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Introduction If you toss two fair six-sided dice, you will get a number between 2
and 12. Although each die is fair, the sum is not: the probability of getting a 2 is 1

36 ,
while the probability of a 7 is 1

6 . Thus the question arises: Can unfair (or loaded)
dice lead to a fair sum? The answer is no, as was shown by Honsberger [4], using
elementary methods. A proof using generating functions is in Hofri’s book [3].

In [1], Chen, Rao, and Shreve raised the more general question of what happens
with n m-sided dice; they showed that the answer is still no. In this note we
generalize their result by considering m dice D1, . . . , Dm, where Di is ni-sided. We
find that there are cases where one gets a fair sum, and we characterize exactly
when this happens. Our techniques also lead to a different proof of the theorem of
Chen, Rao, and Shreve.

A die is fair if all numbers appear with equal probability. A tuple of dice is
fair if all sums appear with equal probability. For convenience, we will number an
n-sided die 0, 1, . . . , n− 1, and use the following definitions:

Definitions. Let m,n1, . . . , nm ≥ 2, and let N =
∑m

j=1 nj.

• An n-sided die is an ordered n-tuple of numbers (p0, . . . , pn−1) such that (i)
for all i, 0 ≤ pi ≤ 1; and (ii)

∑n−1
i=0 pi = 1. (We think of pi as the probability

of rolling an i.)

• For 1 ≤ j ≤ m let Dj be an nj-sided die. The m-tuple (D1, . . . , Dm) is fair if,
for all i, 0 ≤ i ≤

∑m
j=1(nj − 1) = N −m, the probability of rolling a sum of i

is 1
N−m+1 .

• The ordered m-tuple (n1, . . . , nm) is fair if there exists (D1, . . . , Dm) such that
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(i) each Dj is an nj-sided die; and (ii) (D1, . . . , Dm) is fair. In this case, we
say that (n1, . . . , nm) is fair via (D1, . . . , Dm).

Example. The ordered pair (2, 3) is fair since ((1
2 , 1

2), (1
2 , 0, 1

2)) is fair. Every sum
has probability 1/4 of being rolled.

In the preceding example, every sum can be rolled in one and only one way. We
will prove that, for a pair of dice to be fair, this condition must hold.

Definitions. A die D = (p0, . . . , pn−1) is symmetric if, for all i, pi = pn−1−i.
D is nice if if it is symmetric and, for all i, either pi = 0 or pi = p0.

Note that if a die is nice then p0 6= 0—otherwise, pi = 0 for all i.

Main Theorem: If (D1, . . . , Dm) is fair then each Di is nice.

Main Corollary: (D1, . . . , Dm) is fair if and only if each Di is nice and every
sum can be rolled in exactly one way.

Another Main Corollary: There is a decision procedure that will, given
(n1, . . . , nm), decide whether the tuple is fair.

Proving the main theorem In this section we prove the main theorem. Our
only tools are generating functions and some rudiments of complex algebra.

If D = (p0, . . . , pn−1) is a die then the polynomial FD(z) =
∑n−1

i=0 piz
i is the

generating function for D. The following key observation links tuples of dice and
products of generating functions:

If (D1, . . . , Dm) is an m-tuple of dice, then the coefficient of zi in
∏m

i=1 FDi(z)
is the probability of obtaining a sum of i.

The kth roots of unity are the complex solutions of the equation zk − 1 = 0. It
is easy to see that all of these roots lie on the complex unit circle. If k is even, then
1 and −1 are the only real roots of unity; if k is odd, then 1 is the only real root of
unity. All the roots of unity have multiplicity 1.

Lemma 1. If (n1, . . . , nm) is fair via (D1, . . . , Dm) and N =
∑m

j=1 nj, then the
roots of

∏m
j=1 FDj (z) are exactly the (N − m + 1)th roots of unity except 1. Each

root has multiplicity one.
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Proof. Since (D1, . . . , Dm) is fair the probability of the sum being i is 1
N−m+1 .

Hence
m∏

j=1

FDj (z) =
N−m∑
i=0

zi

N −m + 1
=

(zN−m+1 − 1)
(N −m + 1)(z − 1)

,

and it follows that zN−m+1 − 1 = (N −m + 1)(z − 1)
∏m

j=1 FDj (z).

We use Lemma 1 to restrict the kind of dice that can be used in an m-tuple of
fair dice.

Lemma 2. If (D1, . . . , Dm) is fair, then each Dj is symmetric.

Proof. Let Dj = (p0, . . . , pn−1) and let r1, . . . , rn−1 be the roots of FDj (z). Since
FDj (z) has real coefficients and has roots on the unit circle

{r1, . . . , rn−1} = {r1, . . . , rn−1} = { 1
r1

, . . . ,
1

rn−1
}

where ri denotes the complex conjugate of ri. Hence the roots of FDj (z) are the
roots of FDj (

1
z ) which are also the roots of zn−1FDj (

1
z ) =

∑n−1
i=0 pn−1−iz

i. Since∑n−1
i=0 piz

i and
∑n−1

i=0 pn−iz
i have the same roots, the same degree, and

∑n−1
i=0 pi = 1,

these polynomials are identical. Hence pi = pn−1−i.

We will prove our main theorem by induction on the number of dice. To this
end, we need a way to combine two dice into one:

Definition. [D1, D2] is the die obtained by rolling dice D1 and D2 and consid-
ering their sum.

The following lemma is key to the proof of the theorem.

Lemma 3. If D1 and D2 are symmetric and [D1, D2] is nice, then D1 and D2

are nice.

Proof. Let D1 = (p0, . . . , pn1−1) and D2 = (q0, . . . , qn2−1). We assume n1 ≤ n2.
Since D1 and D2 are symmetric, p0 6= 0 and q0 6= 0. Let [D1, D2] = (r0, . . . , rn1+n2−2).

We first prove that, for all i with 1 ≤ i ≤ n1 − 1, either pi = 0 or qi = 0. Since
[D1, D2] is nice rn2−1 = r0 or rn2−1 = 0. Hence

p0qn2−1 + p1qn2−2 + · · ·+ pn1−1qn2−n1 = ap0q0,

where a ∈ {0, 1}.

Since qi = qn2−1−i for all i, we have p0q0 + p1q1 + · · ·+ pn1−1qn1−1 = ap0q0, so

p1q1 + · · ·+ pn1−1qn1−1 = (a− 1)p0q0 ≤ 0.
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Since all the pi and qi are nonnegative, we have, for all i with 1 ≤ i ≤ n1 − 1, either
pi = 0 or qi = 0.

We now prove that, for all i with 0 ≤ i ≤ n1 − 1, the following two conditions
hold:

(i) either pi = 0 or pi = p0; (ii) either qi = 0 or qi = q0.

We prove this by induction on i. For i = 0 this is trivial. Assume it holds for all
i′ < i. Since [D1, D2] is nice, either ri = r0 = p0q0 or ri = 0 for all i, so

p0qi + p1qi−1 + · · ·+ pi−1q1 + piq0 = ap0q0,

where a ∈ {0, 1}. By the induction hypothesis, each term p1qi−1, . . . , pi−1q1 is either
0 or p0q0. Hence there exists b ≤ a such that p0qi + bp0q0 + piq0 = ap0q0, so

(∗) p0qi + piq0 = (a− b)p0q0.

Note that a− b ∈ {0, 1}.

Now if a − b = 1, then p0qi + piq0 = p0q0. If pi = 0 (resp. qi = 0) then qi = q0

(resp. pi = p0). By (∗), either pi = 0 or qi = 0.

If, alternatively, a − b = 0, then p0qi + piq0 = 0. Since p0 6= 0 and q0 6= 0, we
have pi = qi = 0.

It remains to prove that, for all i with n1 ≤ i ≤ n2 − 1, either qi = 0 or qi = q0.
This is done by another induction on i, similar to the one just given.

Theorem 4. If (D1, . . . , Dm) is fair, then each Dj is nice.

Proof. We prove this by induction on m. The m = 1 case is obvious. Assume
the result holds for m− 1, and let (D1, . . . , Dm) be fair. Then a simple calculation
shows that ([D1, D2], D3, D4, . . . , Dm) is fair. By the inductive hypothesis, each of
the dice [D1, D2], D3, D4, . . . , Dm is nice. By Lemmas 2 and 3, D1 and D2 are nice.

Corollary 5. The tuple (D1, . . . , Dm) is fair if and only if each Di is nice and
every sum can be rolled in exactly one way.

Proof. Assume that (D1, . . . , Dm) is fair, and that, for all j, Dj has nj sides—we
write Dj = (pj0, pj1, pj2, . . . , pj(nj−1)). Let Prob(a) denote the probability of rolling
an a. Assume, by way of contradiction, that there exist a and distinct (b1, . . . , bm)
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and (c1, . . . , cm) such that

(i) a =
m∑

j=1

bj =
m∑

j=1

cj ; (ii)
m∏

j=1

pj,bj
6= 0; (iii)

m∏
j=1

pj,cj 6= 0.

Since (b1, . . . , bm) and (c1, . . . , cm) are two distinct ways of rolling an a, we have∏m
j=1 pj,bj

+
∏m

j=1 pj,cj ≤ Prob(a).

Since (D1, . . . , Dm) is fair, each die is nice, so
∏m

j=1 pj,bj
=

∏m
j=1 pj,cj =

∏m
j=1 pj,0.

Hence

2Prob(0) =
m∏

j=1

pj,0 +
m∏

j=1

pj,0 =
m∏

j=1

pj,bj
+

m∏
j=1

pj,cj ≤ Prob(a) = Prob(0).

This implies that Prob(0) = 0, which contradicts (D1, . . . , Dm) being fair.

To prove the converse, assume that each Di is nice and every sum can be rolled
in exactly one way. Let a be rolled by (b1, . . . , bm) where, for all i, pi,bi

6= 0. Then
the probability of rolling an a is

∏m
j=1 pj,bj

=
∏m

j=1 pj,0. Since this quantity is
independent of a, (D1, . . . , Dm) is fair.

Corollary 6. One can determine whether any given tuple (n1, . . . , nm) is fair.

Proof. Given (n1, . . . , nm), we need only consider dice (D1, . . . , Dm) with each
Di nice. There are only a finite number of possibilities; each one can be checked for
fairness.

The number of fair n-sided dice (p0, . . . , pn−1) is the number of ways to assign
values to p0, . . . , pn−1 such that (1) for all i, pi = pn−1−i, (2) p0 6= 0, (3) for all i either
pi = p0 or pi = 0, and (4)

∑n−1
i=0 = 1. This is

∑dn/2e−1
i=0

(dn/2e−1
i

)
= 2dn/2e−1. Thus

the number of possibilities that must be considered is bounded by
∏m

i=1 2dni/2e−1.

Curious facts Next we explore some curious facts that follow from our work.

Corollary 7. If a set of dice is fair, then at most one of them has an even
number of sides.

Proof. Assume, by way of contradiction, that (D1, . . . , Dm) is fair and that ni

and nj , i 6= j, are both even; then ni − 1 and nj − 1 are odd. Then the polynomials
FDi(z) and FDj (z) have odd degree; since they also have real coefficients, both
FDi(z) and FDj (z) must have real roots. Therefore

∏m
j=1 FDj (z) either has at least

two distinct real roots or one real root of multiplicity at least 2. The first possibility
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contradicts Lemma 1—there is at most one real (N −m + 1)th root of unity other
than 1, where N =

∑m
j=1 nj . The second possibility also contradicts Lemma 1, since

all roots of
∏m

j=1 FDj (z) have multiplicity 1.

The next corollary is the main theorem from [1]. We give an alternative proof.

Corollary 8. If a set of dice is fair, then no two have the same number of
sides.

Proof. Suppose for the sake of contradiction that n = ni = nj , with i 6= j, and
that (D1, . . . , Dm) is fair. Let Dk = (pk0, pk1, pk2, . . . , pk(nk−1)). Let Prob(n − 1)
be the probability of rolling an n − 1. By Lemma 2, each Dk is symmetric, so
pi,n−1 = pi,0 and pj,n−1 = pj,0. Hence

2 Prob(0) = 2
m∏

k=1

pk,0 =
(
pi,n−1 pj,0

∏
1 ≤ k ≤ m

k 6= i, j

pk,0

)
+

(
pi,0 pj,n−1

∏
1 ≤ k ≤ m

k 6= i, j

pk,0

)

≤ Prob(n− 1) = Prob(0).

Hence Prob(0) = 0, which contradicts (D1, . . . , Dm) being fair.

The next corollary mentions the Euler φ-function: for a positive integer n, φ(n)
is the number of positive integers less than n that are relatively prime to n. The
proof involves cyclotomic polynomials. For a positive integer n, the nth cyclotomic
polynomial Φn(z) is a complex polynomial of degree φ(n); the roots of Φn(z) are the
primitive nth roots of unity—those for which no lower power than n gives 1. (Cu-
rious readers may find more information on cyclotomic polynomials in any abstract
algebra textbook; see, e.g., [2].)

Corollary 9. If (n1, . . . , nm) is fair and N =
∑m

j=1 nj, then φ(N −m + 1) ≤
maxj(nj − 1). Hence if N −m + 1 is prime, then (n1, . . . , nm) is not fair.

Proof. Assume (n1, . . . , nm) is fair via (D1, . . . , Dm). By Theorem 4, each FDj (z)
has rational coefficients. By Lemma 1, a root of one of the FDj (z) is a primitive
(N − m + 1)th root of unity. Therefore, ΦN−m+1(z) divides some FDj (z), where
ΦN−m+1(z) is the (N −m + 1)th cyclotomic polynomial. Hence, for some j, φ(N −
m + 1) ≤ nj − 1.

Examples The following examples illustrate our results concretely.
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1. By Corollary 7, no tuple of the form (2, 2i) is fair.

2. All tuples of the form (2, 2i−1), i ≥ 2, are fair: use dice (1
2 , 1

2) and (1
i , 0, 1

i , 0, . . . , 1
i , 0, 1

i ).
(This produces (2i)-sided dice.)

3. All tuples (i, i + 1), i ≥ 2, are fair: use dice (1
i ,

1
i , . . . ,

1
i ) and (1

2 ,

i−1︷ ︸︸ ︷
0, 0, . . . , 0, 1

2).
(This produces (2i)-sided dice.)

The preceding examples show that, for i ≥ 3, fair (2i)-sided dice can be produced
in at least two different ways. For example, a six-sided die can be produced from
(1
2 , 1

2) and (1
3 , 0, 1

3 , 0, 1
3), and also from (1

3 , 1
3 , 1

3) and (1
2 , 0, 0, 1

2).

4. All tuples (3, 3i−2), i ≥ 2, are fair: use dice (1
3 , 1

3 , 1
3) and (1

i , 0, 0, 1
i , 0, 0, . . . , 1

i , 0, 0, 1
i ).

(This produces (3i)-sided dice.)

5. All tuples (3, 4i−2), i ≥ 1, are fair: use dice (1
2 , 0, 1

2) and ( 1
2i ,

1
2i , 0, 0, 1

2i ,
1
2i , 0, 0, . . . , 1

2i ,
1
2i , 0, 0, 1

2i ,
1
2i).

(This produces (4i)-sided dice.)

The last two examples cover all the fair 2-tuples (3, i), since we have exhausted
all combinations of nice 3-sided dice. Some 2-tuples (3, i) are fair in two different
ways. For example, (3, 10) is produced from (1

3 , 1
3 , 1

3) and (1
4 , 0, 0, 1

4 , 0, 0, 1
4 , 0, 0, 1

4),
and also from (1

2 , 0, 1
2) and (1

6 , 1
6 , 0, 0, 1

6 , 1
6 , 0, 0, 1

6 , 1
6).

Finally, observe that one can construct fair dice from arbitrarily long tuples. All
tuples of the form (20 + 1, 21 + 1, 22 + 1, . . . , 2m−1 + 1), m ≥ 2, are fair: use dice

(1
2 , 1

2), (1
2 , 0, 1

2), (1
2 , 0, 0, 0, 1

2), . . ., (1
2 ,

2m−1−1︷ ︸︸ ︷
0, 0, . . . , 0, 1

2). (This produces (2m)-side dice.)

Almost uniform sums When giving a talk on this topic we were asked whether
we can get “close to” a uniform sum using real dice. In this section, therefore, we
assume dice are numbered from 1 to n.

There are several ways to measure how close a distribution is to uniform. We
wrote a Matlab program to find, for given n, vectors (p1, . . . , pn) and (q1, . . . , qn)
such that (i)

∑n
i=1 pi =

∑n
i=1 qi = 1; (ii) for all i, 0 ≤ pi, qi ≤ 1; and (iii) if we

interpret the vectors as dice, then

2n∑
m=2

(
Prob(sum is m)− 1

2n− 1

)2
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is minimized. For all n, Matlab produced symmetric dice that were identical to each
other. However, Matlab does not guarantee that the results are the true optimum,
so the question of whether or not optimal dice must be identical and symmetric is
interesting and open, even in the cases where we obtained numerical results. Other
measures of being “close to uniform” might also be considered.

We provide the statistics, in the n = 6 case, first for two (ordinary) fair dice and
then for the dice we obtained from the program.

If each die is fair then the following happens.

prob(the die is 1) = 0.166667
prob(the die is 2) = 0.166667
prob(the die is 3) = 0.166667
prob(the die is 4) = 0.166667
prob(the die is 5) = 0.166667
prob(the die is 6) = 0.166667

prob(the sum is 2) = 0.027778
prob(the sum is 3) = 0.055556
prob(the sum is 4) = 0.083333
prob(the sum is 5) = 0.111111
prob(the sum is 6) = 0.138889
prob(the sum is 7) = 0.166667
prob(the sum is 8) = 0.138889
prob(the sum is 9) = 0.111111

prob(the sum is 10) = 0.083333
prob(the sum is 11) = 0.055556
prob(the sum is 12) = 0.027778

The two dice obtained by the Matlab program were unfair but identical, and
had the following properties.

prob(the die is 1) = 0.243883
prob(the die is 2) = 0.137480
prob(the die is 3) = 0.118637
prob(the die is 4) = 0.118637
prob(the die is 5) = 0.137480
prob(the die is 6) = 0.243883

prob(the sum is 2) = 0.059479
prob(the sum is 3) = 0.067058
prob(the sum is 4) = 0.076768
prob(the sum is 5) = 0.090488
prob(the sum is 6) = 0.113753
prob(the sum is 7) = 0.184909
prob(the sum is 8) = 0.113753
prob(the sum is 9) = 0.090488

prob(the sum is 10) = 0.076768
prob(the sum is 11) = 0.067058
prob(the sum is 12) = 0.059479
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