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1 Introduction

It is well known that sorting can be done with O(n log n) comparisons. It
is also known that (in the comparison decision tree model) sorting requires
Ω(n log n) comparisons.

What happens if you allow massive parallelism? In the extreme case you
can sort n elements in one round by using

(n
2

)
processors to make all the

comparisons at once. It is easy to show that sorting in one round requires(n
2

)
processors. Can you sort in two rounds with a subquadratic number of

processors? What about k rounds? We survey the known literature and
discuss simulations of these algorithms that we have carried out. One of our
main points will be that nonconstructive algorithms can be useful.

We use the parallel decision tree model introduced by Valiant [25]. If
p processors are used then every node is a set of p comparisons and has
2p children corresponding to all possible answers. We think of a node as
having information about how the comparisons that led to that node were
answered (formally a DAG on {x1, . . . , xn}) and all information derivable
from that information (formally the transitive closure of that dag). The
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model does not count the cost of communication between processors, nor
does it count the cost of transitive closure. The model does capture how
hard it is to gather the information needed to sort. Also, lower bounds in
our model will apply to models that take these factors into account. For
more realistic models of parallelism see any current textbook on parallel
algorithms, e.g. [1, 16].

The first round of a p-processor algorithm takes x1, . . . , xn about which
nothing is known and makes p comparisons. This can be represented as an
undirected graph G on n vertices with p edges. Hence the search for parallel
sorting algorithms will involve finding graphs G that have nice properties.
Most of our algorithms depend on versions of the following two lemmas,
which we state informally:

1. Some undirected graph G with property P exists and does not have
too many edges.

2. Let G = (V,E) be a graph with V = {x1, . . . , xn} that has property
P . Let G′ be any acyclic orientation of G and let H be the transitive
closure of G′. The graph H does not have too many edges.

The literature has many algorithms to sort in constant time. Some are
nonconstructive. We have undertaken an empirical study of these algorithms
by simulating most of them. This paper will present the results of that study.
We include proof sketches to indicate the algorithms used. A companion
paper [12] discusses the proofs in more detail.

2 Definitions and Notation

There are several types of sorting algorithms.

Def 2.1

1. A nonconstructive algorithm for sorting n elements in k rounds is an
algorithm that is proven to exist, but its existence proof does not
reveal how to produce it. For example, the graph on n vertices that
represents the first round may be proven to exist by the probabilistic
method [5, 23].

2. A constructive algorithm for sorting in k rounds is a sequence of algo-
rithms An with the following properties: (1) The algorithm An sorts n
elements in k rounds. (2) There is a polynomial time algorithm that,
given n (in unary), produces An.

3. A randomized algorithm for sorting in k rounds is a sequence of ran-
domized algorithms An with the following properties: (1) The algo-
rithm An sorts n elements in k rounds. (2) There is a polynomial time
algorithm that, given n (in unary), produces An. Each time you run
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the algorithm the number of processors may vary since it is random-
ized. We will be concerned with the expected number of processors.
One could instead fix the number of processors and be concerned with
the number of rounds. This is studied in [16]. Note that we are deal-
ing with constructive randomized algorithms. We do not know of any
nonconstructive randomized algorithms.

We noted above that the model assumes transitive closure is free. Some
of our algorithms work with the weaker assumption that only a partial tran-
sitive closure is free.

Def 2.2

1. Given a directed graph G the 2-step transitive closure is the graph
formed as follows: If in our original comparison graph we have (x, y)
and (y, z) then we will add to that graph (x, z). Note that if we have
(x, y), (y, z), and (z, w) we do add (x, z) and we do add (y, w) but we
do not add (x,w).

2. Let d ≥ 2. Given a directed graph G the d-step transitive closure is the
graph defined inductively as follows: (1) the 2-step transitive closure
is as above. (2) the d-step transitive closure is the 2-step transitive
closure of the (d− 1)-step transitive closure.

Def 2.3

1. sort(k, n) is the number of processors needed to sort n elements in k
steps. The algorithm may be nonconstructive.

2. csort(k, n) is the number of processors needed to sort n elements in k
steps by means of a constructive algorithm.

3. sort(k, n, d) is the number of processors needed to sort n elements in k
steps by means of an algorithm that only uses d-step transitive closure.
The algorithm may be nonconstructive.

4. csort(k, n, d) is the number of processors needed to sort n elements
in k steps by means of a constructive algorithm that only uses d-step
transitive closure.

5. rsort(k, n) is the expected number of processors needed to sort n ele-
ments in k steps by means of a randomized algorithm.

Note 2.4 When we use order notation we take k to be a constant. Hence
a statement like “sort(k, n) = O(n1+1/k(log n)2−2/k)” means that the multi-
plicative constant might depend on k.

We survey all known upper bounds on the quantities in Definition 2.3.
Our goal is that the reader (1) learns that there are many interesting constant-
time parallel sorting algorithms in the literature, and (2) learns what hap-
pens when these algorithms are simulated.
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3 Empirical Methodology

Since multiprocessor machines with enough processors to run these algo-
rithms do not currently exist, we performed our empirical studies using
uniprocessors machines. This was accomplished by implementing all algo-
rithms using a for-loop to represent a single round. Within the loop, each
iteration represented a unique processor. Care was taken to assure that later
iterations had no access to information obtained during the earlier ones.

One limitation that this methodology presented was run-time. There
were two factors involved within this. First, as the number of elements
to be sorted increases, the run-time increases since we are using a single
processor. Second, although the model assumes that transitive closure is
free, the run-time cost of this on a uniprocessor system is high.

As a result, experiments were performed with values of n ranging from
as small as 26 to no more than 214. However, it should be noted that we
were able to make many observations within this range.

Another issue that needed to be dealt with was the generation of in-
puts as well as the generation of graphs in some cases. To offset the known
problems with random number generation, in all experiments, multiple in-
puts and multiple graphs were used. The best, worst, and average of the
results on these inputs and graphs were all observed during the analysis.
When looking for results, we focused on the worst-cases of the trials. We
ran each algorithm (and in the case of algorithms that used randomly gener-
ated graphs, on each graph) on between 10 and 100 different inputs as time
allowed.

4 Nonconstructive Methods

4.1 The First Nonconstructive Algorithm

The first k-round sorting algorithm that uses a subquadratic number of
processors is due to Haggkvist and Hell [14]. They showed that sort(k, n) ≤
O(nαk log2 n) where αk = 3·2k−1−1

2k−1
. In particular this implies sort(2, n) ≤

O(n5/3 log n). Bollobás and Thomason [9] improved the k = 2 case by
showing sort(2, n) ≤ O(n3/2 log n).

Theorem 4.1 ([9, 14])

1. sort(2, n) ≤ O(n5/3 log n) [14].

2. sort(k, n) ≤ O(nαk log n) where αk = 3·2k−1−1
2k−1

[14].

3. sort(2, n) ≤ O(n3/2 log n) [9].

Algorithm sketch: We sketch the first result. The second result uses
induction with the first result as its base case. The third result is similar
to the first, but non-trivial. Let α = 5

3 , p =
⌊
n2−α

⌋
, q =

⌊
n4−2α

⌋
, and
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r =
⌊
2n4α−6 log2 n

⌋
. Let A = |{G : G has n vertices and pqr edges }|. Let

G be a graph from A. Consider the following algorithm.

1. (Round 1) Compare xi : xj iff (i, j) is an edge of G. (This takes pqr =
O(nα log n) comparisons.) Let G′ be the orientation of G obtained by
directing i to j iff xi < xj . Let H be the transitive closure of G′.

2. (Round 2) Compare all xi : xj such that (i, j) is not an edge of H.

One can show that there exists graphs G ∈ A such that round 2 takes
O(nα log n) comparisons. In fact, one can show that most graphs in A have
this property.

Nota Bene 4.2 Some authors have credited [7] or [9] with the result sort(k, n) =
O(n1+1/k log n). This citation is incorrect and this result is not even known
to be true. However, Bollobás [6] later obtained sort(k, n) = O(n1+1/k (log n)2−2/k

(log log n)1−1/k )
(see Section 4.3).

Empirical Note 4.3 We did not code this algorithm up. The algorithms
are nonconstructive in that the graphs needed to represent the rounds are
proven to exist but no method is provided to construct them. This is not an
obstacle (see Section 4.2). In these algorithms a graph is picked at random
from a set of graphs that have a certain number of edges. This is hard to
program. As we will see, other types of probabilistic methods are easy to
code.

4.2 Expander Graphs

Pippenger [20] showed that sort(k, n) = O(n1+1/k(log n)2−2/k).

Def 4.4 [20] Let 1 ≤ a ≤ n/2. An a-expanding graph is a graph in which
for any two disjoint sets of vertices of size a + 1, there is at least one edge
between the two sets.

Lemma 4.5 ([20]) For 1 ≤ a ≤ n/2 there exists an a-expanding graph with
O(n2 log n

a ) edges.

Algorithm sketch: Assume you have a coin that has probability p =
2 ln n

a of being heads. Create a graph on n vertices as follows: for each {i, j},
flip the coin. Put the edge {i, j} into the graph iff the coin is heads. The
probability that the graph will be an a-expander graph with O(n2 log n

a ) edges
is nonzero (actually close to 1). Hence such a graph exists.
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Lemma 4.6 ([20]) If n elements are compared according to the edges of an
a-expander graph, then there will be at most O(a log n) candidates remaining
for any given rank.

From Lemma 4.6 it is easy to prove the following:

Lemma 4.7 ([20]) If n elements are compared according to the edges of
an a-expander graph, then they can be partitioned into O( n

a log n) sets, each
containing O(a log n) elements, such that the relationship between any pair
of elements is known unless they both belong to a common set.

Theorem 4.8 ([20]) sort(k, n) = O(n1+1/k(log n)2−2/k).

Algorithm sketch: We prove this by induction on k. For k = 1 this is
trivial. Assume the theorem for k − 1.

Let G be an a-expanding graph that is shown to exist by Lemma 4.5.
We will pick the value of a later.

1. (Round 1) Compare xi : xj iff (i, j) is an edge of G. (This takes
O(n2 log n

a ) comparisons.) Let G′ be the orientation of G obtained by
directing i to j iff xi < xj . Let H be the transitive closure of G′.

2. (Rounds 2, . . . , k) Using Lemma 4.7 one can show that {x1, . . . , xn}
can be partitioned into O( n

a log n) groups of size O(a log n) such that
all comparisons between different groups are known. Sort the groups
inductively in k − 1 rounds. This takes

O(
n

a log n
(a log n)1+

1
k−1 (log(a log n))2−

2
k−1 )

processors.

To achieve the result set a = Θ( n1−1/k

(log n)1−2/k ).

Empirical Note 4.9 When implementing the algorithm, the probability p
which was to be used to generate the a-expanding graphs is based on the
value for a which is in turn based on n. As a starting point, we took p to
be the exact value specified in the paper, p = 2 ln n

a . After gathering results
on 2-round sorting for values of n ranging between 100 and 5000 using that
value for p, we charted the number of processors that were used in each of
the rounds in the worst case and found that more work was being done in the
first round than in the second. This implied that smaller graphs might be
better. From this, we generated experimental results based on p multiplied
by a constant factor between 0.01 and 2.00. We refer to this constant factor
as Cp. These results led to the observation that a good value for Cp would
be somewhere between 0.2 and 0.4. Further experiments lead to 0.36 as the
best value for Cp. Figure 1 shows results with Cp values between 0.01 and
0.60.
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Figure 1

Figure 2 Figure 3

We can see in Figures 2 and 3 that the ratio between the number of
processors predicted by Pippenger and the number of processors used by
the simulation when using Cp=0.36 levels off quickly, which agrees with
Pippenger’s asymptotic analysis.

4.3 Super Expander Graphs

Alon and Azar [3] showed that sort(2, n) = O(n3/2 log n√
log log n

). Bollobás [6]

extended this to show that sort(k, n) = O(n1+1/k (log n)2−2/k

(log log n)1−1/k )
All these results use graphs similar to the a-expander graphs discussed

in Section 4.2. We sketch the algorithm of Alon and Azar and then make
some brief comments about Bollobás ’s algorithm.
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We define a subset of a-expander graphs that has additional expanding
properties. The following definition is implicit in [3].

Def 4.10 Let a, n ∈ N and a = Ω(log n). A graph G on n vertices is an
a-super-expander if the following hold.

1. If A and B are disjoint subsets of vertices with a vertices each then
some v ∈ B has at least log2 n neighbors in A.

2. Let x ≤ a/e
√

log2 n. If A and B are disjoint sets such that |A| = x and
|B| = x(log2 n)1/4, then each v ∈ A has at least log2 n neighbors in B.

The following lemma asserts that there exists small a-super-expander
graphs. It is similar to Lemma 4.5; however we will be using it with a
different value of a to obtain a better upper bound on sort(k, n).

Lemma 4.11 ([3]) There exists an a-super-expanding graph with O(n2 log n
a )

edges.

Algorithm sketch: Assume you have a coin that has probability p =
Θ( log n

a ) of being heads. Create a graph on n vertices as follows: for each
{i, j}, flip the coin. Put the edge {i, j} into the graph iff the coin is heads.
The probability that the graph will be an a-super-expander with O(n2 log n

a )
edges is nonzero (actually close to 1). Hence such a graph exists.

Lemma 4.12 ([3]) If n elements are compared according to the edges of
an a-super-expanding graph, then there will be at most O(a log n/ log log n)
candidates remaining for any given rank.

Theorem 4.13 ([3]) sort(2, n) = O(n3/2 log n√
log log n

)

Algorithm sketch: This is similar to the k = 2 case of Theorem 4.8.
The value of a needed is a = Θ(

√
n log log n).

Theorem 4.14 ([6]) sort(k, n) = O(n1+1/k (log n)2−2/k

(log log n)1−1/k )

Algorithm sketch: A rather complicated type of graph is defined which
will, if used to guide comparisons, yield much information. Let

p = Θ(
n1/k(log n)2−2/k

n(log log n)1−1/k
).

Assume you have a coin that has probability p of being heads. A graph on
n vertices as follows: for each {i, j}, flip the coin. Put the edge {i, j} into
the graph iff the coin is heads. The probability that the graph will be of this
type and have O(n1+1/k (log n)2−2/k

(log log n)1−1/k ) edges is nonzero (actually close to 1).
We use this type of graph in round 1 and then proceed inductively.
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Empirical Note 4.15 We did not code this algorithm up. For the values
of n that we are looking at it is not clear that the (log log n)1−1/k factor
savings would be visible. Also, the algorithm to generate these graphs is the
same as that for the algorithms in section 4.2— generate a graph by putting
edges in with probability p = Θ( log n

a ). In our coding up of Pippenger’s
algorithm we had to fine-tune the value of p. We would do the same thing
here. It is likely we would obtain very similar results. In fact, because of
the similarities in the methods, it is quite possible that we did code up this
algorithm while coding up Pippenger’s.

5 Constructive Methods

5.1 Merging and Sort

Let merge(k, n) be the number of processors needed to merge two lists of n
elements in k rounds.

Haggkvist and Hell [15] present constructive proofs for the following
upper bounds: merge(k, n) = Θ(n1+1/(2k−1)) and csort(k, n) = O(n1+

√
2/k).

Their sorting algorithm uses parallel merging. The paper gives matching
upper and lower bounds for merging. While all that was needed was an
upper bound for merging, knowing the exact bound allows us to know that
the sorting algorithm cannot be improved via an improvement to the bound
on merging.

Lemma 5.1 ([15]) merge(k, n) = O(n
2k

2k−1 )

Algorithm sketch:
The algorithm given for merging two ordered lists of n elements is to

partition each list into groups, and then do a pairwise comparison of the
first element of each group in the first list with the first element of each
group in the second list. After doing these comparisons, there will be a
small number of groups whose members are still unordered relative to one
another. To prove this they consider the following graph: V is the set of
groups, and an edge is placed between A and B if there is an x ∈ A and a
y ∈ B such that the ordering x : y is not known. They show that this graph
is planar and thus linear in size.

Haggkvist and Hell establish that a group size of O(n1/3) is optimal
for two round parallel merging, giving merge(n, 2) = O(n4/3). By applying
induction on the merging of the groups whose orientation was not previously
determined by the comparison of the first elements of each group, they derive

the generalization merge(k, n) = Θ(n
2k

2k−1 )

Note 5.2 Haggkvist and Hell also showed that merge(k, n) = Ω(n
2k

2k−1 ).
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Theorem 5.3 ([15])

1. csort(3, n) = O(n8/5).

2. csort(4, n) = O(n20/13).

3. csort(5, n) = O(n28/19).

4. csort(k, n) = O(n1+
√

2/k).

Algorithm sketch: The algorithm to sort a list of values in k rounds is
based on using some number of rounds j to partition the list and sort each
partition, and then use the remaining k − j rounds to do a pairwise merge
of those partitions. In the 3 round case, the list is partitioned into groups
of size O(n2/5) and each partition is then sorted in one round using O(n6/5)
processors per partition, or a total of O(n8/5) processors. Then in the two
remaining rounds, a pairwise merging of the O(n2/5) groups would produce
all information required to fully order the original n values.

The other results are similar. In each case the calculation of the optimal
value of j is nontrivial. Let sk denote the smallest value such that a j exists
that allows one to sort n numbers in k-rounds with O(nsk) processors. The
following recurrence allows one to find sk for any particular k; however, it
has no closed form.

sk+1 = min{2(2j − 1)sk+1−j − 2j

(2j − 1)sk+1−j − 1
: j > 0 ∧ sk+1−j ≥

2j

2j − 1
}

From this one can derive the approximation csort(k, n) = O(n1+
√

2/k).
The calculation is not straightforward or tight.

Note 5.4 Assume that we knew csort(2, n) ≤ nα log n. Then the recurrence
in Theorem 5.3 could be modified to get results of the form csort(k, n) =
O(nαk log n). The results obtained would be better than those of Theo-
rem 5.3 for small k. It is not clear what would happen asymptotically.

Empirical Note 5.5 The algorithm specifies the size of the groups into
which the values should be partitioned. After this partitioning, two rounds
are used to accomplish a pairwise merge across these partitions. The final
round is used to answer the remaining questions. We began by partitioning
into groups of exactly the specified size. The results when tested on values of
n up to 2000 showed that there was a difference in the number of processors
used in each of the two rounds used for merging.

To see if that difference would disappear as the value of n increased, we
extended testing to values of n up to 10,000. The results showed that the
difference remained. This could have indicated that (as with Pippenger)
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Figure 4

Figure 5
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Figure 6 Figure 7

Figure 8

some improvement might have been attainable by bringing the number of
processors used in the two merging rounds closer together.

By varying the size of the partitions as well as the size of the groups
during merging by a constant multiplicative factor, we found that small
changes did not significantly affect the end result and that large changes
had detrimental effects. Additionally, the points at which the two rounds
used the same number of processors differed. Additionally, the number of
processors required in the final round could not be predictably balanced with
either of these two rounds. Figures 6, 7, and 8 demonstrate these differences
for several values of n.

Although it was possible in some cases to bring the number of processors
used in these rounds closer together, there did not appear to be a predictable
way in which to optimize this. Additionally, the results shown in Figures 4
and 5 had the same growth rate as the formula predicts.

Figure 9 graphs the ratio of a formula’s predictions with the empirical
results as n increases. The ratio is relatively constant.

When moving to the case of sorting in 4 rounds, we discovered some in-
teresting behavior. Specifically, for values of n less than 8192, the simulation
was behaving much worse than predicted, but starting at 8192 it behaved
as expected. See Figure 10.

Upon further investigation, we saw that as more rounds were introduced,
for small values of n, groups of size 1 or 0 might be created for the last
round, so the processors would not be fully utilized (in the last round). This
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Figure 9

Figure 10
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“saving” in the final round was made up for by using more than expected
processors in the earlier rounds.

An additional issue which needs to be dealt with when implementing
this algorithm is that it assumes that all groups will be of an equal size.
There are several ways in which the groups can be padded to work with this
limitation. In our simulations, we chose values for n that would partition
evenly.

5.2 Attempts at the k = 2 case

Theorem 5.3 did not produce a constructive 2-round subquadratic sorting
algorithm. This was eventually solved by Pippenger (see Section 5.3); how-
ever, before it was solved there were some interesting results that broke the(n
2

)
barrier.

1. Haggkvist and Hell [14] showed csort(2, n) ≤ 13
15

(n
2

)
. Their proof used

the Peterson graph and balanced incomplete block designs.

2. Bollobás and Rosenfeld [8] showed csort(2, n) ≤ 4
5

(n
2

)
. Their proof

used the Erdos-Renyi graph [11] based on projective geometry.

Empirical Note 5.6 We did not code up these algorithms since there were
far better nonconstructive ones available. Also, for the range of n we are
discussing, it would be hard to tell

(n
2

)
from 4

5

(n
2

)
.

5.3 The First Constructive Subquadratic Algorithm for k = 2

In 1984 the first constructive 2-round subquadratic sorting algorithm was
discovered by Pippenger [21] who showed sort(2, n) = O(n1.95). He never
wrote it up; however, several references to it exist including one in [7]. A
year later he improved this result and generalized to k rounds by devel-
oping the framework of expander graphs for sorting (see Section 4.2) and
showing that the graphs constructed by Lubotzky, Phillips, and Sarnak [17]
were a-expander graphs. These can be used to obtain sorting algorithms
that are constructive, though not as good as the nonconstructive ones in
Theorem 4.8.

Lemma 8 of [20] proves two things. We separate them out into two
separate lemmas.

Lemma 5.7 ([20]) Let G be a graph on n vertices. Let λi be the ith largest
eigenvalue of the adjacency matrix. If λ1 = p + 1 and (∀i ≥ 2)[λi ≤ 2

√
p]

then G is an O( n√
p)-expanding graph.

Lemma 5.8 ([17, 20]) Let p, q be primes that are congruent to 1 mod 4.
Assume p < q. There exists an explicitly constructed O( q√

p)-expanding graph
with q + 1 vertices and O(pq) edges.

14



Algorithm sketch: Lubotzky, Phillips, and Sarnak [17] constructed a
p + 1-regular graph G on q + 1 vertices with the following properties: (1)
the largest eigenvalue of the adjacency matrix, p+1, has multiplicity 1, and
(2) all other eigenvalues have magnitude at most 2

√
p. Clearly this graph

is on q + 1 vertices and has O(pq) edges. By Lemma 5.7 this graph is an
O( q√

p)-expanding graph.

Note 5.9 The graphs constructed by Lubotzky, Phillips, and Sarnak are
somewhat complicated. They use graphs associated to certain groups.

Lemma 5.10 Let 1 ≤ a ≤ n. Let n
a be sufficiently large. There is an

explicitly constructed a-expanding graph G on n vertices of size O(n3/a2).

Algorithm sketch: We need to find primes p, q such that (n
a )2 ≤ p ≤

2(n
a )2, n ≤ q ≤ 2n, and both p, q are congruent to 1 mod 4. Such exists for

n
a large by the Prime Number Theorem for arithmetic progressions (see [10]
for example). Apply Lemma 5.8 to obtain a graph on Θ(n) vertices that is
a O( q√

p)-expanding, hence O(n3

a2 )-expanding.

Theorem 5.11 csort(k, n) ≤ O(n1+ 2
(k+1) (log n)2−

4
(k+1) ).

Algorithm sketch: This proof is similar to that of Theorem 4.8 except
that we use Lemma 5.10 with

a = Θ(
n1−1/(2k−1)

(log n)2/(2k−1)
).

Empirical Note 5.12 We did not code this algorithm up as it was some-
what complicated.

5.4 Two Simple Constructive Algorithms

Alon [2] showed that csort(2, n, 2) = O(n7/4). His algorithm is simpler
than that of Theorem 5.11. Since Alon’s result is about limited closure
sorting we will discuss it in Section 8; however by combining it with the
recurrence in Theorem 5.3 he obtained improvements over Theorem 5.3. We
give the first few improvements. More numbers can be generated; however,
the asymptotic values do not improve.

Theorem 5.13 ([2])

1. csort(2, n) = O(n7/4).

2. csort(3, n) = O(n8/5).
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3. csort(4, n) = O(n26/17).

4. csort(5, n) = O(n22/15).

Pippenger [20] noticed that a variant of Alon’s algorithm actually yields
csort(2, n) ≤ O(n5/3 log n). (We will discuss this algorithm when discussing
Alon’s algorithm.) Golub [13] noticed that this could be combined with an
easy modification of the recurrence in Theorem 5.3 (as described in the note
following Theorem 5.3) to obtain a simple constructive algorithm which is
better than that of Theorem 5.13. We give the first few improvements. More
numbers can be generated; however, the asymptotic values do not improve.

Theorem 5.14

1. csort(2, n) = O(n5/3 log n) (use Pippenger’s modification of Alon).

2. csort(3, n) = O(n8/5) (use Theorem 5.3).

3. csort(4, n) = O(n3/2 log n).

4. csort(5, n) = O(n23/16 log n).

5.5 A Constructive Algorithm via Pseudo-Random Genera-
tors

Wigderson and Zuckerman [26] present a constructive proof that sort(k, n) =
O(n1+1/k+o(1)). Their algorithm is based upon Pippenger’s non-constructive
sorting algorithm (See Section 4.2). Recall that Pippenger showed that
small a-expander graphs were useful for sorting, and then showed that small
a-expander graphs exist. The value of a taken for k round sorting was

a = n
1− 1

k

(ln n)
1− 2

k
. Wigderson and Zuckerman present a constructive proof of the

existence of a a-expander graphs with slightly worse values of a. They use
the machinery of extractors and pseudo-random generators. Later authors
improved this machinery and hence the results. The main results about
sorting are summarized below.

Theorem 5.15 ([26]) csort(k, n) ≤ O(n1+1/k+o(1)).

There have been improvements in extractor technology which have lead
to a better understanding of the o(1) term in [22, 19].

Empirical Note 5.16 In this algorithm, there are a variety of interdepen-
dent formulas. In order for them to work, there are certain values which
must be positive. By substituting in values to assure this, we find that
216 is the smallest value of n for which the formulas can possibly work.
Additionally, by writing a program to iterate through combinations of the
variables used and the requirements upon these variables, we found that the
first value that would work would be 233.
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Empiricism played two roles in our study of this algorithm. Since pre-
vious algorithms had worked well on relatively small values of n we began
coding our simulations and upon observing poor and inaccurate results, were
motivated to investigate the mathematics in more detail. Empirical tests
were then applied to the mathematical aspects of the algorithm in order to
obtain more information about “sufficiently large values of n.”

6 A Randomized Algorithm

Alon, Azar, and Vishkin showed rsort(k, n) = O(n1+1/k). Their algorithm
is fairly simple; however, the analysis requires care.

Theorem 6.1 ([4]) rsort(k, n) = O(n1+1/k).

Algorithm sketch:
In the first round, n1/k−1 values are chosen at random and each is com-

pared to all n−1 other values. Between rounds, the n values are partitioned
into O(n1/k) blocks (A1, . . . , An1/k) based on the now ordered list of O(n1/k)
values such that if i < j then all members of Ai are less than members of
Aj .

In the remaining k−1 rounds, each Ai is sorted. A careful analysis shows
that the expected number of processors required to do this is O(n1+1/k).

Empirical Note 6.2 A question that arose during experiments with this
algorithm was that of how the expected number of processors would translate
into an actual number of rounds. Since an underestimate of the number of
processors required would lead to additional rounds being needed it would
be in our best interest to observe the behavior of the algorithm to assist us
in the selection of a number of processors to use.

In the two round case, the average number of processors used in rounds
1 and 2, as well as the maximum number of processors used in round 2,
are so close that if graphed, they all overlap with the line representing the
formula. Similarly, many of the results in the three and four round cases
are so close that they would overlap on a graph and appear as a single line
or as a cluster of lines. It would be difficult to draw the graph as to show
each line distinctly in gray scale.

The first round is deterministic and uses slightly less than n1+1/k pro-
cessors. We call this the formula value. Not counting low order terms, it is
a lower bound on how many processors the algorithm needs.

Figures 11, 12, and 13 show the maximum over all rounds, maximum of
the averages of all rounds, the formula, and twice the formula.

There are still overlapping lines in the two round case, but the basic
idea comes across: these empirical results give us reason to believe that if
we allocate twice the expected number of processors we have a good chance
of being able to avoid the requirement that additional rounds be used in the
sort.
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Figure 11 Figure 12

Figure 13

Empirical Note 6.3 There are still overlapping lines in the two round
case, but the basic idea comes across: these empirical results give us reason
to believe that if we allocate twice the expected number of processors we
have a good chance of being able to avoid the requirement that additional
rounds be used in the sort.

7 A Nonconstructive Algorithm for sort(2, n, d)

Bollobás and Thomason [9] were the first ones to look at sorting with limited
transitive closure. They used nonconstructive means, similar (though more
complicated) to those we have seen in Theorems 4.1, 4.8, 4.13 and 4.14.
Hence we omit even a sketch here.

Theorem 7.1 ([9]) sort(2, n, d) ≤ O( 1
2dn1+ d

2d−1 (log n)1/2d−1).

Empirical Note 7.2 In these algorithms a graph is picked at random from
a set of graphs that have a certain number of edges. This is very hard to
program, so we did not do so.

8 A Constructive Algorithm for sort(2, n, 2)

Alon [2] showed that csort(2, n, 2) = O(n7/4). He used techniques in projec-
tive geometry over finite fields to construct graphs. He used the eigenvalue
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methods of [24] to prove his graphs had the relevant properties. Pippenger
used a variation of Alon’s graphs to obtain csort(2, n) = O(n5/3 log n).

Notation 8.1 If q is a prime power than Fq is the finite field on q elements.

Def 8.2 We refer to 1-step transitive closure as Direct Implication.

Def 8.3 [2] Let d, q ∈ N and let q be a prime power. The number d will be
referred to as the dimension. The Geometric Expander over Fq of dimension
d is the bipartite graph that we construct below:

1. Create a set of d + 1 tuples of the following form

(1, a1, a2, . . . , ad+1) a1, . . . , ad+1 ∈ {0, 1, . . . , q − 1}
(0, 1, a2, . . . , ad+1) a2, . . . , ad+1 ∈ {0, 1, . . . , q − 1}
(0, 0, 1, a3, . . . , ad+1) a3, . . . , ad+1 ∈ {0, 1, . . . , q − 1}

...
(0, 0, 0, . . . , 0, 1, ad+1) ad+1 ∈ {0, 1, . . . , q − 1}

Note that each tuple represents a hyperplane in d + 1 space over Fq.
(Alternatively we could have allowed all tuples that were not (0, . . . , 0)
and then identify any two that differ by a constant multiple in Fq.)

2. Let U and V be the set of tuples above. An edge will exist between
u ∈ U and v ∈ V iff u · v = 0 in the field Fq. (This is equivalent to
saying that the planes which represent u and v are orthogonal to one
another.)

Note 8.4 Note that the number of vertices in the graph in Definition 8.3
is Θ(qd+1) and the number of edges is Θ(q2d+1). If we denote the number
of vertices by n then the number of edges is Θ(n2− 1

d ).

The following definition is implicit in [2].

Def 8.5 An (αna, βnb, χnc, δnd)-expander is a bipartite graph G = (U, V,E)
such that |U | = |V | = n and the following two properties hold.

1. (∀Z ⊆ V )[|Z| ≥ αna ⇒ |{x ∈ U : |N(x) ∩ Z| ≤ βnb}| ≤ χnc]

2. (∀Y ⊆ V )[|Y | ≥ βnb ⇒ |N(Y ) ≥ n− δnd]

Alon proved the following theorem using the eigenvalues methods of [24].

Lemma 8.6 ([2]) Let G = (U, V,E) be the Geometric expander of dimen-
sion 4 over Fq. Let n be the number of vertices in U (also V ). Then G is a
(3n3/4, n1/2, n1/2, n3/4)-expanding graph with Θ(n7/4) edges.
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The following lemma is implicitly in [2].

Lemma 8.7 If there exist (αna, βnb, χnc, δnd)-expanders of size O(ne) then
we can sort in 2 rounds using only 2-step transitive closure in O(nmax{e,d+1,c+2−a,a+1})
processors.

Theorem 8.8 ([2]) sort(2, n, 2) = O(n7/4).

Proof: This follows from Lemma 8.6 and Lemma 8.7.

Empirical Note 8.9 The generation of the graph based on the tuples was
accomplished by generating the tuples (which are the vertices) and then
following the construction in the proof for adding edges. This method of
generating graphs is very fast. Once the graph was generated, it was simply
plugged into the existing code base from experimenting with Pippenger’s
algorithm with the transitive closure step modified to only look for direct
implications.

One notable limitation of this algorithm is that it only works on certain
values for n based on the values used for q and d. Due to the way in which
the points are marked with the tuples, n needs to be of the form

CONDITION: q4−1
q−1 .

The proof that round one uses O(n7/4) comparisons is easy and indicates
that the number is close to n7/4 (note the constant is 1). The proof that
round two uses O(n7/4) comparisons after doing direct implication (hence-
forth DI) is interesting in that it actually indicates that a weaker form of
DI, which we call DM−, suffices for the O(n7/4) bound. We coded up two
algorithms. Both begin by taking n and finding an n′ ≥ n that satisfies the
above condition and then applying the graph to it for round one.

Alg 1: Apply DI to the resulting directed graph. In round two make all
comparisons that were not already made.

Alg 2: Apply DM− to the resulting directed graph. In round two make
all comparisons that were not already made.

We made the following empirical observations.

1. Both algorithms were easy to code. The graph for round 1 is easily
generated in time linear in n. (This is not surprising.)

2. It appears that in the second round Algorithm 1 made less than
0.5n25/16 comparisons and Algorithm 2 made less than n13/8 compar-
isons. We caution the reader that these numbers are fitted to only four
datapoints; hence, we make no claims to these being the real values
the algorithm would produce for large n. However, in both cases, the
quantities are far less than O(n7/4), which is somewhat surprising. A
tighter bound on round two may be provable.

3. There was more work done in round 2 in Algorithm 2 then Algorithm
1, though both were linear.
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We experimented with using d = 3 and found that the resulting algo-
rithm used O(n5/3) processors per round, which is better than O(n7/4). We
also experimented with d = 2 and d = 5 and found the results to be worse.
This behavior is not unexpected in retrospect, as Pippenger had discussed
using d = 3 (as is discussed below). However, it is interesting to note that
our empirical testing did lead us in that direction.

We briefly discuss Pippenger’s variant on Alon’s algorithm. As stated
above, Alon used eigenvalue methods. In particular he showed the following.

Lemma 8.10 ([2]) Let H = (V, V, E) be a geometric expander of degree d
over a field of q elements. Let G = (V,E′) be the graph where (x, y) ∈ E′ iff
(x, y) ∈ E and x 6= y. Then G has Θ(qd) vertices and O(q2−1/d) edges. Let
λ1, . . . , λn be the eigenvalues of the matrix for G in decreasing order. Then
λ1 = Θ(q2d−2) and λ2 = · · · = λn = O(qd−1). The constants work out so
that if d = 3 then λ2 ≤ 2

√
λ1.

The following lemma is implicit in [20]. It follows from Lemmas 5.7 and
8.10.

Lemma 8.11 Let d = 3. Let G be as in Lemma 8.10. Let n be the number
of vertices in G. Then G is an O(n1/3)-expander with O(n5/3) edges.

From Lemmas 8.11 and 4.7 one can easily prove Theorem 5.14.a.

Empirical Note 8.12 We coded up the d = 3 algorithm. Although it is
supposed to use O(n5/3 log n) comparisons-per-round, empirically it looked
like O(n5/3). The n we tried for it may be too small to detect a difference.
Both rounds seemed to use the same number of comparisons, roughly n5/3

(note that the constant is 1).

8.1 Using Merging for sort(k, n, 2) with k odd

Bollobás and Thomason [9] show that csort(k, n, 1) = O(n
3
2
+ 1

2(2k+1/2−1) ) for
k odd.

Their algorithm is similar to the approach of Haggkvist and Hell (see
Section 5.1). In that algorithm you first partition the original list into sub-
lists, recursively sort those sublists (in j rounds), and merge them back into
a single ordered list (in k−j) rounds, where j is picked cleverly. By contrast
the algorithm of Bollobás and Thomason uses k − 2 rounds to recursively
sort the sublists and then only 2 rounds to accomplish the merging of the
sublists. These last 2 rounds are done in a clever way. This uses more
processors than Haggkvist-Hell; however, rather than computing the full
transitive closure of the relationships learned, only 2-step transitive closure.

Theorem 8.13 ([9]) For k odd, sort(k, n, 1) = O(n
3
2
+ 1

2(2k+1/2−1) ).
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Algorithm sketch: We show this by induction. If k = 1 then this is
trivial. Assume k > 1 and k is odd.

1. (Preprocessing. Does not count.) Partition the n values into m sublists
(each of size n/m) where m = n1/2(k−1/2)

.

2. (Rounds 1 to k − 2) Sort these sublists recursively in k − 2 rounds.

3. (Round k − 1) For all sublists X = {x1, x2, . . . , xn/m} and all v /∈ X
compare v to all elements in {x√

n/m
, x

2
√

n/m
, . . . , xn/m} simultane-

ously. We view each sublist as having been partitioned into sublocks
(e.g., the elements between x

4
√

n/m
and x

5
√

n/m
form a subblock). At

the end of this round we know, for each v, which subblock it belongs
to.

4. (Round k) For each v and each sublist X we know which subblock of
X, v belongs. Compare v to the elements in that subblock.

A straightforward analysis shows that this algorithm uses the number
of processors specified. A careful look at the last two rounds shows that it
only uses 2-step transitive closure.

Empirical Note 8.14 After implementing this algorithm we became curi-
ous as the whether more information was being accumulated than was be-
ing used. Specifically, after the first “merging” round, it seemed that there
would potentially be enough information to eliminate the need for some later
comparisons. While the presented proof offered no hints, we were curious
what experimental results would show.

In the modified implementation, rather than waiting until after both of
the “merging” rounds compute direct implications, we instead computed
these after the first round and then asked only remaining questions during
the second round. We felt that, since every value in the original list could
be used as a direct intermediary between many pairs computing these direct
implications, this could reduce the number of actual comparisons needed
in the second merging round. Although the experimental results did show
this to be true, it does not appear that we can take advantage of this by
altering the number of sublists upon which we operate. While doing this
can bring the processors used in the odd numbered rounds closer together,
three things should be noted: (1) the odd numbered rounds all appear to be
growing at the same rate, (2) most of the odd numbered rounds are already
close and it is only the final round which is really lower and (3) there is no
real effect towards bringing these closer to the growth rate of the number of
processors used in the even numbered rounds.

Another possibility would be to increase the size of the sub-blocks within
each sublist. However, this in itself would have no impact on the number of
processors required in the final round.
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Since this algorithm is similar to the one in Theorem 5.3 a comparison
is appropriate. This algorithm gives a slightly worse upper bound than the
one in Theorem 5.3; however, it does hold two possible advantages. First it
requires only direct implications rather than full transitive closure. Second
it works on smaller length inputs and does not have the strict limitations
for the choice of n.

9 Lower Bounds

Haggkvist and Hell [14] showed that sort(k, n) ≥ Ω(n1+1/k). Bollobas and
Thomason [9] improved the constant in the k = 2 case. Alon and Azar [3]
improved the result for all k ≥ 2 by showing sort(k, n) ≥ Ω(n1+1/k(log n)

1
k ).

Note that this is quite close to the upper bound in Section 4.3. Of more im-
portance, this bound is larger than rsort(k, n) (see Section 6); hence sorting-
in-rounds is a domain where randomized algorithms are provably better than
deterministic.

Theorem 9.1 ([14]) sort(k, n) > n1+1/k

2k+1 − n/2.

Algorithm sketch: By induction on k. For k = 1 this is trivial. Assume
true for k − 1. Assume, by way of contradiction, that the first round uses
≤ 2−kn1+1/k − n/2 processors. Let G be the graph of comparisons made.

By looking at the average degrees of vertices one can show that there
is a set of n/2 nodes such that the the induced subgraph G′ on them is
s-colorable where s = 2−k−2n1/k. Color G′ with s colors. Let V1, . . . , Vs be
the color classes. Orient G′ as follows: For all 1 ≤ i < j ≤ s, for all v ∈ Vi,
for all u ∈ Vj , if (v, u) is an edge then set v < u. Orient G so that you
use this orientation on G′ and all the vertices not in G′ are less than all the
vertices in G′. Once the transitive closure of G is taken one still needs to
sort each Vi in k− 1 rounds (one also needs to sort those elements not in G′

but this is not needed for the lower bound). One can show the lower bound
by using the inductive lower bound on each Vi and some algebra.

Theorem 9.2 ([9]) For all c <
√

3/2, sort(2, n) ≥ cn3/2

Algorithm sketch: This proof is similar to that of Theorem 9.1 except
that the V1, . . . , Vs are obtained by a greedy coloring and more care is taken
in showing the largest value of

∑s
i=1 sort(k − 1, |Vi|). Lagrange multipliers

are used.

The key to the proofs of Theorems 9.1 and 9.2 is that we still need to
sort each Vi. The proof does not use the fact that you might have to make
some comparisons between vertices in different Vi. To improve this lower
bound Alon and Azar showed that you will have to make such comparisons.
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Lemma 9.3 ([3]) Let G be a graph with n vertices and dn edges. There
exists an induced subgraph on n

4 vertices such that (1) G′ has degree < 4d,
and (2) there is a 4d-coloring of G′ with color classes V1, . . . , V4d such that
for all 1 ≤ i, j ≤ 4d, for all x ∈ Vi, there are at most 2|i−j|+1 neighbors in
Vj.

Algorithm sketch: Remove successively the highest degree vertex n
2

times. Let G′ be the induced subgraph on the remaining n
2 vertices. One can

show that G′ has degree < 4d. Clearly G′ is 4d-colorable. Let U1, . . . , U4d

be the color classes. A probabilistic argument shows that there exists a
permutation of {1, . . . , 4d} that satisfies the properties needed.

Lemma 9.4 ([3]) Let d be such that d = o(n) and d = Ω(log n). Let G be
a graph with n vertices and dn edges. There exists an orientation of G such
that the complement of its transitive closure has at least Ω(n2

d log(n
d )) edges.

Algorithm sketch: Use Lemma 9.3 to obtain G′ and V1, . . . , V4d as
specified there. Orient G′ as follows: For all 1 ≤ i < j ≤ m, for all v ∈ Vi,
for all u ∈ Vj , if (v, u) is an edge then set v < u. Orient G so that you
use this orientation on G′ and all the vertices not in G′ are less than all the
vertices in G′. The complement of the transitive closure will not contain any
edges within an Vi. In addition, because of the limit on how many edges
can go from an Vi to an Vj , one can estimate additional lower bounds on
the number of edges in the complement of the transitive closure. (This is
highly non-trivial.)

Theorem 9.5 ([3]) For k ≥ 2, sort(k, n) ≥ Ω(n1+1/k(log n)1/k).

Algorithm sketch:
We prove this by induction. Note that k = 2 is the base case and is

non-trivial. Assume that there is an algorithm that sorts n elements in 2
rounds and takes dn processors. We know that d = Ω(n1/3) by Theorem 9.1.
We can assume d = o(n2/3) since if it is not then the theorem for k = 2 is
already true. Let G be the graph representing the first round. Because of the
bounds on d we can apply Lemma 9.4 to the graph to obtain an orientation
such that the complement of the transitive closure has Ω(n2

d log(n
d )) edges.

Hence the second round needs Ω(n2

d log(n
d )) processors. Algebra shows that

d = Ω(
√

n log n).
We now sketch the induction step. It will be easier than the k = 2 case

since it does not use Lemma 9.4. Assume the lower bound for k − 1 where
k ≥ 3. Assume there is an algorithm for sorting in k rounds. Let G be
the graph representing the first round of the algorithm. Assume G has dn
edges. By Turan’s theorem (see [5] for a nice probabilistic proof) a graph
with dn edges has an independent set of size n

2d+1 . By repeated application
of Turan’s theorem we can find s = Ω(d) pairwise disjoint independent sets
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of size Ω( n
1+d) which we denote V1, . . . , Vs. Let V0 be all the other vertices.

Orient G as follows: For all 1 ≤ i < j ≤ s, for all v ∈ Vi, for all u ∈ Vj , if
(v, u) is an edge then set v < u. The remaining k − 1 rounds need to sort
each Vi, i ≥ 1. Algebra and the induction hypothesis suffice to prove the
result.

10 Open Problems

The next section has tables of known results, both upper and lower bounds.
The tables yield many open questions about closing these gaps.

There are no lower bounds for constructive sorting except those bounds
that come from general sorting. Hence another open question would be to
either obtain lower bounds for csort(k, n) that use the fact that the algorithm
is constructive, or show that any sorting algorithm can be turned into a
constructive one.

Another open problem is to obtain simpler proofs of the known upper
bounds, especially the constructive ones.

11 Summary of Results

In this section we put all the known results into tables. We leave out the
big-O’s and big-Ω’s unless there is an interesting point to be made about
the constants.

11.1 Nonconstructive Methods for Sorting

k k = 2 k = 3 Ref
———————————- ——————– ——————— —-
n(3·2k−1−1)/(2k−1) log n n5/3 log n n11/3 log n [15]

n3/2 log n [9]

n1+1/k(log n)2−2/k n3/2 log n n4/3(log n)4/3 [20]

n3/2 log n√
log log n

[3]

n1+1/k (log n)2−2/k

(log log n)1−1/k n3/2 log n√
log log n

n4/3 (log n)4/3

(log log n)2/3 [6]

1. All of the above results use the Probabilistic method.

2. In [15] a graph is picked at random from the set of all graphs with n

vertices and nαk edges where αk = 3·2k−1−1)
(2k−1)

.
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3. In all of the other algorithms a graph was picked by assigning to each
edge a probability.

4. The n1+1/k(log n)2−2/k algorithm was fairly easy to code and behaved
as expected with low implicit constants.

11.2 Constructive Methods for Sorting

k k = 2 k = 4 Ref
—————————— —————– ———– ——————

39
45

(n
2

)
[14]

4
5

(n
2

)
[8]

n1+(2/
√

2k) n2 n20/13 [15]

n1+(2/
√

2k) n7/4 n26/17 [2]

n1+(2/
√

2k) n7/4 n3/2 [13, 20]

n1+2/(k+1)(log n)2−4/(k+1) n5/3(log n)2/3 n7/5(log n)6/5 [17, 20]

n1+1/k+o(1) n3/2+o(1) n5/4+o(1) [18, 26]

1. The first two results listed for general k are both approximations for
a general recurrence.

2. All of the n1+(2/
√

2k) algorithms are recursive and were hard to code.
The first one used a trivial base case and only worked for large n. The
rest used more sophisticated base cases and worked well for small n.
All of them had quite reasonable multiplicative constants; usually less
than 1.

3. The [17, 20] algorithms were based on certain types of graphs that
can be generated constructively but are difficult to deal with. We did
not code it up.

4. The [18, 26] algorithm would only make sense for n that were quite
large. Hence we did not code it up.

11.3 Limited Closure Sorting

The only result here are for 2-round sorting.

d d = 2 Ref Constructive?
—————————— ——————– —————– —————–
1
2dn1+ d

2d−1 (log n)1/2d−1 1
4n5/3(log n)1/3 [9] No

n7/4 [2] Yes
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The first algorithm relies on picking a graph at random in a way that is
hard to code up, so we did not code it up. The second algorithm is easy to
code up and when we did so it used n7/4 comparisons in the first round and
less in the second.

11.4 Lower Bounds

We include these known lower bounds for completeness.

Problem Bound Ref Comments
——————– —————– —— —————
sort(k, n) n1+1/k

2k+1 − n/2 [14]

sort(k, n) (
√

3/2− ε)n1+1/k [9] k ≥ 2

sort(k, n) n1+1/k(log n)
1
k [3] k ≥ 2

sort(2, n, 2) n5/3 [9]

sort(2, n, d) n1+d/2d−1 [9]

Merging n
2k

2k−1 [15]

11.5 Comparisons Between Different Algorithms

In this section we compare the various algorithms to each other. To compare
two (say) 3-round algorithms we take as a measure the maximum number of
comparisons used in a round. For example, if a run of the algorithm used 14
comparisons in the first round, 18 in the second round, and 11 in the third
round, then we would say ‘18 comparisons.’

We comapre the following pairs of algorithms.

1. Pippenger’s algorithm with Haggkvist and Hell’s algorithm (hence-
forth HH) for both 3-round and 4-round.

2. Pippenger’s algorithm with Alon’s algorithm for 2-rounds. (Alon’s
only works for 2 rounds.)

3. Pippenger’s algorithm with Alon-Azar-Vishkin’s algorithm (henceforth
AAV) for 3 and 4 rounds. The AAV is randomized; however, we com-
pare what it does in its worse case.

Pippenger’s algorithm performs better than HH or Alon’s. This under-
scores the point that nonconstructive algorithms can outperform construc-
tive ones. AAV beats Pippenger, which shows that randomized is better
still. The drawback of randomized algorithms is that if you are unlucky in
a particular run it may take longer; however, this did not happen in our
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Figure 14 Figure 15

Figure 16

observations. Note also that the drawback of nonconstructive algorithms is
that if you are unlucky in the preprocessing then you may be stuck with an
algorithm that is not good on any run; however, this did not happen. Hence
we are comparing Pippenger’s algorithm to AAV’s algorithm when neither
one experienced bad luck.

We note that comparing Pippenger’s algorithm to Alon’s in terms of
number of comparisons is unfair since Alon’s algorithm has the benefit of
limited transitive closure.

In Figures 14 and 15 we compare Pippenger’s algorithm with HH’s al-
gorithm. For the most part all the algorithms have the same shape as their
analytic bound, resulting in Pippenger’s doing better. We again note the
one exception— HH does particularly badly in 4-rounds before n = 8192.
This is because the algorithm assumes that both n and the blocksize are
powers of 2. This assumption affects the algorithm in many ways resulting
in the bad runtime mentioned.

In Figure 16 we compare Alon’s 2-round constructive algorithm with
Pippenger’s 2-round nonconstructive algorithm. Both algorithms have the
same shape as their analytic bound, resulting in Pippenger’s doing better.
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Figure 17 Figure 18

In Figures 17 and 18 we compare Pippenger’s algorithm with AAV’s
algorithm. For the most part all the algorithms have the same shape as
their analytic bound, resulting in AAV doing slightly better.
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