Learning Programs With an Easy to Calculate Set of Errors°
by
William I. Gasarch !

Ramesh K. Sitaraman

Carl H. Smith 3

2

and

Mahendran Velauthapillai 4

I. Introduction

Putnam [12] was the first to notice that there was no mechanism capable of learning all
the computable functions. Gold [6] was the first to formally prove, in full generality, Putnam’s
speculation. In order to enable the automatic learning of larger classes of functions, the Blums
[2] relaxed the criteria of successful learning allowing the inference machine to produce programs
computing finite variants of desired function. In [3] an infinite hierarchy of larger and larger
classes of inferrible functions is exhibited based on counting precisely the number of errors. In-

ference via programs with infinitely many errors, distributed sparsely through out the domain,

0 A preliminary version of this work appeared at the Workshop on Computational Learning
Theory, Cambridge MA. 1988.

1 Affiliated with the University of Maryland Department of Computer Science and the Uni-
versity of Maryland Institute for Advanced Computer Studies. Supported, in part, by National
Science Foundation Grant CCR 8803641.

2 Affiliated with the Princeton University Department of Computer Science. Much of this work
was done while the second author was affiliated with the University of Maryland Department of
Computer Science.

3 Affiliated with the University of Maryland Department of Computer Science and the Uni-
versity of Maryland Institute for Advanced Computer Studies. Supported, in part, by National
Science Foundation Grant CCR 870110. Much of this work was done while the third author was
on leave at the National Science Foundation. Any opinions, findings, and conclusions or recom-
mendations expressed in this publication are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

1 Affiliated with the Georgetown University Department of Computer Science.

has been investigated in [14,16]. In this paper we investigate inference where to be successful, the
mechanism must produce a program that is allowed infinitely many errors, but the anomalous
points must form some easy to describe (regular, linear time decidable, etc.) set.

We work with the standard recursion theoretic model of inductive inference [1]. An inductive
inference machine (IIM) is an algorithmic device that inputs the graph of some recursive function
an ordered pair at a time and, while doing so, outputs programs intended to compute the input
function. Natural numbers (IN) serve as names for programs. Program ¢ computes the function
¢;. The functions ¢q, @1, ... form an acceptable programming system [9]. An IIM M, inputting
the partial function 1, converges if the sequence of program produced by M is finite or almost
all of the programs in the sequence are syntactically identical. If the final program output by M
under such circumstances is ¢, then we say that M () converges to i. We may assume without loss
of generality that the convergence of M to ¢ is independent of the order in which v is presented
to M [2]. M identifies, or infers, ¢ if M () converges to an ¢ such that ¢» C ¢;. EX denotes the
class of sets that are inferrible by some IIM.

In previous work on the inference of programs with anomalies, the definition required the
ITM to produce a program that was correct except perhaps on some set of inputs. For this work,
we will require that the final program of the IIM be correct everywhere except on precisely some
type of set. Let L be a class of sets, e.g. regular sets, polynomial time decidable sets, etc. An
IIM M L-identifies ¢ if there is an S € L such that M(v) converges to a program ¢ such that
b C @; except for points in S and ¥(z) # ¢i(z) for all € S. Note that the function ¢; need not
be total. EX’ denotes the class of all sets that are L-identifiable by some IIM. A ramification of
this definition is that we discuss the inference of partial recursive functions. Our results will hold
even if we demand the stronger convergence condition that ¥ = ¢;.

Various classes L fall within the domain of our results. Since all the singleton sets are regular,
and constant time computable, by the results of [3], EX is a strict subset of all the classes EX "
examined below. Furthermore, the well studied class BC' contains sets not in the classes EX’
studied below. Whether or not these classes are completely contained in BC' is not known.

We prove that the REGULAR-inferrible sets are a strict subset of the CONTEXT FREE-
inferrible sets. The only property of the regular and context free language used in the proof is

that there is a context free language ({1°0°|7 > 1}) that is (roughly) immune with respect to the

regular sets. This suggests a generalization based a notion of relative immunity to be defined
below. This generalization has several corollaries: the CONTEXT FREE-inferrible sets are a
strict subset of the CONTEXT SENSITIVE ones; for any k, the DTIME(n*)-inferrible sets are
a strict subset of the DTIME(nf*1)-inferrible sets; and the POLYNOMIAL TIME-inferrible sets
are a strict subset of the DTIME(2") ones.

The regular sets are particularly interesting to us because of their simplicity. Consequently,
we examine subsets of EXFFOULAR Tet REG, denote the subclass of the regular sets that are
recognized by an n state deterministic finite automaton. We show that for all n, EXRFG»
EX REG 41)

We also consider inference paradigms where the number of times an IIM can alter its con-
jecture is restricted [3]. EX, denotes the subset of EX that includes only the sets that can be
inferred by IIMs that change their conjecture at most n times. The classes EXE are defined

similarly. We prove EX, 11 — EXL # (), extending a result of [3].

II. Inference with a regular set of errors

We need a new notion of immunity [13] to state our results.

Definition: If A is a class of sets (languages) and L is set, then L is A-immune if no infinite subset
of L isin A.

The proofs depend on the slightly stronger notion of relative immunity given by the following.
Definition: If A is a class of sets (languages) and L is set, then L is A-fvimmune if no finite
variant of an infinite subset of L i1s in A.

To use these notions, it will be necessary to discuss functions that are equivalent except
on a set. Often this set will be described as words of some language. We make implicit the
straightforward association between words over a given alphabet and the natural numbers. As a
technical convention, we assume that 0 corresponds to the empty string. With this in mind, if L
is a language and f and ¢ are functions such that f = ¢ except perhaps on some elements of L,
we write f =L g. For a function f and a set L, f restricted to domain L is denoted by f|,. To

save on some notational complexity, instead of proving our most general result, we first prove.

THEOREM 1. EXREGULAR C EXCONTEXT FREE.

Proof: The fact that every regular language is also context free establishes the inclusion EX RFGULAR C
EXCONTEXT FREE Tet [= {1'0'|i > 1}, a language known to be Context Free [7]. Note that
L i1s REGULAR-fvimmune. Let

S = {f|range f|, C {0,1} and ¢y =" f}.

Note that the set S may contain partial recursive functions.
Let My be an IIM that, on input from the graph of some f € S, waits until the value f(0)

has been input and outputs a program for the following partial recursive function:

2 if v € L;
77Z)($) = {@f(o)(l') OtherWiSe-

The only program output by My computes f everywhere except precisely on arguments = € L.
Hence. S € EXCONTEXT FREE
, .

To complete the proof, it remains to show that S ¢ EXRFGULAR This is accomplished by

the construction of an f € S such that f ¢ EXEBEGULAR(AT) uniformly in an IIM M. Let M,

an IIM, be given. Below we describe a program e that computes a partial recursive function with

an extension being the desired f.

Begin program e. On input z, successively execute stages s > 0 below until (if ever) ¢.(z) is
defined. The finite portion of ¢, determined prior to stage s will be denoted by ¢°. Initialize the
construction by setting ¢° = {(0, ¢)} via the recursion theorem [8]. Let §* denote the set of values
< s that are not in the domain of ¢°. At stage s we will attempt to define ¢, on arguments in
6.

Begin Stage s. Let ¢ = M(o0®), M’s most recent conjecture on the portion of ¢, defined

so far. First look for a 7 D ¢ such that 7 C (0% U {(2,0)|z € §°}) and M(7) # q.

Since there are only finitely many candidate 7’s, the search for one takes a finite amount

1

of time. If such a 7 is found, set o**t! = 7 and go to stage s + 1. Otherwise, let

C = {z|z € 6% and p () is defined in < s steps} and set

U{(z,¢q(z)) |z € C Az ¢ L}

U{(z,1 =p4(z))|lz € CAxeL}.
End Stage s.

End Program e.

Notice that, by virture of the initialization, ¢, € S. If M, on input from ., never
converges, then M fails to identify ¢. by any EX type of inference criteria. In particular,
. @ EXREGULAR(AL) - Suppose then that M(y.) converges to ¢ = M(a') for all t > s, for some
s. Then at and past stage s, ¢ is defined to match ¢, on precisely L and to disagree on precisely

L. Let 6 = limy_., 0°, e.g. the complement of the domain of .. Two cases must be considered.

Case 1. LN¢ 1s finite. In this case, ¢, 1s defined on all but finitely many elements of L. Since only
finitely many elements of L were placed in the domain of ¢, before M converged to ¢ and after
that point, ¢, is defined to be different from ¢, everywhere except L N 6, program M(p.) = ¢ is

wrong precisely on a finite variant of L. Since L is REGULAR-fvimmune, ¢, ¢ EXBFGULAR(j,

Case 2. L N ¢ is infinite. In this case, . is undefined on infinitely many elements of L. If ¢,
is defined on infinitely many elements of L then ¢. agrees with ¢,, except on a finite variant of
those (infinitely many) points. Since the points where ¢, and ¢, disagree is a finite varaint of an
infinite subset of L, ¢, € §— EXRFGULAR(J1) On the other hand, suppose . is defined on only
finitely many elements of L. Let 1) = . U {(z,0)|z € L N é} a partial recursive function. Since
Y extends ¢, only on elements of L and ¢(0) = e, ¢ € S. Furthermore, since the construction
explicitly searches for mind changes, M (1)) = M(p.) = ¢q. There are infinitely many points in the
domain of ¥ and in L, but not in the domain of ¢,. The set of points where ¢, and ¢, disagree

is a finite variant of this infinte subset of L. Hence, 1) € S — EXREGULAR(pp), X

A slight modification to the above argument yields our main result:

THEOREM 2. Suppose A and B are two classes of sets such that A C B. If there is a recursive

L € B that is A-fvimmune, then EX4 is properly contained in EX 5.

Proof: Same as Theorem 1, but using the A-fvimmune set S instead of L, A for REGULAR and
B for CONTEXT FREE. X

Note that if B is closed under finite variation then we can replace A-fvimmuity with A-
immunity in the above result. In fact, in the applications of this theorem below, we do so implicitly.
It turns out that that there are many pairs of sets that are relative immune. Consequently, there

are several corollaries of Theorem 2, including Theorem 1.

COROLLARY 3. EXC’ONTEXT FREFE C EXCONTEXT SE'NSITIVE‘

Proof: The language L = {a"b"c"|n € [N} is context sensitive. By the pumping lemma for context
free languages, no infinite subset of L is context free. Hence, L is CONTEXT FREE-fvimmune

and the result follows from Theorem 2. X

COROLLARY 4. For all k € N, EXPTIME(n") - px DTIME(n*™)

Proof: It is easy to construct, by a wait and see diagonalization argument, a language L in

DTIME(n**1) which is DTIM E(n*)-immune, see [5]. X
COROLLARY 5. EXP ¢ EXDPTIMEQT),

Proof: Similar to the proof of Corollary 4. X

The regular sets are particulaly interesting to us because of their simplicity. Let REG,
denote the subclass of the regular sets that are recognized by an n state deterministic finite

automaton.
COROLLARY 6. For all n, EXREG» ¢ EXREGn41

Proof: An argument similar to the pumping lemma for regular languages can be used to show
that the set L = {1|7 = n mod (n + 1)} is REG,-immune. The set L is clearly in REG,41.

Theorem 2 yields the desired result. X

ITI. Inference with a bounded number of mind changes

In this section, we consider inference schemes with a restraint on the number of times an 1M
can alter its conjecture [3]. EX, denotes the subset of EX that includes only the sets that can
be inferred by IIMs that change their conjecture at most n times. The classes EX/' are defined

similarly.
THEOREM 7. EX{ONTEXT FREE _ py REGULAR o ()

Proof: This theorem directly follows from the proof of Theorem 1. Xl

THEOREM 8. Let A be a class of sets such that there exists a recursive language L that is A-

fvimmune. For all n, EX, 13 — EXA # 0.

Proof: We may assume without loss of generality that 0 € L. First we prove the n = 0 case. Let
S be the set of partial recursive functions, f, such that
(a.) Vz[z € L = ¢y(z) = f(z)] and
(b.) The function f |, either has range {0} or there is a y such that
(1.) [r e Land z < y] = f(z) =0 and

(2.) [r € Land z > y| = f(z) = 1.

The following process EX; identifies S: wait for input f(0) and output a program for the

function:

g(z) = @ f(0)(2) %f z €L,
0 if x € L.

If ever an a € L is discovered such that f(a) = 1 then output a program for the following function:

glz)=4¢0 if x € L and z < a,
1 fz €L and z > a.

We show that S is not EX{! inferrible. Suppose by way of contradiction that M is an IIM
such that S C EXgY(M). We exhibit an f € S — EX{"(M). Below we define a program, e,
by implicit use of the recursion theorem, such that ¢, or some extension thereof computes the
desired f. Let o be the shortest initial segment of the following function:

¢($):{e if x =0,

0 otherwise.

such that M, on input ¢ outputs a program. If no such o exists, then ¢ as defined above is
a member of S that M fails to infer, by any criteria of success. Suppose then, without loss of
generality, that such a o exists and that M(c) = ¢q. Program e from the point of coercing the
first conjecture from M, simulates that conjecture. In other words,

, _ Jo(z) if z € domain o,
pe(v) = wq(z) otherwise.

There are two cases to consider.

Case 1. There are infinitely many = € L such that ¢ () diverges or converges to a nonzero value.

Define the possibly partial recursive function ¢ by:

€ if =0,
Pp(z)=< 0 if 1 <z < length(o) or z € L,
pq(x) otherwise.

Clearly, v € S. The partial functions ¢, and 7 disagree on
(a.) the points of L where ¢, is nonzero or divergent, and
(b.) possibly a finite set of points in the domain of o.
Thus the set of points where ¢, and v disagree is precisely a finite variant of an infinite

subset of L. Since L is fvimmune, this set is not in A.

Case 2. For all but finitely many = € L, p,(z) = 0. Let ¢ be:

e if © =0,
_Jo if 1 <z < length(o),
(o) = ¢q(z) if x >length(c) and x € L,
1 if # >length(c) and = € L.

Clearly, » € S. By reasoning similar to the previous case, M does not EX64 infer .
For the general case of EX,, 11 — EXA # (), take S to be the set of partial recursive functions

that, when restricted to L may step from 0 to 1 to ...to n + 1. X
COROLLARY 9. Vn, EX, 4 — EXREGULAR £)

Proof: Immediate by Theorem 8. X
COROLLARY 10. Vn, EX, 4 — EXCONTEXT FREE ()

Proof: Immediate by Theorem 8. X

IV. Relations to BC type inference

Here we consider a criteria where the IIM does not necessarily converge to a single program
but rather to a sequence of programs. As long as the IIM eventually outputs nothing but programs
to compute the input function, then the prediction strategy which always uses the IIM’s most
current conjecture will be behaviorally correct (BC) [3]. Formally an IIM M BC*® identifies f
(written f € BC*(M)) if and only if when M fed with the graph of f outputs over time an
infinite sequence of programs pg, p1, - -, such that (Vn)[g,, =" f]. Note for EX type inference
we require syntactic convergence and for BC' type inference semantic convergence is required.

XREGULAR

Our final results shows that BC type inference and E are incomparable.

THEOREM 11. BC' — EXREGULAR ()

Let S = {f] o‘vc’);r:,tpf(x) = f}, a set of partial recursive functions. Clearly, S € BC. Let
M be an IIM. The proof is completed by constructing, via the operator recursion theorem, an
f € S that can not be EXRFGULAR jdentified by M. Program eg is constructed in effective
stages of finite extension below. Program ey is syntactically different from ey but computes the
same function. At stage s program p(s) will be constructed. These programs will refer to one
another in accordance with the operator recursion theorem and one of them will be the sought
after witness f. The idea is to diagonalize against the program output by M on the portion of
©e, determined so far. The diagonalizations must be performed only on some non regular set. Let
L CIN correspond to the set {1"00n|n € IN}. ¢? denotes the finite amount of ¢., determined

prior to stage s, 9920 =0

Stage s: Initialize @,(g) to be 7 . Let ¢ = M(y?), e.g. M’s guess on all the input
currently determined. (For stage 0, ¢ = L.) Initialize 0 = ¢ . Simultaneously, perform
two sub computations specified below.
1. Repeatedly redefine o by adding points (z, p(s)) where z is the least value in L and
not in the domain of ¢ . This process stops only when a o is arrived at such that
M(o) # q or when an interrupt is received from the computation described in step
2. If a 0 causing M to change its conjecture is found, then an interrupt is sent to
the computation described in step 2.
2. Look for (by dovetailing) an z such that z € L, = is not in the domain of ¢ , and
@q(2) is defined. If such an z is found, stop the dovtailing procedure and interrupt
the computation described in step 1.
Notice that if neither of the two sub computations halts (and interrupts the other) then
step 1 will define ¢,(,) to be a finite variant of the constant p(s) function. Otherwise,
there are two ways of extending ¢.,, depending on which of the above sub computations
interrupts the other.

If a o forcing a mind change is found in step 1 before (or at the same time as) an
x 1s found in step 2, then set cpg;"l = o0, commit program p(s) to simulate program e
from here on (there by making programs ey and p(s) compute the same function) and

go to stage s+ 1.

If an z is found in step 2 before a mind change is found in step 1 then do the
following. Set 7 = 0 unless pg(z) = € in which case 1 = 1. Set @it! = ¢f U {(z,¢;)}

and go to stage s + 1.

End Stage s.

There are two cases to consider, depending on whether or not each stage terminates. In

either case, we will find a function f € L that cannot be EXRFGULAR jdentified by M.

Case 1. Each stage s terminates. Then ¢, is a partial recursive function with an infinite domain.
Let f = ¢e,. The range of f includes ey and e; which are programs for f. If p(s) is placed in the
range of f, for some value of s, then p(s) will be another program for f. Hence, f € L. If M(f)
does not converge, then M cannot EXBEGULAR jdentify f. Suppose that M(f) converges, say
to program . Past some point in the construction of f, all extensions must be made by virtue
of sub computation 2. Hence there are infinitely many = € C such that f(x) # @i(z). These z’s

correspond to an infinite subset of {a"b" |n € IN}.

Case 2. Some stage s never terminates; Let s be the least such stage. Then program p(s) computes
a partial function with infinite domain. Let f = ¢,(). By the failure of sub computation 1 to
terminate stage s, we know that M(f) converges, say to . Program ¢ however is undefined on all

z € C that are not in the domain of ¢{ , precisely where f is defined. X
THEOREM 12. BC' — EXCONTEXT FREE o ()

Proof: In the proof of Theorem 11, when constructing f the diagonalization was performed on
a non regular set {a"b"|n € N}. For the proof of this theorem, use a non context free set

{a"™b"c™|n € n}. The rest of the proof is similar to the proof of Theorem 11.
THEOREM 13. (Va € N) EXPCGULAR _ poae £),
Proof: Let L = 0T, clearly L is regular. Define

§ = {flrange (f]1) € {0,1} and o) =" f}.

Notice that the set S may contain partial recursive functions.

Let My be an IIM that, on input from the graph of some f € S, waits until the value f(0)

has been input and outputs a program for the following partial recursive function:

2 if x € L;
P(x) = {¢f(0)(x) otherwise.

The only program output by My computes f everywhere except precisely on arguments = € L.
Hence, S € EXRPGULAR,

To complete the proof, it remains to show that S ¢ BC®. This is accomplished by the
construction of an f € S such that f ¢ BC*(M) for any IIM M.

Let M be any IIM and a € N. Using the recursion theorem we will construct a program eg
which will enable us to construct an f € S such that f ¢ BC*(M). The construction is done in
effective stages of finite extension. At stage s, the program eg tries to diagonalize against M’s

current output at @ + 1 points.

Begin program eg. On input z, succesively execute the stages s > 0 below until (if ever) ¢, (z)
is defined. o7 denotes the finite initial segment of ., determined prior to stage s. Set 9920 = 0.
oj denotes ¢ .

Stage s. Search for distinct natural numbers zg, - -+, z, which belong to L and finite

initial segments 7 and p with range 7, range p C {0,1} such that ¢®* C 7 C p and

(Vj <a) [z; € domain (p — 7) and @ pr(-)(2;) converges # p(z;)].

If suitable zg,- - -,z4, 7 and p are found then set

pis ! = wi,U {(zj,1 = p(z)) [(0 < j < a)} U {(z,0)|z € {domain (p — ¢,

_{$07' . .71;“})}‘

End stage s.

End program ey.

Case 1. Suppose g, 1s total. Then, by construction, ¢., € 5. Past every stage s a 7 1s found
such that 7 C e, and @ () is not an a-variant of p.,. Therefore p., ¢ BC*(M).

E)

Case 2. Suppose @, is not total. Then choose the least stage s such that ¢., = @7 and set
f =00 {(2,0)|z € (L— domain (¢*)}. By construction f € S, and for all 7 O o¢*, such that
range 7 C {0,1}, ¢ as(r) is not defined on infinitely many elements of L. Otherwise a suitable zg,

-+, 4 would be found in some stage s’ > s. Hence f ¢ BC*(M). X

COROLLARY 14. (Va € N) EXJONTEXT FREE _ pCia £ (),

Proof: EXtFGULAR pXCONTEXT FREE the result follows. X

A stronger version of Theorem 13 holds.
THEOREM 15. For all infinite S CIN, for all « € N, EXJ — BC* # {).

Proof: Replace the set L, in the proof of Theorem 13, with the set S. X

;. From Theorem 13 and Theorem 11 we can conclude that the BC classes and the EX RFGULAR
classes are incomparable. Simillarly from Theorem 12 and Corollary 14 we can also conclude that

the BC classes and the EXCONTEXT FREE (]agses are incomparable.

V. Team inference

The Blums [2] constructed two sets of inferrible recursive functions whose union was not
inferrible. Consequently, arbitrarily large collections of IIMs were considered [15]. A set of
functions S is inferred by the team My, Ms,..., M, if for each f € S there is an 7, 1 <1 < n,
such that f € EX(M;). This leads to the following definition. For n > 1, [1,n]EX} = {S|(3
My, Ms,..., M,) IIMs, and for each f € S there is an 1 <17 < n such that f € EX(M;)}. Here
you require at least one IIM to EX}' infer the input function. Also note that, for different f’s in
the set S, the machine which infers f in the team could be different.

Pitt [10] investigated and characterized probabilistic inductive inference. Suppose that M
is an IIM that has a fair coin to toss that is trying to learn a program for the function f. For
a fixed enumeration of the graph of f, the outcome of M applied to f depends only on the
results of the coin tosses. Using the standard Borel measure on the possible sequences of coin
tosses, the set of sequences for which M(f) | to a program for f is measurable. Let M be
an IIM, a € N and 0 < p < 1, we say that f € EX%(p)(M) if and only if M EX* infers
f with probability p. The classes EX*(p) is defined analogously. For 0 < p < 1 and a € N
EX*(p) = {S|(IM)[S C EX*(p)(M)]}.

A natural combination of the notions of team inference and probabilistic inference results in
the definition of some new classes of functions [11]. For m,n > 1,a € N and 0 < p < 1, a set of
functions S is in the class [m,n]EX*(p} if and only if m < n and there exists probabilistic IIMs
My, M,,..., M, such that for each function f € S there are 1 <11 < 13 < ... < 1, < n such
that for all 1 < j < m, f € EX*(p)(M;,). Here we require at least m out of the n machines in
the team, to infer f with probability at least p. Note that probabilistic inference is a special case

of probabilistic team inference, the case where m = 1.

THEOREM 16. Let A be a class of sets such that there exists a language L that is A-fvimmune,

then (Yn € N) [1,n+ 1]EX) — EX2 +£ 0.

Proof: By Theorem 8 we have that EX"_ ; — EX/' # (. But EX? ., C [1,n + 1]EX] [4]. Hence

the theorem follows. X
THEOREM 17. (Vn > 1) (Va € N) EXEPCULAR _ 11 p]EX2 £ ().

Proof: Let @ € N and n > 1 be given. Then by Theorem 5.1 of [15] EX(?((H_I) —[1,n]EXZ® £ 0.

But clearly EXg(a’—i_l) C EXREGULAR Hence the theorem follows. Xl
COROLLARY 18. (Vp > 0)(Va € N) EXJEGULAR _ pXa(p) £ ().

Proof: By [10] EX¢ = EX*(p), hence the theorem follows. X

VI. Conclusions

We continued the study of learning an approximation to the desired function. Rather than
measure the variance between the desired function and the approximation, we accounted for the
difficulty of deciding membership in the set points comprising the variance. Our results indicate
that the more complex a decision procedure is allowed, the larger the class of functions that

become inferrible.

References
1. Angruin, D. anp SmitH, C. H. Inductive inference: theory and methods. Computing
Surveys 15 (1983), 237-269.

2. Bruwm, L. aND Brum, M. Toward a mathematical theory of inductive inference. Information
and Control 28 (1975), 125-155.

3. Casg, J. anD SmiTH, C. Comparison of identification criteria for machine inductive inference.

Theoretical Computer Science 25,2 (1983), 193-220.

4. FrEvaLDs, R., SMiTH, C., AND VELAUTHAPILLAI, M. Trade—offs amongst parameters effect-
ing the inductive inferribility of classes of recursive functions. Information and Computation

(1989). To appear.

5. GeskEg, J., Huynu, D., aAND SELMAN, A. Hierarchy Theorems for Almost Everywhere Hard
Sets. Lecture Notes in Computer Science (To Appear) (1987). STACS 1987 Proceedings.

6. GorLp, E. M. Language identification in the limit. Information and Control 10 (1967),
447-474.

7. HopcroFrT, J. AND ULLMAN, J. Introduction to Automata Theory, Languages, and Compu-
tation. Addison-Wesley Publishing Co., Reading, Mass., 1979.

8. KLEENE, S. On notation for ordinal numbers. Journal of Symbolic Logic 3 (1938), 150-155.

10.
11.

12.

13.

14.

15.

16.

MacuTEY, M. AND YOUNG, P. An Introduction to the General Theory of Algorithms. North-
Holland, New York, New York, 1978.

Prrr, L. A Characterization of Probabilistic Inference. Journal of the ACM. To appear.

Prrr, L. anp SmrtH, C. Probability and plurality for aggregations of learning machines.
Information and Computation 77 (1988), 77-92.

Purnam, H. Probability and confirmation. In Mathematics, Matter and Method, 1, Cam-
bridge University Press, 1975. Originally appeared in 1963 as a Voice of America Lecture.
RocGEers, H. Jr. Theory of Recursive Functions and Effective Computability. McGraw Hill,
New York, 1967.

ROYER, J. S. Inductive inference of approximations. Information and Control 70,2/3 (1986),
156-178.

SMiTH, C. H. The power of pluralism for automatic program synthesis. Journal of the ACM
29,4 (1982), 1144-1165.

SmiTH, C. H. aAND VELAUTHAPILLAI, M. On the inference of approximate explanations.
Theoretical Computer Science. To appear.

