x = 1. A similar argument, using that ai ≥ p, shows that ai+1 = · · · =
an+1 = p.

If a1 = a2 = · · · = an+1, then f(a1, . . . , an+1) is just

(20a1 + 20a1 + 21a1 + 22a1 + · · ·+ 2n−2a1 + (2n−1 − 1)a1)×
(20 p

a1
+ 20 p

a1
+ 21 p

a1
+ 22 p

a1
+ · · ·+ 2n−2 p

a1
+ (2n−1 − 1) p

a1
)

= p(20 + 20 + 21 + 22 + · · ·+ 2n−2 + 2n−1 − 1)2

= p(2n − 1)2

≤ pH2.

Otherwise, a1 = · · · = ai = 1, ai+1 = · · · = an+1 = p for some i ∈ {1, . . . , n}.
Then,

f(a1, . . . , an+1) = (20 + 20 + 21 + 22 + · · ·+ 2i−2

+2i−1p + 2i+2p + · · ·+ 2n−2p + (2n−1 − 1)p)×
(20 + 20 + 21 + 22 + · · ·+ 2n−i−1

+2n−ip + · · ·+ 2n−2p + (2n−1 − 1)p)
= (2i−1 + 2i−1(1 + 2 + 22 + · · ·+ 2n−i−1 + 2n−i)p− p)×

(2n−i + 2n−i(1 + 2 + 22 + · · ·+ 2i−2 + 2i−1)p− p)
= (2i−1 + 2i−1(2n−i+1 − 1)p− p)× (2n−i + 2n−i(2i − 1)p− p)
= (2i−1 + (2n − 2i−1)p− p)× (2n−i + (2n − 2n−i)p− p)
= (2i−1 + (2n − 2i−1 − 1)p)× (2n−i + (2n − 2n−i − 1)p).

If multiplied out f(a1, . . . , an+1) would be of the form B2i + C2−i + D where
B,C,D > 0. Simple calculus shows that the maximum this function achieves on
the interval [1, n] occurs at one of the endpoints. At i = 1 (or, equivalently i = n).
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it is equal to

((2n−1 − 1)p + 2n−1)((2n − 2)p + 1) =
(

2n−1 − 1
2n − 4

+ 2n−1

) (
2n − 2
2n − 4

+ 1
)

=

(2n−1 +
1
2

+
1

2n − 4
)
2(2n − 3)
2n − 4

=
(2n + 1 + 2

2n−4 )(2n − 3)
2n − 4

<
(2n − 1)2

2n − 3
.

End of proof of Lemma 5.5

II) What if zk = 1?
Assume k > 1. Define Ai = {x1 · · ·xk−1 | x1 · · ·xk ∈ A for at least 2i−1 xk} and

Bi = {y1 · · · yk−1 | y1 · · · yk ∈ B for at least 2i−1 yk} for all i ∈ {1, . . . , n}. Again,
we consider two cases.
Case 1: For some i ∈ {1, . . . , n}, |Ai||Bn+1−i| ≥ pH2(k−1).

Then, by inductive assumption, there are x1 · · ·xk−1 ∈ Ai and y1 · · · yk−1 ∈
Bn+1−i such that IP(x1, y1) = z1, . . ., IP(xk−1, yk−1) = zk−1. Fix such x1, . . . , xk−1,
y1, . . . , yk−1. Define C = {xk | x1 · · ·xk ∈ A} and D = {yk | y1 · · · yk ∈ B}. Note
that |C| ≥ 2i−1 and |D| ≥ 2n−i. By Lemma 5.2 there exists x ∈ C and y ∈ D such
that IP(x, y) = 1. Let xk = x and yk = y.
Case 2: For all i ∈ {1, . . . , n}, |Ai||Bn+1−i| ≤ pH2(k−1).

Then, for every x1 · · ·xk−1 ∈ Ai − Ai+1, there are at most 2i − 1 xk such that
x1 · · ·xk ∈ A. (Otherwise, x1 · · ·xk−1 would belong to Ai+1.) Therefore, we have

|A| ≤ (|A1| − |A2|)(21 − 1) + (|A2| − |A3|)(22 − 1) + · · ·+ |An|(2n − 1) =

(21 − 1)|A1|+ (22 − 21)|A2|+ · · ·+ (2n − 2n−1)|An| =

20|A1|+ 21|A2|+ · · ·+ 2n−1|An|.

Define ai and bi similarly to zk = 0 case. Then, we have to prove

Lemma 5.6. Let 1 ≥ a1 ≥ a2 ≥ · · · ≥ an and 1 ≥ b1 ≥ b2 ≥ · · · ≥ bn be such
that aibn+1−i ≤ p for all i ∈ {1, . . . , n}. Then,

(a1 + 2a2 + · · ·+ 2n−1an)(b1 + 2b2 + · · ·+ 2n−1bn) ≤ pH2.

Proof. Similarly to Lemma 5.5 we can assume that all ai and bi are at least p

and bi = p/an+1−i for all i ∈ {1, . . . , n}. Then, proving this lemma is equivalent to
showing that the function

f(a1, . . . , an) = (a1 + 2a2 + · · ·+ 2n−1an)(
p

an
+ 2

p

an−1
+ · · ·+ 2n−1 p

a1
).

is always at most pH2. Again, similarly to the proof of Lemma 5.5, we get that
f(a1, . . . , an) is maximized by a1 = · · · = ai = 1, ai+1 = · · · = an = p. Then,

f(a1, . . . , an) = (2i − 1 + (2n − 2i)p)× (2n−i − 1 + (2n − 2n−i)p).
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If we consider this as a function of i, the derivative is negative if i < n/2 and
positive if i > n/2. Therefore, it is maximized by i = 0 (or, equivalently, i = n). In
this case f(a1, . . . , an) is just (2n − 1)p× (2n − 1) = pH2.
End of proof of Lemma 5.6

End of proof of Lemma 5.1

6. LOWER BOUNDS FOR RANDOMIZED PROTOCOLS

Let k be a constant. We show that if ε < 1
2k then Rpub

ε (ELIM(INTERk)) =
Ω( n

log(n) log log(n) ) and Rpub
ε (ELIM(IPk)) = Ω( n

log(n) log log(n) ). Note that if ε = 1
2k

then, for any f , Rpub
ε (fk) = 0 since any random sequence of k bits has a high

probability of not being fk(x, y) (both Alice and Bob output the first n random
public bits).

Lemma 6.1. Let k and ε < 1
2k be constants. Let Z be a set such that |Z| ≤ 2k.

Let S be a relation on {0, 1}n × {0, 1}n × Z such that (∀x)(∀y)(∃z)[S(x, y, z)]. If
Rpub

ε (S) ≤ t then Rpub
1/ log2 n

(S) ≤ O(t log log n).

Proof. Let Rpub
ε (S) ≤ t via protocol P . Let (x, y) be an input. We can amplify

the probability by running protocol P on (x, y) s times and returning the most
frequent answer. If incorrect strings (i.e., strings z such that ¬S(x, y, z)) occur less
than s/2k times then it follows that at least one of the correct strings must occur
more than s/2k times. In other words we get a correct answer with high probability
if the fraction of the occurrences of incorrect answers can be kept strictly less than
s/2k with high probability. We use Chernoff bounds to get an estimate. If Sn is
the number of occurrences of incorrect strings in s runs of the protocol then εs is
the expectation of Sn. We must keep |Sn − εs| strictly less than s(1/2k − ε). Let
m = s(1/2k − ε). Recall that Chernoff bounds give

Prob[|Sn − εs| ≥ m] ≤ 2e−m2/3εs.

Which means that for some constant c (depending on k and ε) this probability is
less than e−cs. Take s = 1

c ln log2 n = O(log log n).

We first show a lower bound on the randomized communication complexity of
ELIM(INTERk). We then make an observation that enables the same proof to
yield a lower bound for the randomized communication complexity of ELIM(IPk).
Recall that INTER stands for not disjoint. The proof applies a technique from [1,
Theorem 3.5][10, Lemma 4.3][41, Theorem 5.1] in a novel way.

Lemma 6.2. Let k,m ∈ N. Let x1, . . . , x2k−1, y1, . . . , y2k−1 ∈ {0, 1}∗ be such
that (∀i)[|xi| = |yi|]. Let X = x1 · · ·x2k−1 and Y = y1 · · · y2k−1. For i = 1, . . . , k

let Xi (Yi) be a string obtained from X (Y ) as follows: Start with all the Xi, Yi

being the empty string. Then, for j = 1, . . . , 2k − 1, concatenate xj to Xi (yj

to Yi) if the ith bit of j is 1. For example X1 = x1x3x5 · · ·x2k−1 and X2 =
x2x3x6x7 · · ·x2k−2x2k−1. Assume INTERk(XkXk−1 · · ·X1, YkYk−1 · · ·Y1) 6= b and
b 6= 0k. View b as a k-bit binary number (leading bits may be 0). Let X ′ (Y ′) be
X with the xb (yb) removed. Then INTER(X, Y ) = 1 ⇒ INTER(X ′, Y ′) = 1.
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Proof. If INTER(X, Y ) = 1 and INTER(xb, yb) = 0 then clearly INTER(X ′, Y ′) =
1. Hence we assume INTER(X, Y ) = 1 and INTER(xb, yb) = 1.

Let b = bkbk−1 · · · b1. Let 1 ≤ j ≤ k. If bj = 1 then xb is a substring of Xj and yb

is a substring of Yj and they are in the same position. Since INTER(xb, yb) = 1 we
obtain INTER(Xj , Yj) = 1 = bj . Since INTERk(XkXk−1 · · ·X1, YkYk−1 · · ·Y1) 6= b

we have
∨

1≤i≤k INTER(Xi, Yi) 6= bi. Since INTER(Xi, Yi) = bi this reduces to∨
1≤i≤k,bi=0 INTER(Xi, Yi) 6= bi hence

∨
1≤i≤k,bi=0 INTER(Xi, Yi) = 1. Let i0 be

such that bi0 = 0 and INTER(Xi0 , Yi0) = 1. Note that Xi0 (Yi0) does not have xb

(yb) placed in it. Hence INTER(X ′, Y ′) = 1.

Lemma 6.3. Rpub
1/4 (INTER) = Ω(n). Moreover, Rpub

1/4 (INTER) = Ω(n) even
when restricted to

D = {(x, y) ∈ {0, 1}n × {0, 1}n : for at most one i, xi = yi}.

Proof. It is known ([27], simplified in [44], and also in [34]) that Rpub
1/4 (DISJ) =

Ω(n). The proofs actually work even when restricted to domain D. Since INTER =
1 − DISJ the lower bound Rpub

1/4 (DISJ) = Ω(n) can easily be modified to obtain

Rpub
1/4 (INTER) = Ω(n), even when restricted to domain D.

Theorem 6.1. Let k and ε < 1/2k be constants. Then Rpub
ε (ELIM(INTERk)) =

Ω( n
log(n) log log(n) ).

Proof. Assume Rpub
ε (ELIM(INTERk)) = t(n) via protocol P ′. By Lemma 6.1

we can obtain a protocol P such that Rpub
1/ log2 n

(ELIM(INTERk)) = O(t(n) log log n)
via P . We can also apply the protocol to k-tuples of inputs of length ≤ n by having
both Alice and Bob pad with 0’s. We will still assume it costs t(n) log log n.

We use P to help show Rpub
1/4 (INTER) = O(t(n) log(n) log log(n)). By Lemma 6.3,

Rpub
1/4 (INTER) = Ω(n), hence we have t(n) = Ω( n

log n log log n ).
Let X and Y be two strings of length n. Let Alice have X and Bob have

Y . Alice and Bob divide X and Y into 2k − 1 parts so that X = x1 . . . x2k−1,
Y = y1 . . . y2k−1, |x1| = · · · = |x2k−2| = |y1| = · · · = |y2k−1| = bn/(2k − 1)c, and

|x2k−1| = |y2k−1| = n − (2k − 2)bn/(2k − 1)c ≥
⌊

n
2k−1

⌋
. Let Xi (Yi) be a string

obtained from X (Y ) as in Lemma 6.2. Note that |Xi| = |Yi| ≤ n so we can apply
the protocol P to (Xk · · ·X1, Yk · · ·Y1).

Run protocol P on (Xk · · ·X1, Yk · · ·Y1). If the protocol returns 0k then Alice and
Bob stop and reject. Note that if this happens then Prob(

∨k
i=1 INTER(Xi, Yi) =

1) ≤ 1
log2 n

, so Prob(INTER(X, Y ) = 1) ≤ 1
log2 n

, hence the probability of error
is ≤ 1

log2 n
. If the protocol returns b = b1 · · · bk 6= 0k then by Lemma 6.2 with

probability greater than 1− 1
log2 n

we have INTER(X, Y ) = 1 ⇒ INTER(X ′, Y ′) = 1
where X ′ is X with the xb cut out (and Y ′ is similar). Next, Alice and Bob remove
xb and yb from their strings and reiterate the process. In each recursive step, Alice
and Bob start with a string of length m and remove at least bm/(2k − 1)c bits
from that string for the next iteration. The recursion stops when the length of the
strings left is less than or equal 2k−1 bits. Since the invariant preserves, with high
probability, that these strings have nonempty intersection if and only if the original
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strings had nonempty intersection, the protocol can now determine INTER(X, Y )
with 2k − 1 extra bits of communication.

Let us first determine the total number of bits exchanged. For this we compute
the depth of the recursion. Each step starts with a string of length m and ends
with a string of length at most m − bm/(2k − 1)c ≤ m(1 − 1

2k−1
) + 2k−2

2k−1
≤ αn

where α is a constant less than 1 (we are using that k is a constant). Since Alice
and Bob start with a string of length n, after i iterations they have a string of
length αin. Hence there are O(log n) iterations. Each application of P requires
the exchange of at most t(n) log log n bits. The final stage just requires a constant
number of bits (2k−1). It follows that the algorithm in total requires the exchange
of O(t(n) log n log log n) bits.

Let us determine the probability of error. In each step the probability that the
string returned by the protocol is correct, i.e., is a string that is indeed the true
value of f(Xk · · ·X1, Yk · · ·Y1) is at least (1 − 1/ log2 n). The probability that all
steps are correct is at least (1 − 1/ log2 n)ck log n for some constant c. If n is large
enough this is greater than 3

4 .

Note: The proof above is based on the proof that if c < 1 and SAT is c log n-
membership-comparable [1, 10, 41] then P=NP. That work has been extended by
Sivakumar [51]. It is possible that Sivakumar’s techniques can be applied here to
obtain stronger results.

Theorem 6.2. Let k and ε < 1/2k be constants. Rpub
ε (ELIM(IPk)) = Ω( n

log n log log n ).

Proof. By Lemma 6.3 Rpub
1/4 (INTER) = Ω(n) even when restricted to

D = {(x, y) ∈ {0, 1}n × {0, 1}n : for at most one i xi = yi}.

On D, IP = DISJ. The proof of Theorem 6.1 can now be viewed as a lower bound
on Rpub

ε (ELIM(IPk)).

7. CONNECTIONS BETWEEN D(ELIM(f2)) AND
D(ALMOST(fM))

Definition 7.1. If σ, τ ∈ {0, 1}∗ are strings of the same length then σ =1 τ

means that σ and τ are either identical or differ on one bit.

Definition 7.2. Let k, n ∈ N and f : {0, 1}n ×{0, 1}n → {0, 1}. ALMOST(fk)
is the relation on {{0, 1}n}k×{{0, 1}n}k×{0, 1}k defined by {(x, y, b) | fk(x, y) =1

b}

Clearly D(ALMOST(fk)) ≤ (k − 1)D(f).

Conjecture 1. For any function f , for any k ∈ N, D(ALMOST(fk)) ≥ (k −
1)(D(f)−O(1)). (Note that for k = 2, this conjecture is identical to ELC.)

Although we believe Conjecture 1 we can obtain consequences from the following
weaker conjecture.

Conjecture 2. (The Almost Conjecture (ALC) For any function f , for any
k ∈ N, D(ALMOST(fk)) ≥ k

2D(f).
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We establish some connections between the complexity of ALMOST(fk) and the
complexity of enumeration. We first need a combinatorial lemma.

Definition 7.3. If X ⊆ {0, 1}m and 1 ≤ i1, . . . , ik ≤ m then X[i1, . . . , ik] is the
projection of X onto those coordinates.

Lemma 7.1. Let X ⊆ {0, 1}m. Let b ∈ X be unknown. If (∀i, j)[|X[i, j]| ≤ 3]
then there is an algorithm that requests ≤

⌈
m
2

⌉
− 1 bits of b and produces b′ =1 b.

Proof. We show the weaker theorem that there is an algorithm that requests
≤

⌈
m
2

⌉
bits of b. We then show how to modify the algorithm to request ≤

⌈
m
2

⌉
− 1.

Let U = {1, . . . ,m}, K = G = ∅. Throughout the algorithm U will be the set
of indices i such that bi is Unknown, nor have we ventured a Guess, K will be the
set of indices i such that we Know bi, and G will be the set of indices i such that
we have made a Guess for bi. At the end of the algorithm we will have U = ∅,
K ∪G = {1, . . . ,m}, and at most one of our guesses is wrong.

At all times U,K, and G are a partition of {1, . . . ,m}. The expression “K =
K∪{a, i}” means that wherever a, i are, they leave those sets and go into K. Similar
conventions apply to other sets. Our final output will be b′ = b′1b

′
2 · · · b′m. Initially

b′1, . . . , b
′
m are undefined. They may get set and reset several times; however at the

end of the algorithm they will all be defined.
ALGORITHM

U = {1, . . . ,m}
K = ∅
G = ∅
For i=1 to m

If X[i] = {c} then b′i = c, K = K ∪ {i}
End i-For loop
For i = 1 to m

For j = i + 1 to m

If X[i, j] ⊆ {00, 11} then
ASK(bi =??)
If bi = 1 then b′i = 1, b′j = 1, K = K ∪ {i, j}
If bi = 0 then b′i = 0, b′j = 0, K = K ∪ {i, j}

Else
If X[i, j] ⊆ {01, 10} then

ASK(bi =??)
If bi = 1 then b′i = 1, b′j = 0, K = K ∪ {i, j}
If bi = 0 then b′i = 0, b′j = 1, K = K ∪ {i, j}

End j-For loop
End i-For loop (Note that if |X[i, j]| ≤ 2 then i, j ∈ K.)
While U 6= ∅

i = min(U) (The minumum number in U .)
Case 1: (∃j, k ∈ U ∪G− {i})(∃c1, c2 ∈)[0c1 /∈ X[i, j] ∧ 1c2 /∈ X[i, k]]

ASK(bi =??)
If bi = 0 then b′i = 0, b′j = 1− c1, K = K ∪ {i, j}
If bi = 1 then b′i = 1, b′k = 1− c2, K = K ∪ {i, k}

(Note that If bi = 0 then since bibj ∈ X[i, j] and 0c1 /∈ X[i, j], we have bj = 1−c1.
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Similarly, If bi = 1 we have bk = 1− c2.)
Case 2: (∃d ∈)(∀j ∈ U ∪G− {i})[|{d0, d1} ∩X[i, j]| ≤ 1]

b′i = 1− d

G = G ∪ {i}
(We will show later that either Case 1 or Case 2 holds.)

End While Loop
END OF ALGORITHM

It is easy to see that the algorithm (a) requests ≤
⌈

m
2

⌉
coordinates, (b) sets all

the b′i, and (c) (∀i ∈ K)[bi = b′i].
Claim 1: Either Case 1 or Case 2 occurs.
Proof: Assume Case 1 does not occur. We show that Case 2 does. Intuitively
Case 1 is saying that there is j, k such that X[i, j] and X[i, k] exclude elements of
{0, 1}2 that begin with different bits. The negation is that, for all j, k, X[i, j] and
X[i, k] exclude elements of {0, 1}2 that begin with the same bit. This bit is the d

in case 2. We proceed more formally. Fix j0 ∈ U ∪ G − {i}. Since |X[i, j0]| ≤ 3
either (∃c ∈)[0c /∈ X[i, j0]] or (∃c ∈)[1c /∈ X[i, j0]]. We consider both scenarios.

1) (∃c1 ∈)[0c1 /∈ X[i, j0]. (We call it “c1” because it will later play the role of c1 in
Case 1, leading to a contradiction.) We have |{00, 01}∩X[i, j0]| ≤ 1 which looks like
Case 2 for j0 with d = 0. We show that (∀j ∈ U∪G−{i})[|{00, 01} ∩X[i, j]| ≤ 1].
Assume, by way of contradiction, that (∃j)[|{00, 01}∩X[i, j]| = 2]. Since |X[i, j]| ≤
3 we have (∃c2 ∈)[1c2 /∈ X[i, j]]. Hence

(∃j0, j ∈ U ∪G− {i})(∃c1, c2 ∈)[0c1 /∈ X[i, j0] ∧ 1c2 /∈ X[i, j]].

This is Case 1 with different names for the variables; hence it is really Case 1, a
contradiction.

2) (∃c1 ∈)[1c1 /∈ X[i, j0]. (We call it “c1” because it will later play the role of c1 in
Case 1, leading to a contradiction.) We have |{10, 11}∩X[i, j0]| ≤ 1 which looks like
Case 2 for j0 with d = 1. We show that (∀j ∈ U∪G−{i})[|{10, 11} ∩X[i, j]| ≤ 1].
Assume, by way of contradiction, that (∃j)[|{10, 11}∩X[i, j]| = 2]. Since |X[i, j]| ≤
3 we have (∃c2 ∈)[0c2 /∈ X[i, j]]. Hence

(∃j0, j ∈ U ∪G− {i})(∃c1, c2 ∈)[1c1 /∈ X[i, j0] ∧ 0c2 /∈ X[i, j]].

This is Case 1 with different names for the variables; hence it is really Case 1, a
contradiction.
End of Proof of Claim 1

Claim 2: There is at most one i ∈ G such that bi 6= b′i.
Proof: Assume, by way of contradiction, that there exist i1, i2 ∈ G with bi1 6= b′i1
and bi1 6= b′i1 . Since i1, i2 ∈ G we know that (1) they are both the chosen i in some
phase, (2) when they are chosen Case 2 occurs, and (3) they are both always in
U ∪ G. Since bi1 6= b′i1 when i = i1 we get Case 2 with d = bi1 . Since i2 ∈ U ∪ G
we get |{bi10, bi11} ∩X[i1, i2]| ≤ 1. Similarly, |{bi20, bi21} ∩X[i2, i1]| ≤ 1 which we
rewrite as |{0bi2 , 1bi2} ∩X[i1, i2]| ≤ 1.

We prove that |X[i1, i2]| ≤ 2 and hence it must have been dealt with before the
while loop even started, which contradicts i1, i2 ∈ U . Clearly bi1bi2 ∈ X[i1, i2].
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Since |{bi10, bi11}∩X[i1, i2]| ≤ 1 we get bi1(1− bi2) /∈ X[i1, i2]. Since |{0bi2 , 1bi2}∩
X[i1, i2]| ≤ 1 we get (1− bi1)bi2 /∈ X[i1, i2]. Since bi1(1− bi2) 6= (1− bi1)bi2 we have
eliminated two elements from X[i1, i2]. Hence |X[i1, i2]| ≤ 2.
End of Proof of Claim 2
Claim 3: The algorithm can be modified to request dm/2e − 1 bits.
Proof: Run the algorithm keeping track of how many queries it makes. If it stops
before making dm/2e queries then we are done. If it is about to make its dm/2eth
query then stop it. Each of the first dm/2e − 1 queries leads to 2 indices being
placed in the K set. Hence m− 2 bits are known for certain. Let the unknown bits
be indexed i and j. Let cicj /∈ X[i, j]. Set b′i = 1− ci and b′j = 1− cj . They cannot
both be incorrect since bibj 6= cicj .
End of Proof of Claim 3

Lemma 7.2. Let X ⊆ {0, 1}m. Let b ∈ X be unknown. Let 2 ≤ k ≤ m.
If (∀i1, . . . , ik)[|X[i1, · · · , ik]| ≤ k + 1] then there is an algorithm that requests ≤
max{

⌈
m
2

⌉
− 1, k − 1} bits of b and produces b′ =1 b.

Proof. We prove this by induction on k. Lemma 7.1 gives the base case of
k = 2. Assume k ≥ 3 and that the lemma holds for k − 1. Assume X ⊆ {0, 1}m

and (∀i1, . . . , ik)[|X[i1, · · · , ik]| ≤ k + 1]. If (∀i1, . . . , ik−1)[|X[i1, · · · , ik−1]| ≤ k]
then we are done by induction. If not then
(∃i1, . . . , ik−1)[|X[i1, · · · , ik−1]| ≥ k + 1]. Let i ∈ {1, . . . ,m} − {i1, . . . , ik−1}. Since
|X[i1, . . . , ik−1, i]| ≤ k+1 and |X[i1, · · · , ik−1]| ≥ k+1 for every c ∈ X[i1, . . . , ik−1]
exactly one of c0 or c1 is in X[i1, . . . , ik−1, i]. Hence if we ask for the values of
bi1 , . . . , bik−1 we can determine the values of all the other bi. This takes k − 1
questions.

Note: In addition to its use here, Lemma 7.2 can also be used to prove the fol-
lowing new theorem: if CA

k is k + 1-enumerable then, for all m, one can compute
CA

m with at most one error using max{
⌈

m
2

⌉
, k − 1} of the queries given. Further

connections between enumerability and computing with errors might be interesting.
(See any of [2, 7, 11, 10, 22] for the relevant definitions. Note that the theorem
holds for enumerability in the complexity case and for strong enumerability in the
computability case.)

Note: Lemma 7.2 is optimal in two ways.

1. No algorithm that asks m
2 bit queries can achieve perfect accuracy. In fact,

no algorithm that asks m − 1 queries can achieve perfect accuracy. Let X be the
m + 1 vectors {0m} ∪ {0i10m−i−1 | 0 ≤ i ≤ m − 1}. This set satisfies the premise
of Lemma 7.2; however, if m− 1 bit queries yield the answer 0 then the string b is
still unknown.

2. No algorithm that asks m
2 − 2 bit queries can obtain a string with at most

one error. Let m be even. Let X = {0m/21m/2} ∪ {0a10m/2−a−11a01m/2−a−1 |
0 ≤ a ≤ m/2 − 1}. (See figure below for m = 8 case.) One can check that, for
all i, j, |X[i, j]| ≤ 3 (there are four cases). Note that for every 1 ≤ i ≤ m either
all the vectors except one have bi = 0 or all but one have bi = 1. If an adversary
answers each bit query with the bit that appears most often in that column then
every query the algorithm makes eliminates at most one vector. Hence m/2 − 2
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queries will leave at least three candidates. Two of the candidates must differ in
four places (whichever two are not 0m/21m/2). There is no vector that is hamming
distance 1 away from both of them; hence an adversary can claim that whatever
answer given is wrong in at least two places.

0 0 0 0 1 1 1 1
1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0

Theorem 7.1. Let k,m, n ∈ N and let f : {0, 1}n × {0, 1}n → {0, 1}. Then

D(ALMOST(fm)) ≤
(

m

k

)
D(ENUM(k + 1, fk)) + max{

⌈m

2

⌉
− 1, k − 1}D(f).

Proof. We exhibit a protocol for ALMOST(fm) that will invoke a protocol for
ENUM(k + 1, fk)

(
m
k

)
times, and a protocol for f at most max{

⌈
m
2

⌉
− 1, k − 1}

times.

1) Alice has x = x1x2 · · ·xm, Bob has y = y1y2 · · · ym.
2) For all i1 < · · · < ik ⊆ {1, . . . ,m} Alice and Bob compute a set of k + 1

candidates for fk(xi1xi2 · · ·xik
, yi1yi2 · · · yik

). This invokes a protocol for
fk+1

(
m
k

)
times.

3) Let X ⊆ {0, 1}m be the set of candidates for fm(x, y) that are consistent with
the information gathered in step 2. That is, b ∈ X iff for every i1, . . . , ik the string
bi1 · · · bik

was output when Alice and Bob enumerated fk(xi1 · · ·xik
, yi1 · · · yik

).
Note that X is nonempty since f(x1, y1) · · · f(xm, ym) ∈ X. Note that Alice and
Bob both know X and that X satisfies Lemma 7.2.

4) Alice and Bob perform the algorithm in Lemma 7.2 with X as in the previous
step and b = fk(x, y). Whenever they need to find a particular bit f(xi, yi), they
invoke a protocol for f . This will happen at most max{

⌈
m
2

⌉
− 1, k − 1} times.

Corollary 7.1. Let m,n ∈ N and let f : {0, 1}n × {0, 1}n → {0, 1}. Then

D(ALMOST(fm)) ≤
(

m

2

)
D(ELIM(f2)) + (

⌈m

2

⌉
− 1)D(f).

Corollary 7.2. Let m,n ∈ N and let f : {0, 1}n × {0, 1}n → {0, 1}. Assume
ALC holds for some even m. Then D(ELIM(f2)) ≥ Ω(D(f)).

Proof. Since ALC holds for m we have

m

2
D(f) ≤ D(ALMOST(fm)) ≤

(
m

2

)
D(ELIM(f2)) + (

m

2
− 1)D(f).

Hence D(f) ≤
(
m
2

)
D(ELIM(f2)), so D(ELIM(f2)) = Ω(D(f)).
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8. CONNECTIONS BETWEEN N(ENUM(E, fk)), N(F ), AND
Rpub

ε N(F )

We show that N(ENUM(k, fk)) is at least as big as either the nondeterministic
randomized complexity of f or the nondeterministic complexity of f (modulo a log
term).

The proof of the next lemma uses ideas from the proof that p-superterse sets are
in P/poly from [2].

Lemma 8.1. Let e, k, n ∈ N and let f : {0, 1}n × {0, 1}n → {0, 1}. Either

N(ENUM(e− 1, fk−1)) ≤ N(ENUM(e, fk)) + log(kn) + O(1)

or

Rpub
1/4 N(f) ≤ N(ENUM(e, fk)).

Proof. Assume N(ENUM(e, fk)) ≤ t via protocol P . Note that the output
of P is a set A with |A| ≤ e. We denote the output of P by A, and we let
A0 = A ∩ {0, 1}k−10 and A1 = {0, 1}k−11.

We will try to construct a set Z ⊆ {0, 1}n ×{0, 1}n such that the following hold:

1. |Z| ≤ O(kn), and

2. For all x1 · · ·xk−1 ∈ {{0, 1}n}k−1, for all y1 · · · yk−1 ∈ {{0, 1}n}k−1, there
exists (u, v) ∈ Z such that for all paths of P (x1 · · ·xk−1u, y1 · · · yk−1v) that output
an answer A, both A0 6= ∅ and A1 6= ∅.

If we succeed then the following nondeterministic protocol shows that

N(ENUM(e− 1, fk−1)) ≤ t + log(kn) + O(1).

The protocol assumes that both Alice and Bob know the set Z and have agreed
ahead of time on some ordering of it. They also know, for every (u, v) ∈ Z, the
value of f(u, v). This is fair since these protocols are non-uniform.

PROTOCOL

1. Alice has x1 · · ·xk−1 and Bob has y1 · · · yk−1.

2. The protocol nondeterministically picks a number i such that 1 ≤ i ≤ |Z|.
This requires log |Z| bits.

3. Alice and Bob both find (u, v), the ith element of Z (according to Alice and
Bob’s order on Z).

4. Alice and Bob run nondeterministic protocol P with Alice knowing x1 · · ·xk−1u

and Bob knowing y1 · · · yk−1v. This requires ≤ t bits.

5. If the path outputs “I DON’T KNOW” then that path of the protocol outputs
“I DON’T KNOW”. If the output is a set A then we know that A0 6= ∅ and
A1 6= ∅. We can assume Alice and Bob both know f(u, v) = b. Hence they know
Ab contains the correct value of f(x, y). The protocol outputs A′ = {b1b2 · · · bk−1 |
b1b2 · · · bk−1b ∈ Ab}. Since A1−b 6= ∅ and |A| ≤ e, we know |Ab| ≤ e− 1.
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END OF PROTOCOL
Note that the protocol takes t + log |Z| ≤ t + kn + O(1) bits, and enumerates

≤ e− 1 candidates. Hence N(ENUM(e− 1, fk)) ≤ t + kn + O(1).
Two things may happen in the construction of Z. If the construction succeeds

then we are done, as the protocol above works. If the construction fails then the very
reason for the failure will yield a randomized protocol that shows Rpub

1/4 N(f) ≤ t.

Definition: If (u, v) ∈ {0, 1}n × {0, 1}n then advisees(u, v) is the set of all
(x1 · · ·xk−1, y1 · · · yk−1) such that if the nondeterministic protocol P is ran on
(x1 · · ·xk−1u, y1 · · · yk−1v) then some leaf outputs an A such that A∩{0, 1}k−10 6= ∅
and A ∩ {0, 1}k−11 6= ∅.

CONSTRUCTION OF Z

T := ({0, 1}n × {0, 1}n)k−1

Z := ∅
While (∃u, v)[|advisees(u, v)| ≥ 1

8 |T |]
choose such a (u, v)
T := T − advisees(u, v)
Z := Z ∪ {(u, v)}

END OF CONSTRUCTION
Note that after the ith iteration |T | ≤ ( 7

8 )i22(k−1)n. Hence there are at most
O(kn) iterations. Since the number of elements in Z is bounded by the number of
iterations, |Z| ≤ O(kn).

If the construction ends with T = ∅ then it succeeds and the protocol above
shows
N(ENUM(e− 1, fk−1)) ≤ t + log(kn) + O(1). If the construction does not succeed
then let T be the set T at the end. Note that, for every u, v, there is a set W ⊆ T

such that |W | ≥ 7
8 |T | and

(∀(x1 · · ·xk−1, y1 · · · yk−1) ∈ W )
if nondeterministic protocol P is run on (x1 · · ·xk−1u, y1 · · · yk−1v) then one of

the leaves outputs A such that A0 or A1 is empty.
We can use this to devise a protocol for f which uses public coins over T .

PROTOCOL

1. Alice has u and Bob has v.
2. The protocol randomly and publicly picks an element of T . Let the element

be

(x1 · · ·xk−1, y1 · · · yk−1).
3. Alice and Bob run nondeterministic protocol P with Alice knowing x1 · · ·xk−1u

and Bob knowing y1 · · · yk−1v.
4. When they get the answer A they check and see if either of A0 or A1 is empty.

If neither is empty then they refuse to give an answer. If Ab is empty then they
output 1− b.

END OF PROTOCOL
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The protocol transmit as many bits as P does, which is t. The protocol is in error
with probability 1

8 . The referee used elements in T to randomize, not elements in
some set of strings of bits. By adding a sufficently number of elements to T (all of
which return I DON”T KNOW) to obtain a set of size a poer of two, one increases
the probability of error to at most 1

4 . Hence we have Rpub
1/4 N(f) ≤ t.

Theorem 8.1. Let k, n ∈ N, e ≤ k, f : {0, 1}n × {0, 1}n → {0, 1}. Either

1.Rpub
1/4 N(f) ≤ N(ENUM(k, fk)) + k log(kn) or

2.N(f) ≤ N(ENUM(k, fk))+O(k log(kn)), coN(f) ≤ N(ENUM(k, fk))+O(k log(kn)),
and D(f) ≤ O((N(ENUM(k, fk)) + k log(kn))2).

Proof. By Lemma 8.1 we have either

Rpub
1/4 N(f) ≤ N(ENUM(k, fk))

or

N(ENUM(k − 1, fk−1)) ≤ N(ENUM(k, fk)) + log(kn) + O(1).

In the former case we are done. In the latter case we apply Lemma 8.1 with
k − 1, k − 1 to get either

Rpub
1/4 N(f) ≤ N(ENUM(k − 1, fk−1)) ≤ N(ENUM(k, fk)) + log(kn) + O(1)

or

N(ENUM(k − 2, fk−2)) ≤ N(ENUM(k − 1, fk−1)) + log(kn) + O(1)
≤ N(ENUM(k, fk)) + 2(log(kn) + O(1)).

We repeat the process until we obtain (in the worst case) either

Rpub
1/4 N(f) ≤ N(ENUM(k, fk)) + k log(kn)

or

N(ENUM(1, fk)) ≤ N(ENUM(k, fk)) + (k − 1)(log(kn) + O(1))
= N(ENUM(k, fk)) + O(k log(kn)).

From the definition of a nondeterministic protocol for a relation we know that
N(f) ≤ N(ENUM(1, fk)) and coN(f) ≤ N(ENUM(1, fk)) Hence

N(f) ≤ N(ENUM(k, fk)) + O(k log(kn))

and

coN(f) ≤ N(ENUM(k, fk)) + O(k log(kn)).

By Theorem 2.11 of [34], (originally proven in [24]) D(f) ≤ O(N(f)coN(f)).
Hence D(f) ≤ O((N(ENUM(k, fk)) + k log(kn))2).

9. IF D(ENUM(E, fk)) ≤ T THEN . . .

We present two theorems with the hypothesis that D(ENUM(e, fk)) is “small.”
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Lemma 9.1 ([6, 13, 42]). Let X ⊆ {0, 1}k such that |X| ≤ k. Let b ∈ X be
unknown. There is an algorithm that requests ≤ k − 1 bits of b that produces b.

Theorem 9.1. Let f : {0, 1}n × {0, 1}n → {0, 1}. For all k,

D(fk) ≤ D(ENUM(k, fk)) + (k − 1)D(f).

Proof.
We present a protocol for D(fk) that invokes a protocol for ENUM(k, fk) once

and a protocol for f k − 1 times.

1) Alice has x = x1x2 · · ·xk, Bob has y = y1y2 · · · yk.
2) Alice and Bob compute a set of k candidates for fk(x1x2 · · ·xk, y1y2 · · · yk).

This invokes one call to a protocol for ENUM(k, fk).
3) Let X ⊆ {0, 1}k be the set of candidates for fk(x, y) computed in step 2. Note

that X satisfies the premise of Lemma 9.1.
4) Alice and Bob perform the algorithm in Lemma 9.1 with X. Whenever they

need to find a particular bit f(xi, yi), they invoke a protocol for f . This will happen
at most k − 1 times.

Corollary 9.1. If DSC holds at k then D(ENUM(k, fk)) ≥ D(f)−O(k).

If you can just eliminate one possibility, does this imply that you can eliminate
more, perhaps for higher values of k? The next theorem shows how to do this. The
proof is similar to Lemma 5.1 of [5], Lemma 19 in [7] or Theorem 4.4.9 in [22].

Definition 9.1. Let k, m ∈ N such that 1 ≤ k ≤ m. S(m, k) =
∑k−1

i=0

(
m
i

)
.

Lemma 9.2 ([4, 7, 18, 47, 53]). Let k,m ∈ N such that 1 ≤ k ≤ m, and let
X ⊆ {0, 1}m be such that for any k coordinates, if you project X down to those k

coordinates, the resulting set has size ≤ 2k − 1. Then |X| ≤ S(m, k).

Theorem 9.2. Let k, m, n ∈ N, k < m, and f : {0, 1}n×{0, 1}n → {0, 1}. Then

D(ENUM(S(m, k), fm)) ≤
(

m

k

)
D(ELIM(fk)).

Proof. Suppose that D(ELIM(fk)) = t via protocol P . Alice is given x ∈
{{0, 1}n}m and Bob is given y ∈ {{0, 1}n}m. They can compute S(m, k) candi-
dates for fm(x, y) as follows. For each k-subset {i1, . . . , ik} of {1, . . . ,m} they run
protocol P on (xi1 · · ·xik

, yi1 · · · yik
). This takes

(
m
k

)
t bits. Let X be the set of ele-

ments of {0, 1}m that are consistent with the information gathered. By Lemma 9.2
|X| ≤ S(m, k).

Corollary 9.2. D(ELIM(f2)) ≥ D(ENUM(m+1,fm))

(m
2 ) .

10. THE COMMUNICATION COMPLEXITY OF SELECTION

We prove lower bounds on D(SELECT(f2)) and then note that the proof can eas-
ily be modified for N(SELECT(f2)). We then relate the complexity of D(SELECT(f2))
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to DSC. The proof of the next theorem uses ideas from the proof in [30] that P-
selective sets are in P/poly.

Theorem 10.1. Let n ∈ N and f : {0, 1}n × {0, 1}n → {0, 1}. Then

D(SELECT(f2)) ≥ N(f)− log(n)− 1

and

D(SELECT(f2)) ≥ coN(f)− log(n)− 1.

Proof. Let D(SELECT(f2)) = t via protocol P . We use P to build a nonde-
terministic protocol which will show N(f) ≤ t + log(n) + 1. We will then know
coN(f) ≤ t + log(n) + 1 since D(SELECT(f2)) ≤ t implies D(SELECT(f

2
)) ≤ t

by a protocol that runs the deterministic protocol for SELECT(f2), finds answer
i, and outputs 2− i.

Let S = {(x, y) | f(x, y) = 1}. We will denote elements of S by xy instead of
(x, y). Let x1y1, x2y2 ∈ S. Note the following.

1. From P (x1x2, y1y2) = 1 and f(x2, y2) = 1 one can conclude f(x1, y1) = 1.
2. From P (x1x2, y1y2) = 2 and f(x1, y1) = 1 one can conclude f(x2, y2) = 1.

We will try to find an x1y1 ∈ S (or an x2y2 ∈ S) such that there are many
x2y2 ∈ S (x1y1 ∈ S) with P (x1x2, y1y2) = 2. (P (x1x2, y1y2)) = 1). We will repeat
this procedure until every xy ∈ S has a witness.

Let T ⊆ S. Let HT : T × T → T × {1, 2} be defined by

HT (x1y1, x2y2) =
{

(x1y1, 1) if P (x1x2, y1y2) = 2;
(x2y2, 2) if P (x1x2, y1y2) = 1.

HT has domain of size |T |2 and codomain of size 2|T |. Hence there exists (xy, i) ∈
T × {1, 2} such that at least |T |/2 elements of T × T map to (xy, i). Let wT be
some such element. If i = 1 then the elements that map to wT are of the form
(xy, x2y2) and we let IT = {x2y2 ∈ T | HT (xy, x2y2) = (xy, 1)}. If i = 2 then the
elements that map to wT are of the form (x1y1, xy) and we let IT = {x1y1 ∈ T |
HT (x1y1, xy) = (xy, 2)}.

CONSTRUCTION OF WITNESSES
T0 = S

i = 0
While Ti 6= ∅

wi = wTi

Ti+1 = Ti − ITi

i = i + 1
END OF CONSTRUCTION
By induction |Ti| ≤ |S|/2i ≤ 22n−i. Hence there are at most 2n iterations. Let

W be the set of the wi’s. Note that to specify an element of W requires at most
log(2n) = log(n) + 1 bits.

Before the protocol begins both Alice and Bob know the contents of W and have
agreed on an ordering of it.



32 AMBAINIS, BUHRMAN, GASARCH, KALYANSUNDARAM, TORENVLIET

1. Alice has x, Bob has y.
2. The protocol nondeterministically picks an element (x′y′, i) ∈ W . This takes

log(n) + 1 bits.
3. If i = 1 then Alice and Bob run P (x′x, y′y). If it outputs 2 then accept,

otherwise reject. If i = 2 then Alice and Bob run P (xx′, yy′). If it outputs 1 then
accept, otherwise reject. In either case this takes t bits.

If f(x, y) = 1 then some (x′y′, i) will work. If f(x, y) = 0 then no (x′y′, i) will
work. Hence this is a nondeterministic protocol for f . It only used t + log(n) + 1
bits.

Theorem 10.2. Let n ∈ N and f : {0, 1}n × {0, 1}n → {0, 1}. Then

N(SELECT(f2)) ≥ N(f)− log(n)− 1,

N(SELECT(f2)) ≥ coN(f)− log(n)− 1,

and

D(f) ≤ O(N(f)coN(f)) ≤ O((N(SELECT(f2)) + log n)2).

Proof. Let N(SELECT(f2)) = t via protocol P . We use P to build a nonde-
terministic protocol which will show N(f) ≤ t + log(n) + 1. We will then know
coN(f) ≤ t + log(n) + 1 since N(SELECT(f2)) ≤ t implies N(SELECT(f

2
)) ≤ t by

a protocol that runs the nondeterministic protocol for N(SELECT(f2)), and if the
answer would have been i, and outputs 2− i. Let

HT (x1y1, x2y2) =
{

(x1y1, 1) if some leaf of P (x1x2, y1y2) outputs 2;
(x2y2, 2) otherwise.

From this point on the proof proceeds similar to that of Theorem 10.1.
By Theorem 2.11 of [34], (originally proven in [24]) D(f) ≤ O(N(f)coN(f)).

Hence

D(f) ≤ O(N(f)coN(f)) ≤ O((N(SELECT(f2)) + log n)2).

Since N(SELECT(f2)) ≥ N(ELIM(f2)) and, by Theorem 3.2 N(ELIM(DISJ2)) ≥
n−O(log n), we have

N(SELECT(DISJ2)) ≥ n−O(log n).

By Theorem 10.2 and N(DISJ) ≥ n+1 (the fooling set arguments of [34] that show
D(DISJ) ≥ n + 1 easily show that N(DISJ) ≥ n + 1) we have

N(SELECT(DISJ2)) ≥ n− log(n).

Using Kolmogorov complexity [36] we can improve this to

N(SELECT(DISJ2)) ≥ n−O(1).



COMMUNICATION COMPLEXITY OF ENUMERATION ETC. 33

We give a brief informal introduction to Kolmogorov complexity; see [36] for
more precise information. C : {0, 1}∗ → N maps each binary string x to the size of
the shortest program that, on input 0, prints x. Since x can always be printed out
by a program that says “PRINT x”, which is of length |x|+ O(1), we always have
C(x) ≤ |x| + O(1). The value of C may be much shorter. For example 0n can be
printed out by the program “PRINT 0 n times” which has size log n + O(1), hence
C(0n) ≤ log n + O(1). A counting argument shows that, for all n, there are many
x ∈ {0, 1}n such that C(x) ≥ |x|. The idea is that there are many more strings
then programs.

The definition of C can be extended. Let C(x|y1, . . . , yk) be the size of the
shortest program that, on input y1, . . . , yk, prints out x. A counting argument
shows that, given n, y1, . . . , yk, there are many strings x of length n such that
C(x|y1, . . . , yk) ≥ |x|. The idea is that there are many more strings then programs.

Theorem 10.3. N(SELECT(DISJ2)) ≥ n−O(1).

Proof. Assume that N(SELECT(DISJ2)) = t via protocol P . Let x1 and x2 be
strings of length n such that C(x1|P, x2) ≥ n and C(x2|P, x1) ≥ n. Let Alice have
x1x2 and Bob have x1x2. (Recall that z means take z and replace the 0’s with 1’s
and the 1’s with 0’s.) Let b = b1b2 · · · bt be a sequence of bits that form a possible
path to a real leaf L that Alice and Bob could go down. (Note that b includes both
the nondeterministic choice bits and the communication bits by the definition of
nondeterministic protocols.) Assume that the leaf outputs 2 (the 1 case is similar).

We show that C(x1|x2, P, b) ≤ n + O(1). This shows t ≥ n − O(1) since
C(x1|P, x2) ≥ n. Recovery algorithm: Enumerate all x such that P (xx2, xx2)
could end up at leaf L. There will only be one such x (proven below) and that one
x is x1.

Assume that x and x′, get enumerated in the above recovery algorithm. Since
P (xx2, xx2) and P (x′x2, x′x2) both end up at L, by a basic theorem in communi-
cation complexity [34, Proposition 1.14], the inputs (xx2, x′x2) and (x′x2, xx2) will
end up at L. Hence DISJ(x, x′)DISJ(x2, x2) 6= 01. Since DISJ(x2, x2) = 1 we have
DISJ(x, x′) = 1. We also get DISJ(x′, x)DISJ(x2, x2) 6= 01. Since DISJ(x2, x2) = 1
we have DISJ(x′, x) = 1. Since x and x′ are disjoint sets and x′ and x are disjoint
sets, x = x′.

Theorem 10.4. D(f3) ≤ 2D(f) + 3D(SELECT(f2)).

Proof. For this theorem we use the definition (x1x2, y1y2, b1b2) ∈ SELECT(f2)
if f(x1, y1) = b1 or f(x2, y2) = b2 and b1 6= b2. This is easily seen to be equivalent
to the usual definition. We present a protocol for f3 which transmits at most
2D(f)+3D(SELECT(f2)) bits. Assume Alice has x1x2x3 and Bob has y1y2y3. For
i, j ∈ {1, 2, 3} and i < j, Alice with inputs xi, xj and Bob with inputs yi, yj run the
protocol for SELECT(f2) and produce output b1

i,j , b
2
i,j . For each i, observe that

Alice and Bob predict f(xi, yi) exactly twice while running SELECT(f2) thrice.
Since the output of the SELECT(f2) protocol is limited to 01 or 10, it must be the
case that for some i, the two predictions of Alice and Bob on f(xi, yi) do not match.
Without loss of generality, let us assume that the mismatch happens for i = 1. Now
Alice and Bob compute f(x1, y1) by exchanging at most D(f) bits. Without loss
of generality, let us assume that b1

1,2 6= f(x1, y1). Knowing this, Alice and Bob will



34 AMBAINIS, BUHRMAN, GASARCH, KALYANSUNDARAM, TORENVLIET

correctly conclude that f(x2, y2) = b2
2,1. Finally, Alice and Bob compute f(x3, y3)

by exchanging at most D(f) bits.

Corollary 10.1. If DSC holds then D(SELECT(f2)) ≥ 1
3D(f)−O(1).

11. OPEN PROBLEMS
The most important open problem is to resolve ENC. As a first step, it is impor-

tant to resolve ELC. We restate it along with some weaker versions:

1. If f : {0, 1}n × {0, 1}n → {0, 1} then D(ELIM(fk)) ≥ Ω( D(f)
log D(f) ),

2. If f : {0, 1}n × {0, 1}n → {0, 1} then D(ELIM(fk)) = Ω(
√

D(f)),
3. For all monotone functions f , D(ELIM(fk)) = D(f)− O(1) (or weaker lower

bounds).
4. For all graph properties f , D(ELIM(fk)) = D(f) − O(1) (or weaker lower

bounds).
5. For all properties f invariant under some group G, D(ELIM(fk)) = D(f) −

O(1) (or weaker lower bounds).
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