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Abstract

We investigate problems that arise in computer science in terms
of their execution times. We are concerned with both upper bounds
(which are demonstrated by algorithms) and lower bounds (which are
demonstrated by proof) on the execution time. The problems we study
come from three realms. First, we investigate problems where getting
an exact answer is important and can be done quickly. Finding the
maximum element of a list is such a problem. Second, we investigate
problems where getting a feasible solution (or showing that one can-
not be obtained) is of interest. The problem of 2-coloring a graph is
feasible, while the problem of 3-coloring a graph is thought to not be
feasible. Third, we investigate problems that cannot be solved. Even
in this realm one can have a notion of one problem being harder than
another.
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1 Introduction

A fundamental question in computer science is (informally)

“Given a problem A, how much time will it take to solve it?”

Typical problems are (1) sorting a list of numbers, (2) given constraints
on availability of timeslots and locations, schedule classes to take exams, and
(3) given a program, determine if it is going to halt.

We usually do not know exactly how much time it takes to solve a prob-
lem. Hence we try to get upper and lower bounds on the time. For z, an
input for A, let n, be an appropriate measure of the size of x. For example,
if A is the problem of sorting a list of numbers then x would be a list and n,
would be the number of elements on the list. We can state our fundamental
questions more formally as follows.

1. Find an algorithm A for A and a function U such that A(z) terminates
within U(n;) steps. The function U is an upper bound.

2. Find a function L such that for all algorithms A for A there is some
z such that A(z) will take at least L(n;) steps. The function L is a
lower bound.

3. We would like L. and U to be close to each other. If L = U then we

have pinned down the complexity of the problem exactly.

Item (1) is commonly done in computer science both formally and infor-
mally. Ttem (2) requires mathematical precision. For example, the statement
“Sorting requires at least nlogn steps” lacks precision since the notion of
“step” 1s not well defined. A model of computation is needed. This model
will specify what operations are allowed and how much they cost. In the case
of sorting we will define a decision tree (see Definition 2.2) which counts a
comparison as one step, data movement is free, and no other numeric oper-
ations are allowed. Having defined this model we can now make meaningful
statements like “sorting requires at least nlogn comparisons.”

The model should be chosen such that all of the algorithms known for
the problem fit the model. This leads to meaningful lower bounds that can
be stated informally as follows:

“The types of algorithms that have been used to solve problem A in the
past cannot take less than L(n) steps.”
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This kind of statement is helpful in several ways.

1.

Do

No more energy should be wasted trying to obtain performance better
than L(n) using the usual approach.

If better performance is needed you may consider changing the problem.

The model and lower bound together clarify the assumptions and lim-
itations of the underlying technology. This may lead to alternative
technology. For example, if only comparisons are used then sorting n
numbers requires n log n comparisons; however if arithmetic operations
are allowed this can be improved.

In this paper we investigate problems in terms of models for algorithms
for them, and upper and lower time bounds on those models. We will not
present proofs, however references for such will be given. We study three

realms.

1.

1.1

Decision Trees. The decision tree model of complexity is appropriate
when we want to know the exact complexity up to additive constants.
A standard problem for this model is that of finding the maximum
number from a list of numbers.

. P vs. NP. P and NP are classes of problems to be defined later. They

are appropriate for problems where our major concern is feasibility:
can the problem be solved in reasonable time? Two examples: (1)
Determining if a graph is connected can be solved in reasonable time.
(2) Finding the fastest route through an entire network seems infeasible;
most people do not think the problem can be solved in reasonable time.

Recursive, recursively enumerable, and the arithmetic hier-
archy. These are classes of problems to be defined later. They are
appropriate for problems where are major concern is decidability: can
they be solved at all? In addition there are ways of taking undecidable
problems and measuring just how undecidable they are.

Definitions and Notation

Notation 1.1 N denotes the set {0,1,2,...} of natural numbers.
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Definition 1.2 Let f and ¢ be functions from N to N.

1. f = 0(g) means that f is less than g if you ignore constants. Formally
there exists ¢, ng such that

(Vn 2 no)[f(n) < cg(n)].

2. f =Q(g) means that f is greater than ¢ if you ignore constants. For-
mally there exists ¢, ng such that

(Vn = no)f(n) = cg(n)].

3. f = o(g) means that f is much smaller g. Formally lim,,_ ., % = 0.

Definition 1.3 If S is a set and n > 1 then S™ is a list of n elements from
S. The elements need not be distinct.

2 Decision Trees

In this section we will study simple problems. The algorithms for these
problem motivate a simple model of computation (decision trees) on which
we can prove matching upper and lower bounds. These problems arise when
compiling large data sets.

Here are the problems we will consider.

Definition 2.1 Let 1 <: < n. Let S be an ordered domain (e.g., numbers
using their natural order or words in alphabetical order). The following
functions take n elements from S (formally an element of S™) as input.

1. MAX,(21,...,2,) is the largest element of (z1,...,z,).
2. SEL! (z1,...,2,) is the ith largest element of (z1,...,z,).

3. MED,(z1,...,2,) is the {%Jth element of (z1,...,2,).

4. HI-LO,(x1,...,z,) returns both the maximum and minimum element
of (x1,...,2,).
5. SORT,(z1,...,x,) returns the elements of (z1,...,z,) in sorted order.



2.1 Finding the Maximum
The following algorithm finds MAX,,(z1,...,z,).

tmazr = 1
forz:=2ton

if z; > tmax then tmax := z;
output(tmazx)

The bulk of the algorithm’s time is spent making comparisons. We will
measure algorithms for MAX,, (and other problems) in terms of the number
of comparisons made by the algorithm.

Definition 2.2 Let P be any problem whose input is (z1,...,2,) € S™. A
decision tree for P is a full binary tree labeled and interpreted as follows.
(See Figure 1 for an example of a Decision tree that finds the maximum of 3
elements.)

1. Every non-leaf is labeled with a comparison of the form “z; < ;7"
2. Every leaf is labeled with a potential output.

3. Let (z1,...,2,) € S". We interpret the tree as an algorithm acting on
(z1,...,2,) by thinking of YES as GO LEFT ON THE TREE, and
NO as GO RIGHT ON TREE. This leads to a leaf of the tree that is
labeled with the answer P(zq,...,x,).

Definition 2.3 A problem P can be solved with f(n) comparisons if there
exists a decision tree for P where no branch has more than f(n) edges.

The algorithm for MAX,, can be phrased as a decision tree where each
branch has n — 1 edges. Since we have a model of computation that
captures the known algorithm we can pose the question of lower
bounds intelligently. This is given as:

Theorem 2.4 [/1]. Let n € N.

1. MAX,, can be solved with n — 1 comparisons.
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2. MAX,, cannot be solved with fewer than n — 1 comparisons. In fact,
any decision tree that solves MAX,, has at least n — 1 comparisons on
every branch. Hence the best case and the average case require n — 1
COMParisons.

To summarize, initially an algorithm for MAX,, was formulated that took
n — 1 comparisons. A model was developed to capture this algorithm, and
in that model the algorithm is optimal.

2.2 Finding the ith largest element

The problem of MAX,, asked for the largest element of a list. We now look
at the more general problem of finding the 2th largest element of a list.

Consider the problem of finding the 2nd largest element of (zq,...,z,).
The problem can be done in 2n—3 comparisons: first find x = MAX,,(z1,...,z,)
(using n — 1 comparisons). Then find the maximum of {z1,...,z,} — {z}
(using n — 2 comparisons). Is this the best possible? NO! We present an
algorithm that uses at most n + logn comparisons.

L. Input(zy,...,z,).

2. Form a tournament of pairs of comparisons: compare (1, x3), (3, x4),
etc. Then compare the winners in pairs. Then compare the winners of
that competition in pairs. Keep doing this until y; = MAX,(z1,...,2,)
is found. This will take n — 1 comparisons. Note that this is not the
algorithm we used in Section 2.1. While both algorithms find MAX,,
in n — 1 comparisons, this one leaves behind a residue of information

that will be helpful in finding SEL! (21, ..., z,).

3. Replace the element z; that has the value y; in the tournament by —oo.
Redo the part of the tournament that this changes. This takes logn
steps and yields the second largest element ys.

Note that both algorithms given for finding the 2nd largest element can
be expressed as a Decision tree. Hence the question of whether you can do
better with ‘the same kind of algorithm’ can be expressed intelligently. The
next theorem (the ¢ = 2 case) states that the n+logn algorithm is essentially
optimal.



Theorem 2.5 [8, 17] Let i be a constant. Then the following happens.

1. SEL; can be solved with n + (i — 1) logn + O(1) comparisons. (This is
similar to the algorithm we gave for finding the 2nd largest element.)

2. There exists a (small) constant ¢ such that, for all SEL! cannot be
solved with fewer than n + (¢ — 1)logn + ¢ comparisons.

Both the algorithm and the lower bound can be modified to handle the
following similar problem: given a list (z1,...,z,) find the Ist, 2nd, ...,
and tth largest element. The upper and lower bounds are the same for this
problem as they are for SEL! except that the additive constant changes.

To summarize: we first obtained an algorithm for finding the 2nd largest
element of a list that took 2n — 3 comparisons, and we then improved this to
n+log n. Both algorithms can be expressed as a decision tree. We then stated
a theorem which gave matching upper and lower bounds for the general SEL!
problem, and implied that our algorithm for second largest is optimal.

2.3 MED,

In the last section we looked at finding the zth largest element of a list.
We thought of ¢ as fixed and n as the measure of size. We now consider
the problem of finding the {%Jth element of a list (the middle or median
element). This problem has a different character since ¢ varies with n.

If the algorithm in Theorem 2.5 is used to find the median of (z1,...,2,)
then this will take n + Zlogn = O(nlog n) comparisons. Can we do better?
The lower bound in Theorem 2.5 does not apply here since ¢ is not constant.
We will exhibit an algorithm that finds MED,, in linear time.

Actually we present an algorithm that will, given ((z1,...,,),?), find
the ith largest element of (z1,...,2,). We plan on having the program call
itself recursively. The algorithm is from [2]:

1. Input((z1,...,2,),2). Let A be the array (z1,...,2,).

2. Group the elements into groups of 5. There are at most 4 elements left
over. We will ignore them for purposes of exposition. (The choice of 5
is not important— any odd number larger than 3 would work.)



3. Find the median of every group of 5. (This can be done by the algorithm
for SEL!.) Put the set of medians into an array B of length roughly
2. This step takes cn comparisons for some constant c.

4. Find the median = of the elements in B. This is done by calling this
algorithm recursively.

5. Compare all elements to x. Put the elements that are less than x into
an array (., and all those that are greater than x into an array C-.,.
Note that at this point we know j such that z is the jth largest element.
If j = ¢ then output(z) and stop. (This could be done in a more space
efficient manner.)

6. If 7 <t then we know the :th largest element of A is in the ¢th largest
element of C5,. Call the algorithm recursively on (Cs,,1).

7. If j > 1 then we know the ¢th largest element of A is the (j — ¢)th
element of Cc,. Call the algorithm recursively on (Cs,,7 — ¢).

One can show that C'., and C5, both have less than %n elements. Hence,
if T is the number of comparisons the algorithm makes on arrays of length

n then
n n

5 T T()
T(n) can be shown (by induction) to be O(n).

This algorithm can be expressed by a decision tree. Hence the question of
whether or not it is optimal can be raised intelligently. The following results
provide upper and lower bounds on the problem; however, at this time no
matching bounds are known.

Tn) <en+T(

Theorem 2.6 Let n € N.
1. MED,, can be solved with 5.43n 4+ O(1) comparisons (See [2]. This is

essentially fine tuning the algorithm above.)

2. MED,, can be solved with 2.9Tn + o(n) comparisons. (See [7]. This is
a rather complicated algorithm. The term o(n) means a function of n
that is substantially less than n.)

3. There is a constant ¢ such that MED,, cannot be solved with less than
2n — cy/n comparisons. [1]
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2.4 HI-LO,

In Section 2.2 we briefly noted that we have upper and lower bounds for the
problem of, given (z1,...,2,), find the Ist, 2nd, ..., ith largest elements.
We consider a variant of this problem, the problem of finding the maximum
and the minimum of a list.

The problem can be done in 2n—3 comparisons: first find = MAX,, (x4, ...

(using n— 1 comparisons). Then find the minimum of {z1,...,z,} —{z} (us-
ing n — 2 comparisons). Is this best possible? NO! The following algorithm
3n

solves the problem with approximately <* comparisons [16]:

1. Input(zq,...,2,)

i

2. Compare (1, x3), (23, 4), etc. This takes 7 comparisons.

3. Let W be the set of elements that were greater and let L be the set of
elements that were lesser in the comparisons from step 1. Note that W

and L are both of size %

i

4. Find the maximum element in W. This takes -1 and is also the

maximum element in the original list.

5. Find the minimum element in L. This takes % — 1 and is also the

minimum element in the original list.

Clearly this algorithm takes only 37” + O(1) comparisons. Since a “trick”
allowed us to go from 2n — 3 comparisons to 37” +O(1) it is entirely plausible
that another trick will lower the number of comparisons even lower. However
this is not the case [16], as shown in the following:

Theorem 2.7 [16] There exists a (small) constant ¢ such that HI-LO,, can-
not be solved with fewer than 37” + ¢ comparisons.

To summarize: the “obvious” algorithm for finding HI-L.O,, element of a
list turned out to not be optimal. Hence the need for lower bounds on the
better algorithm is more acute than usual. Such a lower bound does exist.
We end up with matching upper and lower bounds for the general HI-L.O,
problem.
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2.5 SORT,

The problem of sorting a list of numbers (or names) is one of the most
important problems in computer science. As such it is also one of the most
well studied. We will just make a few comments on it and urge the interested
reader to look at references [11] and [5] for more detail.

Theorem 2.8 1. The problem of sorting a list of n numbers can be solved
in O(nlogn) comparisons. (The constant is quite low.)

2. There exists a constant ¢ such that any algorithm for sorting requires
at least cnlogn comparisons.

2.6 Questioning the Model

Now that we have matching upper and lower bounds for several problems it
is time to question the model. What if comparisons are replaced by some
other type of query? Does this lead to faster algorithms? We can answer
this with the following result [14]:

Theorem 2.9 [f |S| is large compared to n then any lower bound oblained
for decision trees will apply to decision trees that use any type of query of
arity 2, i.e., a query that involves 2 elements al a time.

The two assumptions to question are (1) what if queries of arity larger
than 2 are used, and (2) what if |S]| is not large compared to n?
2.6.1 Allowing other types of queries

If your machine has powerful processors or perhaps parallelism then you may
be able to do more interesting operations then comparisons in a unit time
step. We consider now the possibility of being able to obtain the maximum
of 3 elements as a basic query. With this model we can compute MAX,
substantially faster than n — 1 operations.

1. Input(zy,...,z,).

2. Find the max of (z1, 29, z3), (24,5, 7s), etc. This takes T operations.

12



n

5 candidates for the maximum. Repeat the procedure in
step 2 to get it down to z5. Keep doing this until only 1 element is left.

3. We now have

4. Output the element.

This algorithm’s run time is bounded by tt+g <5 This is also a
lower bound (up to an additive constant).

The above algorithm can be generalized to the case where each operation
finds the max of k elements; the resulting algorithm runs in *5 comparisons.
This is also a lower bound (up to an additive constant). The above algorithm
can be adjusted to obtain better upper bounds on all the other problems
discussed in this section. For most of them the corresponding lower bound

is unknown.

2.6.2 Cutting down the size of the domain

We look at the problem of finding the maximum in the case where the domain
is small. We take an extreme case. Let the domain be S = {0,1,2}. The
following algorithm clearly solves MAX,,: Go through the list checking, for
each 7, if x; = 2. If every such an 7 is found then stop and output 2. If no
such 2 is found then repeat the procedure checking if z; = 1 ever occurs. If
such is found then stop and output 1. If none are found then output 0.

The worst case of this algorithm is 2n checks. However the average case
is quite good: less than 2 iterations. If S is small compared to n then similar
algorithms to the one above can be worked out. There are inputs for which
these algorithms take more than n comparisons, but they are far better in
the average cases.

For the other problems discussed in this section there are also algorithms
that work better than the lower bound if the domain is small. These also
tend to have worse worst cases but far better average cases.

The problem of sorting can be solved faster than O(nlogn) if we assume
a bound on the input and use operations other than comparisons. We will
not discuss this here but point the reader to the discussion of Counting sort
and Radix sort in [5].
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3 P vs. NP

In this section we will study problems that are more complicated then those in
the previous section. The algorithms for these problems will be complicated
and hence the model of computation is not easy to work with. In fact virtually
no lower bounds are known. However there is a conjecture that seems to be
true that would imply many lower bounds.

There are (literally) thousands of problems for which the model in this
section is relevant. They come from many branches of computer science,
applied mathematics, and mathematics. We will concentrate on two prob-
lems to motivate our model but will mention more problems later. Before
describing the two problems we need a definition.

Definition 3.1 A graph is a set of vertices V and a set of edges which are
unordered pairs of vertices. A directed graph uses ordered pairs. A weighted
graph adds a cost to every edge in the graph. A weighted directed graph can
easily be defined. The number of nodes in a graph is usually denoted by n
and is our measure of the size of a graph.

Example 3.2 We give an example of a weighted directed graph. Let V be
the set of cities in America. There is an edge (x,y) if there is an airline flying
from x to y. The cost of the edge will be the cost of the flight.

We give two examples of problems on graphs.

1. The s-t connectivity problem (s-t) is the problem of, given a graph and
two vertices s, 1, determine if there is a way of getting from s to ¢ in
the graph.

2. The Traveling Salesperson Problem (TSP) is to determine the cheapest
route through a weighted directed graph which visits every node exactly
once. given a weighted graph, determine the minimal cost route that
visits all vertices exactly once.

Although these problems look similar they will turn out to be very dif-
ferent. We examine algorithms for both of them.
Before presenting an algorithm for s-t we need the following definitions:
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Definition 3.3 If two nodes are connected by an edge they are called neigh-
bors. If x is a node then nbhs(z) is the set of all the neighbors of z. If A is
a set of nodes then nbhs(A) is the set of all neighbors of vertices in A.

The following is an algorithm that solves the s-¢ problem:

1. Input(G,s,t) (G is a graph, s and ¢ are nodes in the graph.)
2. Let Ag = {s} and Ay = Ao U nbhs(Ao).

3. 0:=1
While (A; # A;—1) do
Aiy1:= AiUnbhs(A;)
=14+ 1

end

4. If t € A; then output YES, else output NO.

Note that A; will be the set of nodes that are of distance 7 from s. Hence
the while loop is iterated less than n 4+ 1 times. Each time it is iterated it
takes at most n steps (this depends on how graphs are represented). Hence
the algorithm runs in O(n?) steps. This is an informal statement since no
model has been specified.

We now present an algorithm for TSP. First we need a definition.

Definition 3.4 If G is a graph then a route in (G is a sequence of nodes
(v1,...,v,) such that (1) every node of (& is specified exactly once, (2) for
all 7, the nodes v; and v;41 form an edge, and (3) v, and vy form an edge. If
the graph is weighted then cost of the route is sum of the costs of the edges

(v1,02), (V2,03), « .oy (Vp1,0y), and (v, v1).

1. Input(G = (V, FE) (G is a weighted graph. We assume its nodes are
{1,2,...,n}. We also assume that every pair of vertices forms an edge.
If initially {v1,v2} ¢ E then we insert {vi,vy} into the edge set and
give it such a large weight that the minimum cost route will not use it.
Note that every sequence of n distinct vertices is now a route.)
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2. Keep two variables MINCOST and BESTROUTE. Initially BESTROUTE
is the route (1,2,...,n) and the MINCOST is the cost of that route.

3. Go through all possible routes. For each route R, if the cost of R is less

than MINCOST then replace BESTROUTE with R and MINCOST
with the cost of R.

4. Qutput BESTROUTE.

This algorithm looks at all possible routes. The number of routes is
n! =1-2-3---n. Hence the algorithm takes at least n! steps. This is an
underestimate because each iteration takes some time as well.

This algorithm is rather simplistic. It is a brute-force search over all
possibilities. The execution time makes the algorithm infeasible. The ques-
tions arises as to whether there is an algorithm whose execution time is small
enough so that the algorithm is feasible. Would an algorithm running in time
(n — 8)! be feasible? Would an algorithm running in time V/n! be feasible?
The following table shows that even though these functions are smaller than
n!, they still grow to fast to make algorithms with those run times feasible.
We assume that every step takes one nanosecond (1072 seconds).

n Vnl (n —8)! n!

10 1.9 x 102 nanoseconds 2 3.6 x 10°
20 1.6 x 10° = 1.6 seconds 4.8 x 108 2.4 x 103
30 1.6 x 10'¢ = 12.4 years 1.1 x 10%' 2.7 x 10*?

40 9.0 x 102 = 6.9 x 10® years 2.6 x 10** 8.2 x 10*7
50 1.7 x 102 = 1.4 x 1017 years 1.4 x 1050 3.0 x 105
60 9.1 x 100 = 7.0 x 10% years 8.0 x 1057 8.3 x 10%
70 1.1 x 10°° = 8.3 x 10** years 3.1 x 10%° 1.2 x 10'%°
80 2.7 x 10°? = 2.0 x 10* years 6.1 x 10'%® 7.6 x 10'®

A feasible algorithm would have to avoid the brute force search. In the
next section we will define the notion of polynomial time which we believe
pins down the notion of avoiding brute force search.
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3.1 Polynomial Time and Nondeterministic Polyno-
mial time

We need to define a model of computation that is flexible enough so that
both algorithms given above can fit the model. Formally this is done with
Turing machines or some other model of computation; (see [15, 18, 20]). We
will omit the formal definition of a Turing machine but we will state several
facts about them.

Fact 3.5 1. A Turing machine consists of (1) a finite number of states
to store information and (2) a tape to read input from, write output to,
and use for intermediary storage. The tape is unbounded— we think
of it as unlimited storage. There is a head that, at any point in a
computation, is focused on one tape square. A program wrilten for a
Turing machine is essentially a set of instructions telling the head where
to move (right, left, or stay where it is), what to write in that square,
and what state to change to, given the current symbol il is scanning
and state the machine is in.

2. One can easily define what a step of a Turing machine is, hence one
can define what it means for a computation to take a certain number
of steps.

3. Any compuler program can be expressed by a Turing machine.

4. There are several models of computation that tried to pin down the
notion of “computable.” All of them have a notion of what a step is
and all of these models are equivalent to the Turing machine.

5. The equivalences of the models are efficient in the following sense: If
M is one of these models then there exists a polynomial p such that if a
problem A can be solved in time t(n) in model M then A can be solved
in time p(t(n)) on a Turing machine.

Since we will need a general definition we will talk about sets of strings.
Strings can encode graphs, weighted graphs, and virtually anything else that
might arise.

Definition 3.6 A siring is a finite sequence of bits. If y is a string then |y|
is the length of y. The set of all strings is often denoted {0, 1}*.
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Definition 3.7 A set A of strings is in P if there exists a Turing machine
M and a polynomial p such that the following happens.

1. If x € A then M(x) will terminate and output YES.
2. If # ¢ A then M(z) will terminate and output NO.

3. If M is run on z then the computation terminates within p(|z|) steps.
By Fact 3.5.4 one can replace Turing machine by any of a number of
models of computation. If a problem A is in polynomial time using
a program (like the one for s-t) then A is in polynomial time using a
Turing machine model, and hence A is in P. (P stands for Polynomial
time.)

Polynomial time is a reasonable definitions of feasible. A brute force
algorithm usually takes n! or 2" steps. Polynomial time indicates that we are
not doing a brute force search. Hence some cleverness was involved. In many
cases this cleverness can be used to fine tune the algorithm to your needs
(e.g., the execution time can be reduced for the problems you care about, or
for all problems). Hence polynomial time seems to be (empirically) a good
definition of feasibility.

We would like to say the following: “We can now state the problem of
whether or not there is a good algorithm for T'SP formally: Is TSP in
P77 However this is not quite true. We have defined P to be a set of sets,
whereas the T'S P problem is a function. Hence we redefine T'SP as a set.
From now on T'S P will refer to the following problem: given (G, k) where ¢
is a weighted graph and k is a number, does there exist a route for ' that
costs less than k. The following algorithm solves it:

1. Input(G, k).

2. Go through all possible routes. For each route R, if the cost of R is
less than k& then output YES and stop.

3. (If you reach this step then no route cost less than k.) Output NO.

This algorithm may look at all possible routes. The number of routes
isnl =1-2-3---n. Hence the algorithm takes at least n! steps. This is
an underestimate because each iteration takes some time as well. Note that
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the time spend checking a particular route is small. In fact, that time is
polynomial in n. Hence the reason this algorithm takes so long is that the
number of elements in the search space is so large, even though evaluating
any one of them is easy.

We can now phrase the lower bound question about T'SP properly: Is
TSP in P? This is an open problem in computer science; however, most
computer scientists think that 7'S P is not in P. We look at the evidence for
this. We will define a class called N P, but first we need to motivate it.

Imagine that someone gave you an instance (G, k) of TSP and claims that
the instance is positive (i.e., there is a route taking less than k steps). Could
he convince you of this? YES— he need only give you the route R. Given
the route R it will not take much time for you to check that its cost is less
than k. Note that this scenario is unrealistic— finding R is the hard part—
but at least IF one had an R THEN one could check it. This leads to the
definition of NP. The key intuition is that if x is a positive instance then
there exists evidence for this which is easily verified.

Definition 3.8 A set A of strings is in N P if there exists a set B of ordered
pairs of strings, and a polynomial p, such that

zeA = (3yllyl < p(Jz|) A (z,y) € BJ;
¢ A = (Vy)llyl < p(lz]) = (z,y) ¢ B].

(The abbreviation NP stands for “nondeterministic polynomial time” which
stems from an alternative definition. See [9].)

The string y serves as evidence that x € A. Since B € P it is easy to
determine if a particular string y is indeed evidence. Note that putting a
problem in NP does not make it easy since there are still many (around
2002y witnesses to check.

Example 3.9 T'SP is in NP by using the set

B ={((G,k),R) : Ris a route in GG of cost less than k }.

Example 3.10 Let SAT be the set of all Boolean formulas for which there
exists a satisfying truth assignment, that is, a way to assign TRUE and
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FALSE to the variables in the formula such that the formula comes out

TRUE. SAT € NP using the set B below:

B ={(é,y): ¢ is a Boolean Formula, y is a truth assignment

and ¢(y) evaulates to TRUE}.

TSP and SAT are both in NP but we do not know which problem is
harder, or even if either one is hard. We need a notion of being “the hardest

problem in NP.”

Definition 3.11 If A and B are both sets of strings then A <2 B if there
exists a function f that can be computed in polynomial time such that

z e Aiff f(z) € B.

Note that if A <P Band B € P then A € P. (The “p” stands for polynomial
time and the “m” stands for many-one, indicating that f can be many-one
and need not be 1-1. This is not important for our discussion.)

We now define what if means to be N P-complete. N P-complete sets will
be the hardest sets in NP in that if they are in P then everything in NP is
also in P.

Definition 3.12 A set of strings A is N P-complete if the following hold.
1. Ae NP,
2. forall Be NP, B <t A.

Note that if A is NP-complete and A € P then P = NP.

This definition looks like it is very hard for a set to be NP-complete since
all the sets in NP have to reduce to it. It also does not look very useful
since we do not have any evidence (yet) that P # NP so even if a set is
NP-complete it could still be in P. In the next section we refute both these
points.
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3.2 The Relevance of NP-completeness

In 1971 Cook proved the following [4, 9] by using the formal definition of a
Turing machine.

Theorem 3.13 SAT is N P-complete.

In 1972 Karp [10] proved 21 problems to be N P-complete. Since SAT
was already known to be N P-complete Karp did not need to use Turing
machines. To show that a set A was N P-complete he showed A € NP (this
is usually trivial) and showed that, for some known N P-complete problem B
(initially SAT), B <t A. The problems Karp showed N P-complete were all
natural problems. Since then thousands of problems have been shown to be
N P-complete. Many of them are problems people have been trying to solve
quickly for decades. If any of them are in P, then they are all in P. This is
evidence that P # NP. Even though it is not mathematical evidence, it is
still a highly plausible arguement: if P = NP then one of those problems
would probably have yielded to a polynomial time algorithm by now.

We now give some examples of problems that are NV P-complete. The list
is a sublist of the appendix of [9]. For references for where these problems
were proven NP-complete, see [9]. Some of the entries on the list below are
types of problems instead of actual problems.

1. GRAPH COLORING. Given a graph (, is it 3-colorable (that is, can
you assign colors to the nodes of (G so that you only use three colors
and no two neighbors have the same color)? It is known that 2-coloring
is in P.

2. CLIQUE. Given a graph G and a number k, does GG have k points all

pairs of which have an edge (such a set of points is called a clique)?

3. HAMILTONIAN PATH. Given a graph G, does there exist a path
through the graph that hits every node exactly once?

4. NETWORK RELIABILITY. The input is a weighted graph GG (weights
are between 0 and 1, and we interpret them as probabilities of failure)
and a number ¢ (between 0 and 1). Assume the edges all fail with the
assigned probabilities and that they are all independent of each other.
The network survives if for every edge (z,y) there is a path from = to y
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where none of the edges on the path fail. Determine if the probability
of failure is less than ¢. (This problem is not known to be in NP,
however it is known that if it is in P then P = NP.)

. TRAVELING SALESPERSON PROBLEM. Discussed above. Many

variations of it are also N P-complete.

. INTEGER PROGRAMMING. Given an integer-valued matrix A and
integer valued vector b does there exist an integer valued # such that
AZ < b, (The same problem with Z allowed to be rational valued is in
P. Both problems have many applications in business.)

. DYNAMIC STORAGE ALLOCATION. The input is a set of triples
(s,a,d) of natural numbers, and a natural number D. We think of
each triple as an item to be stored which has size s, arrival time a, and
departure time d. We think of D as a storage capacity. The problem is
to determine if there is a way to allocate space for each item so that we
never need more than D units of space. Two items can use the same
space if they will be stored at nonoverlapping times. Once an item
is put into a space it cannot be moved unless it is departing. (This
problem models the problem of allocating space for processors as they
come in. The problem here is actually easier since we know ahead of
time the sizes, arrivals, and departures of the items.)

. MINIMUM CARDINALITY KEY. The input is a set A of attribute
names, a collection F' of functional dependencies (ordered pairs of sub-
sets of A), and a positive integer M. The problem is to determine if
there a key of cardinality at most M for the relational system (A, F')?
(i.e., a minimal subset K C A with |K| < M such that the ordered
pair (K, A) belongs to the closure F* of F' defined by (1) F C F*,
(2) B C C C Aimplies (C,B) € F*,, (3) (B,C),(C, D) € F* implies
(B,D) € F*, and (4) (B,C),(B,D) € F* implies (B,C U D) € F*.)

. SCHEDULING: The input is a set of triples (¢,r,d). We think of each
triple as a task where ¢ is how long the task takes, r is the release time
(i.e., when the task will be ready to be worked on) and d is the deadline
(i.e., upper bound on when you need to finish the task), The problem
is to determine if there is a way to schedule the tasks to meet all the
deadlines.
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10.

MIN AUT: Given two sets of strings S and 7', and a number N, does
there exist a finite automaton M with less than N states such that M
accepts all the strings in S and rejects all the strings in 7.

3.3 So your problem is NP-complete...

We have discussed several real problems that are NP-complete. Once you

know that a problem you are working on is NP-complete what can you do?

4

1.

2.

Do not look for a polynomial time solution.

See if the problem you really want to solve may have some restrictions
on it (e.g., only uses numbers that are less than 12). This new problem
may have a polynomial time solution.

. If there is a statement true about “most” of your inputs, then you may

be able to use this to get a solution that is fast “most” of the time (e.g.,
most of the time the graph is planar, but not always).

. If you do not need an exact solution then see if you can obtain an

approximate solution.

. Look in the literature for techniques specific to your problem (e.g., there

has been much work done on the Traveling Salesperson Problem).

Decidable, Undecidable, and Beyond

Some problems cannot be solved at all. Even so, we will be able to intel-
ligently compare and classify such problems. We will (or course) not use

time or space as a measure of complexity. Instead we will use the number-of-
quantifiers needed to describe the problem. For a more detailed treatment,
and for definitions of terms we leave undefined, see [18, 20].

First we need to define what it means to be computable. Formally this
is done with Turing machines or some other model of computation; however
we will speak informally about programs. Fact 3.5 is strong evidence that
every function that is computable is computable by a Turing machine. (This

assumption is called Church’s Thesis.)
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Notation 4.1 Throughout this section ¢q, @1, @2, ... will be a list of all (say)
C++ programs. The notation ¢;(z) | means that ;(z) is defined; the
notation g;(x) T means that ¢;(x) is undefined.

Definition 4.2 A partial function is a function which is allowed to be un-
defined on some points of its domain. If f is such a function then we denote

that f(z) is undefined by f(z) T, and that f(z) is defined by f(x) |. A

partial function is total if it is defined on all points of its domain.

Definition 4.3 A partial function f is computable if there exists a program
¢ such that (1) when f(z) is defined ¢(x) halts and outputs f(z), and (2)
when f(z) is undefined ¢(x) does not halt.

Definition 4.4 A set A is solvable if there exists e such that

reA = p(r)=1
:l?@éA :>992'($):0

Such sets are also called decidable or recursive. A set A is unsolvable if it is
not solvable. Such sets are also called undecidable or nonrecursive.

4.1 Unsolvable problems

The following problems are unsolvable.

HALT ={(e,z) | pe(x) |} = {e| (Ft)[pe(x) halts in less than ¢ steps |}.

TOT = {e| . is total} = {e | (Va)(Ft)[pc(x) halts in ¢ steps ]}.

COF = {e | ¢. halts on all but a finite number of values}

Notice that there is a naive algorithm for HALT": given e run ¢.(z) and,
it if halts, output YES. The trouble is that if ¢.(z) never halts this will
not be discovered. The undecidability of HALT says far more than that
this particular algorithm will not solve HALT'; it says that no algorithm
whatsoever will solve HALT.

The examples above are essentially the problem of trying to tell if a
program has a certain property. Generally such problems are unsolvable.
We pin this down.
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Definition 4.5 A set A is an index set if, for all z,y, if ¢, and ¢, compute
the exact same partial function then either z,y € A or x,y ¢ A. Hence the
question of whether or not = € A depends only on the behavior of ¢,.

Theorem 4.6 If A is an index set, A # ), and A # N then A is unsolvable.

All the unsolvable problems encountered so far have to do with programs
themselves. The next example is more natural, but it requires a brief back-
ground.

In 1900 David Hilbert, one of the leading mathematicians of his day,
proposed 23 problems for future mathematicians to work on (see [3]). Even
though the notions of decidability and undecidability were not known yet
he stated (informally) that these problems should be solved or shown to be
unsolvable. For the problems that asked for an algorithm this can be taken
to mean that either an algorithm should be found or the problem should
be proven unsolvable. For the problems that did not involve an algorithm
a proof that it could not be solved this can be taken to mean some kind
of independence result (i.e., neither the theorem, nor its negation, can be
proven from the common axioms in use).

Hilbert’s 10th problem (in modern terminology) was to devise an algo-
rithm to determine, given a polynomial p(z1, ..., x,) with integer coefficients,
if there exists ay,...,a, € N such that p(ai,...,a,) = 0. It is now known
that no such algorithm exists [6, 12]. This can be phrased by saying that
the set of polynomials with integer coefficients that have an integer solu-
tion is unsolvable. This 1s commonly stated as “Hilberts 10th problem is
unsolvable.” This is a natural example of an unsolvable problem since the
concepts used to define it are not from computability theory (as opposed to
HALT, INF and COF). There is a book on Hilbert’s Tenth problem by

Matijasevic [13] for non-logicians.

4.2 Logical Theories

We describe several problems whose decidability is of interest. These prob-
lems are not about programs hence they are more natural than HALT, INF,

and COF.
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Definition 4.7 A logical language contains the usual logical symbols (A, V,
=, 3, and V) and variables that we think of as ranging over N. These variables
are denoted by small letters (as opposed to capital letters). We will allow
auxiliary symbols but they will be some subset of {4, x, S, <} where S is
interpreted as successor (S(z) = = + 1). We may also allow second order
quantifiers and variables that range over subsets of N. We denote second
order variables by capital letters. We denote a language by the auxiliary
symbols. If second order quantifiers are allowed then we will include “2”7 as
an auxiliary symbol. For example [x, <] and [S, x, 2] both denote languages.

Definition 4.8 Let L be alogical language. A sentence in L is an expression
using the symbols in I where every variable is quantified over. Note that

every sentence 1s either TRUE or FALSE.

Example 4.9 1. Let L = [x,4, <]. The following sentence means that
there is no largest number. It is TRUE.

(V) (Jy)[z < yl.

The following sentence asks if there is a solution to a certain polynomial.
Since the quantifiers range over the natural numbers the sentence is
asking for a solution in the natural numbers. It is FALSE since the left
hand side is always greater than 0 (in fact, greater than 16).

(3z,y,2)[z° + 3zy + 2° + 17 = 0].

2. Let L = [5,<,2]. The following sentence says there exists an infinite
set.

(3X)(V2)3y)[z <y Ay € X].

The following sentence says there exists two sets that partition the
natural numbers.

(AX)3AYV)(Va)(z € XV eY)A(z ¢ XV Y

A logical language i1s decidable if there is a program that will, given a
sentence in that language, output YES if that sentence is TRUE, and NO if
that sentence is FALSE. The following results are known.
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1. The language [S, <, 2] is decidable.
2. The language [+, <] is decidable.
3. The language [+, <, 2] is not decidable.

4. The language [+, x] is not decidable.

The undecidability of [+, x] can be derived from Gédel’s incompleteness
theorem (see any text in mathematical logic) as we briefly describe below.

Definition 4.10 An aziom system is a set of statements in a logical lan-
guage. A consistent axiom system is a set of axioms such that it is impossible
to derive a contradiction from it. A decidable axiom system is a set of axioms
that forms a solvable set.

Godel’s Incompleteness Theorem is as follows.

Theorem 4.11 [f AX is a consistent decidable aziom system for [+, x| then
there exists a statement S such that S is true of the natural numbers but s
not provable from AX.

From this we can derive that the language [+, x| is not recursively enu-
merable. We will later see that this language is far harder than that.

4.3 Recursively Enumerable Sets

Recall that we had a naive algorithm for HALT": given e run @.(z) and if it
halts then output YES. Modify this algorithm to also output the number of
steps that were required. This algorithm still does not work since if (e, z) ¢
HALT then the algorithm does not halt. However, if (e,z) € HALT, then
this algorithm discovers evidence that (e,z) € HALT, namely the number
of steps needed for p.(z) to halt. This is evidence in that the statement
“©e(x) halts in s steps” can be tested. The set HALT has a nice property:
if (e,x) € HALT then there is finite evidence for this fact. We generalize
this property.

Definition 4.12 A set is recursively enumerable if it satisfies any of the
following four equivalent conditions. We abbreviate recursively enumerable
by r.e.
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1. A = 0 or A is the range of a recursive function. (This definition is
why such sets are called “recursively enumerable”— we think of f as
enumerating the set.)

2. There exists a solvable set B C N x N such that
A=A{z|(3y)z,y) € BI}.
We think of the y as being finite evidence that = € A.

It is known (and not hard to prove) that if A is r.e. and not recursive
then A is not r.e. This is used to prove certain sets are not r.e.
The following are examples of r.e. sets:

1. HALT
2. {e| e halts on some prime } = {e | (Jx,t)[x is prime Ap.(z) halts in ¢ steps ]}.
3. {e ]| ¢e halts on at least 100 numbers }

The following are examples of sets that are not r.e. but their complements
are r.e. Since we think of a set and its complement as being of the same
complexity, we do not think of these are being harder than r.e. sets.

1. HALT.

2. {e| e halts on at most 100 numbers }.

The following are examples of sets that are neither r.e., nor there com-
plements are r.e. We think of these as being harder than r.e. sets. Let A be
any of these sets. If x € A there may not be finite evidence for this, and if
z ¢ A there may not be finite evidence for this either.

1. {e| ¢, halts on all primes }.
2. TOT.
3. COF.

We look at the case of TOT more carefully. To show that € TOT
one would need to show that for all y M,(y) halts. There can be no finite
evidence for this. To show that ¢ TOT one would need to show that there
is a y such that M,(y) does not halt. There can be no finite evidence for this
either.
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4.4 Reductions

We need a way to compare two problems, both of which may be undecidable,

to each other. In particular we need a notation for the concept “If I had access
to B then I could solve A.”

Definition 4.13 A <7 B if A can be solved given a “black box” for B. This
is pronounced “A is Turing-reducible to B.”

In the definition of A <7 B we allow unlimited access to B. The following
definition restricts that access by only allowing one query to B and saying
how it is to be used.

Definition 4.14 A <,, B if there exists a recursive function [ such that
x € Aiff f(z) € B. This is pronounced “A is m-reducible to B.” The
m indicates that the function f may be many-to-one. (This is an historical
anachronism.)

4.5 The Arithmetic Hierarchy

We define a measure of difficulty of sets (that are already undecidable) based
on the number of quantifiers required to define them. We will then state how
complex the sets introduced in this section are in this measure.

Definition 4.15 1. A € ¥, if there exists a solvable set B C N? such
that

A={z|(y)(z,y) € B}

This is the same as r.e.

2. A € Y, if there exists a solvable set B C N® such that
A= {o| @y)(¥2)l(z,y,2) € B},

3. A € ¥, is defined similarly to ¥; and ¥,.
4. Aell,if Aex,.

5. Aisin the arithmetic hierarchy if there exists n such that A € ¥,,.
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6.

Ais X, -complete if A € ¥, and (VB € %,))[B <,, A]. The notion of
I1,,-complete is defined similarly.

The following are well known facts:

1.

¥1 C ¥y C X3---. (Proper inclusion.)

. H1CH2CH3"'.

. Il = ¥y and this is the class of all solvable sets.

(Vn > 1[I, # X,].

If A€ ¥, NIl then A is recursive.

If Ae ¥yNI1l, then A <7 K.

If Ae X, NI, then for all ¥,_;-complete set B, A <r B.

If Ais ¥,-complete and B <,, A then B € ¥,,. Hence A ¢ 11,, U Y, _;.

We can now state the complexity of several sets introduced in this section.

1.

2.

HALT is ¥{-complete. Hence HALT € ¥, — 11;.
TOT is II;-complete. Hence TOT € 11, — 5.

COF is ¥3-complete. Hence COF € Y3 — Ils.

. Hilberts 10th problem can be expressed as a ¥i-complete set. Hence it

1s In El — Hl.

. Let TRUE be the set of true statements that can be expressed in the

logical languages [+, x| or [+, <,2]. The set TRUE is not in the arith-
metic hierarchy.
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5 Summary

The following tables summarizes most of the problems discussed in this paper
together with what is known about there upper and lower bounds. After each
table we interject commentary.

PROBLEM UPPER BOUND LOWER BOUND
Max n—1 n—1

ith element. n+4+ (: —1)logn+ O(1) n+ (¢ —1)logn + ¢
Median 2.97Tn + o(n) 2n —cy/n

Hi-Lo %n %n —c

Sorting O(nlogn) cnlogn

For the above upper and lower bounds a decision tree model was used.
For Max, ith largest, and Hi-Lo the best algorithm to use in the general
case is the standard one presented in Sections 2.1, 2.2 and 2.4. The lower
bounds indicate that these algorithms cannot be improved upon. If more
information is known about the domain then a faster algorithm might be
possible, as was shown in Section 2.6.2. The 2.97n median finding algorithm
is not good in practice and one should actually use a fine tuned version of the
algorithm presented in Section 2.3. Such an algorithm can be found in [2].
Sorting is similar to Max, zth largest, and Hi-Lo in that for the general case
the standard algorithms (see [11] and [5]) are the best; however, for certain
domains better algorithms exist (see [5]).

2-coloring graphs P linear
Graph connectivity P linear
s-t P linear
TSP NP NP-Complete

3-coloring graphs NP NP-Complete

The problems stated above that are in P have fast algorithms. The
problems stated above that are NP-complete are not known to have fast
algorithms. If the problem you are working on is NP-complete then see if
you can get by with an approximation or with solving a less general problem.
Your solution may be very domain-specific. For example, there are many
techniques for solving the TSP problem, but they do not translate to being
able to solve other NP-complete problems.
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HALT Y1  Yi-complete
TOT II, II;-complete
COF Y3 Ys-complete
TRUTH Y, Notin Arithmetic Hierarchy

The problems stated above are unsolvable. If you are faced with one of

them then you may have to really scale it down quite a bit before you can

solve it. For example, even though the halting problem is undecidable, if the
language that the programs are written in is restricted then this sub problem
may be solvable.
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