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1 Abstract

For centuries, factoring products of large prime numbers has been recognized as
a computationally difficult task by mathematicians. The modern encryption scheme
RSA (short for Rivest, Shamir, and Adleman) uses products of large primes for secure
communication protocols. In this paper, we analyze and compare four factorization
algorithms which use elementary number theory to assess the safety of various RSA
moduli.

2 Introduction

The origins of prime factorization can be traced back to around 300 B.C. when
Euclid’s theorem and the unique factorization theorem were proved in his work El-
ements [3]. For nearly two millenia, the simple trial division algorithm was used to
factor numbers into primes. More efficient means were studied by mathemeticians
during the seventeenth and eighteenth centuries. In the 1640s, Pierre de Fermat
devised what is known as Fermat’s factorization method. Over one century later,
Leonhard Euler improved upon Fermat’s factorization method for numbers that take
specific forms. Around this time, Adrien-Marie Legendre and Carl Gauss also con-
tributed crucial ideas used in modern factorization schemes [3].

Prime factorization’s potential for secure communication was not recognized until
the twentieth century. However, economist William Jevons antipicated the ”one-way”
or ”difficult-to-reverse” property of products of large primes in 1874. This crucial con-
cept is the basis of modern public key cryptography. Decrypting information without
access to the private key must be computationally complex to prevent malicious at-
tacks. In his book The Principles of Science: A Treatise on Logic and Scientific
Method, Jevons challenged the reader to factor a ten digit semiprime (now called
Jevon’s Number)[4]. The number was 8,616,460,799. Modern computers can quickly
find the factors of this number with even an inefficient algorithm like trial division.
However, Jevons wanted to convey the contemporary difficulty of extracting two large
primes without access to a machine.

In 1903, Jevon’s Number was factored by mathematician Derrick Lehmer, who
held an interest in number theory and prime factorization[5]. He used an algorithm
later known as the continued fraction factorization method. The number was also
resurfaced by mathmetician Solomon Golomb in 1996. Golomb proved that the num-
ber could be factorized in under a couple hours using only hand calculations with
basic modular arithmetic known in the 1800s.[2]. He reduced the number of candi-
date squares from Fermat’s factorization method by a factor of 20.

Between the time of Jevon and Golomb, prime factorization methods were fur-
ther improved. In the 1970s, mathematician John Pollard developed factorization
algorithms such as Pollard Rho and Pollard P − 1 [6]. These only rely on elemen-
tary number theory (Fermat’s Little Theorem). Fermat’s Little Theorem states that
ap ≡ a mod p for all integers a and all primes p. There is a special case of the theo-
rem which states that ap−1 ≡ 1 mod p if a if a mod p 6= 0. In 1974, Pollard created
his P − 1 method. Originally, the algorithm used an input bound B, which describes
the point at which the algorithm will stop attempting to factor the semiprime M .
Next, we calculate an exponent K equal to the products of prime numbers raised
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to powers less than the bound B. Let a be an integer coprime to M . Taking the
greatest common denominator of aK − 1 and the semiprime M may or may not yield
the factor p. If the exponent K happens to be a large factor of p− 1 for a semiprime
M = pq, then we can extract the prime factor P by Fermat’s Little Theorem. The
factorization time of this algorithm is proportional to the bound B and size of the
semiprime M . Larger boundaries greatly increase the factorization time. His Rho
algorithm was conceived one year later in 1975 and was the quickest factorization
method at the time. It uses concepts from elementary probability (birthday paradox)
and works with only two numbers in memory. The birthday paradox describes the
surprisingly high 50% probability of two matching birthdays appearing in a room
with 23 random people. This is because the probability is based on the large number
of possible birthday pairs for 23 people. The runtime of Pollard Rho is proportional
to the square root of input semiprime M . Depending on the implementation, failure
may be returned by either method.

During this decade, the problem of extracting large prime factors was incorpo-
rated into a new encryption scheme. In 1977, computer scientists Ronald Rivest, Adi
Shamir, and Leonard Adleman worked together to define a new cryptosystem based
on prime factorization [1]. The public key is the semiprime M (called the modu-
lus) and an e relatively prime to φ(M) = (p − 1)(q − 1). A private key d | ed ≡ 1
mod φ(M), only known by the messenger and recipient, can be used to encrypt a
private message me. The recipient may then unlock the message using (me)d. This
requires an attacker to factorize N = pq to be able to unlock the secret message. The
scheme, titled RSA, is still implemented in most electronic payment and communi-
cation platforms today. If factoring is easy, then RSA can be cracked. Whether the
converse of this statement holds true or not is currently unknown. It is believed that
even if RSA is crackable, factoring remains computationally difficult.

We study the performance of four factorization algorithms: Trial Division, Fer-
mat, Pollard Rho, and Pollard P − 1. We also define and analyze a new algorithm
based by gerenalizing Solomon Golomb’s techniques in his 1996 paper. Comparing
the factorization times for each algorithm based on various moduli characteristics
allows us to identify types of unsafe primes for practical encryption.

3 Methodology

I created five C programs to output the runtime of the aforementioned algo-
rithms. Trial division attempts to divide the semiprime input M by every prime
between 2 and

√
M , inclusive. Eventually, one factor will be found. The amount

of steps required to reach a solution grows exponentially as the length of M grows.
Although this ancient method is straightforward, it is the second least efficient al-
gorithm known, falling behind random guessing[3]. It was not until the 1700s when
Fermat greatly reduced the time required to factor odd numbers. It is applicable to
every semiprime where pq = M where p, q 6= 2. He leveraged the fact that all odd
numbers are representable by the difference of two squares. The method begins at
a =

√
M and increments a by one for every step. A factor (a − b) is found when

b2 = a2 −M is a perfect square. However, as Golomb noticed, Fermat’s method uses
more steps than necessary.

To assess the magnitude of Golomb’s improvements on Fermat’s Method in the
timing experiment, one must first anaylze his techniques for factoring Jevon’s num-
ber. Next, this approach will then be broken into multiple steps and combined into
a generalized algorithm. The algorithm must work for any RSA modulus M . Ad-
ditionally, we define an input to the algorithm N which may vary the factorization
efficiency results.
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Golomb factorizes Jevon’s Number J faster than Fermat’s method alone by elim-
inating candidate a for the equation a2 − b2 = J . The original algorithm takes an
input N = 100 and semiprime J = 8616460799 and first calculates D = (−J ≡ +1
mod N). Next, he finds all of the unique squares mod N that differ by D. This
produced pairs (n2

1, n
2
2) mod N = (00, 01) and (n2

3, n
2
4) mod N = (24, 25). He could

deduce, therefore, that a mod N must equal ni mod N . This reduced the number
of steps until success from 56 to 8, making his method 7x more efficient than Fermat!

Although Golomb’s techniques were only used to factor Jevon’s Number, I have
generalized this approach into an algorithm that will factorize any semiprime in-
put. To reduce the number of steps in Fermat’s method to produce a factor of the
semiprime M , we first find the value D ≡ −M mod N . We then square every inte-
ger from zero to the input N and gather all the unique remainders when the squares
are divided by N . This yields a list of unique (i2 mod N) | i ∈ [0, N ]. Next, we
search for all pairs of i2 mod N in the list that are separated the difference D, and
add them to a separate list. Finally, we then find all i ∈ [0, N ] whose squares are
included in this final list. This means that all i will then satisfy a ≡ i mod N . In
other words, we only have to try the number of i for every would-be N increments of
a using Fermat’s method! The formalized algorithm is shown below.

Algorithm 1: Golomb’s Technique (integer N, integer semiprime)
Result: One factor of the semiprime input
all square endings = [ ];
target square endings = [ ];
a square endings = [ ];
a endings = [ ];

b2 = 0;
temp = 0;

a base =
√

(semiprime);
difference = (semiprime mod N) −N ;
for i = 0 through N do

temp = i2 mod N ;
if a not in all square endings then

append temp to all square endings;
end

end
for i = 0 through length (all square endings) do

temp = ( all square endings[i] + difference);
if temp in all square endings then

append temp to a square endings;
append all square endings[i] to a square endings;

end
temp = (all square endings[i] − difference) mod N ;
if temp in all square endings then

append temp to a square endings;
append all square endings[i] to a square endings;

end

end
for i = 0 through N do

temp = i2 mod N ;
if temp in a square endings then

append temp to a endings;
end

end
while a base != lcm(a base , N) do

a base =a base - 1;
end

b2 = a base2 - N ;
while true do

for i = 0 through length(a endings) do

b2 = (a base + a endings[i])2 −N ;

if b2 is perfect square then
return

end

a base + a endings[i]−
√
b2;

end
a base += N ;

end

Finally, Pollard Rho and Pollard P − 1 leverages other basic number theory
concepts. These algorithms combine simple math functions such as modular expo-
nentiation, random number selection, and greatest common denominator. My imple-
mentation of P − 1 uses a fixed a = 2 and calculates:

gcd(aK − 1,M) | ∀K ≤
∏

primes q≤B=17

pblogqBc

or until a factor is found. The algorithm should succeed if the factors of p−1 are less
than 12, 252, 240 = 24×32×5×7×11×13×17. Failure is returned otherwise. Next,
my Pollard Rho implementation will run until a factor of M is produced. It begins
with four variables: x = 2, y = 2, d = 1, and a counter c = 1. We set x equal to the
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output of a pseudorandom function g(x) = x2 + c mod M . We then set y = g(g(y))
and d equal to the greatest common denominator between the distance |x − y| and
M . This will repeat until d 6= 1. Normally, if d = n, failure is returned. Instead,
my implementation of Pollard Rho will increment the counter c until the factor is
found. Other implementations of these well-known algorithms can also be found on
the internet. Failure trials of P − 1 are not considered in the timing results.

To time each factorization attempt, I used the standard C libraries. Because
many tested semiprimes exceeded the maximum size of longlongint,I used the
LibToMMath library to implement each algorithm. This library supports a rich va-
riety of mathematical functions for multiple-precision integers. During testing, most
timing runs above 100 seconds were thrown away. Following the testing phase, the
Python library MatPlotLib was used to represent the extracted data.

The first test did not depend on the factorization time. Instead, an additional
program was written to derive the efficiency of 100 Golomb inputs N ∈ [1000, 100000].
I define the efficiency to equal N , the potential amount of Fermat increments, divided
by the number of candidate a. For example, Golomb’s original N = 100 algorithm
only required 5 tries for every 100 Fermat increments, resulting in an efficiency of
100
5

= 20. For the algorithm to work properly for all N and semiprime input, extra
candidate a were necessary to test. Hence, the actual efficiency tends to be much
lower than what is possible. The program was run for all RSA moduli tested in
the project. For each semiprime, the top 5 most efficient N were added to a list of
frequencies. This allows us to understand which Golomb inputs could be used to
factorize in the least amount of time.

Next, the results of each timing test were plotted against various characteristics of
the modulus M = pq. This allows us to assess the performance of each algorithm and
draw conclusions about safer pq. We first assessed which Golomb input had the most
efficient response to the size of M . Next, we compared the semiprime size response for
all of the algorithms, including Golomb N = 1000 and the efficient Golomb method.
The sizes of the RSA moduli factored ranged between 109 and 1028. RSA outside
of this range were either solved instantaneously or could only be factored by Pollard
P − 1 in less than the maximum time bound. Next, we analyzed the response of each
algorithm to the smoothness of p−1. The smoothness of each semiprime is defined to
be the maximum prime factor of the totient function φ = p−1. Finally, we compared
each algorithm to the relative distance |p− q|.

4 Results

First, I attempted to identify N for which Golomb’s techniques work well. I
also tried to find charactersitics of semiprimes that can be factored well for certain
N . During testing, I noticed a strange phonomenon where seven or eight Golomb
algorithm input N were consistently efficient at factoring. These inputs were excep-
tionally efficient for all primes. In other words, there were no trends between primes
and efficiency for input N . Out of these, N = 36000, 63000, 72000, 84000, 99000 ap-
peared the most. Honorable mentions include N = 54000 and N = 78000, which also
tended to have drastic efficiency spikes. See figure 1 on the next page for the results
of the Golomb efficiency test. These inputs were occasionally between 8 to 13 times
as efficient as N = 1000 or even N = 100000!

I was surprised by the small differences when increasing the magnitude of the
N input. Initially, I predicted that increasing N from 1000 to 10,000 or more would
greatly improve the efficiency. I suspected this because analyzing more numbers
should theoretically yield less candidate a. Instead, each inputN = 1000, 10000, 100000
had relatively low but similar efficiencies. I believe that this is due to the added
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Figure 1: Frequencies of the top five most efficient N inputs for the Golomb algorithm for
all tested RSA moduli.

”safety” of the generalized algorithm, which calculates more a than necessary to guar-
antee a factor output for any N or semiprime input. Further calculations or program
enhancements may be necessary to reduce candidate a. A future goal is to streamline
the algorithm to make it equally or more efficient than Golomb’s original techniques.
In his paper, he futher improves the efficiency by raising N to 1000, filtering even
more candidate a [2]. This reduces the totoal number of steps until success from 56
to 8 to 3. Perhaps a super-efficient method may perform upfront calculations for a
long list of very efficient N , thereby minimizing the amount of Fermat increments
necessary to find a factor p. I also aim to find why specific inputs tend to yield such
higher efficiencies than other N .

During the next test, I empirically assessed which of the N inputs were the
most efficient, using Golomb 1000 as a baseline. For smaller M , the runtime of
the algorithm is proportional to N . The timing results prove that Golomb 1000
produces the fastest runtime until the size of the modulus exceeds the 1018 range.

Figure 2: Logarithmic time response for the most
efficient Golomb N input and N = 1000 to moduli
size.

See figure 2 for the response of
the Golomb algorithm to var-
ious N and M size. At this
point, the input with the low-
est runtime quickly shifts to
N = 99000. Occasionally, we
observe that N = 36000 out-
performs other N . I hypothe-
size that N = 1000 tends to
have a lower runtime for smaller
M due to the fact that there
is less upfront calculation com-
pared to N = 99000. However,
the performance of N = 99000
for semiprimes greater than 1018

demonstrates that the upfront
calculations are well worth the
wait for larger p, q. Hence, for
selected N , more calculations performed intially increases the efficiency and the over-
all runtime of Fermat. This supported trend I predicted before the experiment. For
this reason, I included the results of both Golomb N = 1000 and N = 99000 for the
other response comparisons conducted below.
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Figure 3: Logarithmic time response of each algorithm to semiprime size.

We compared the timing response of all algorithms to the size of the modulus
M . It was evident that most algorithms required a longer time to find the factor
when p and q were larger. Figure 3 depicts the logarithmic response of each method
to increasingly large p and q. Trial division had a nearly perfect exponential time
response to the size. Fermat’s method shared an exponential shape with trial divi-
sion, but was offset by an order of magnitude. The slopes of trial division, fermat,
and the Golomb methods were similar, suggesting that each algorithm has about
the same growth rate with respect to p and q. Golomb’s N = 1000 input outper-
formed Fermat’s method for 1013 ≤ M ≤ 1018, at which point N = 99000 became
the most efficient Golomb algorithm. We also observe that all Fermat and Golomb
1000 factorization times exceeded 100 seconds for M > 1019. This point was not
reached by Golomb 99000 until M > 1022. Hence, by carefully eliminating candidate
a, Golomb’s techniques can beat Fermat’s method by a few orders of magnitude for
pq! Seeing the result of Golomb’s techniques for higher N may prove that upfront cal-
culations could existing existing factorization algorithms based on Fermat’s method.

Figure 4: Logarithmic time response of each algo-
rithm to the smoothness of φ(p) = p− 1.

With the expection of a few out-
liers, Pollard Rho also had an
exponential growth rate. How-
ever, the logarithmic slope was
much lower than the other
methods. This shows that Pol-
lard Rho has the best response
to the size of the semiprime out
of the algorithms tested. Except
for a slightly higher tendency to
fail for greater M , Pollard P −1
runtimes appear to have no rela-
tionship to p or q size. To these
ends, the size of the primes used
in the RSA modulus is highly
likely to increase the time re-
quired for a factoring attack.

During the next test, we calculated the maximum prime factor of p−1 to compare
the runtimes to the smoothness of φ(p). See figure 4 for the smoothness reponse of
each algorithm. The performance of Pollard P − 1 exemplified a direct exponential
growth trend as φ(p) increased. This is because of the method’s dependence on
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Figure 5: Logarithmic time response of each al-
gorithm to the relative distance |p− q|.

Fermat’s Little Theorem, which
states that ap−1 ≡ 1 mod p, where
a is coprime to a prime p. Hence,
if i = p − 1, then the greatest com-
mon denominator of 2i − 1 and the
semiprime M will produce p. If
M has a p − 1 or a q − 1 with
a small maximum factor, then Pol-
lard’s P−1 algorithm will work very
fast. However, as this smoothness
value increases, the runtime grows
exponentially due to the efficiency’s
dependence on the bound B. The
smoothness of various p − 1 had no
observable influence on any of the
other algorithms tested.

We finally examined at the respone of the algorithms to various distances |p−q|.
Figure 5 displays the logarithmic processor time of each algorithm against the dis-
tance. The trial division and Pollard P −1 algorithms seemed to have no relationship
to the distance p− q. However, Fermat’s Method, Golomb’s techniques, and Pollard
Rho all seemed to have an exponential growth for factorization runtime as the dis-
tance increased. This is most likely because Fermat’s method begins at a =

√
M and

gets incremented. If (a + b) and (a − b) are close together, then a will only need to
be incremented relatively few times until a factor is found. This translates to an ex-
ponentially smaller runtime. Several outliers were identifiable in the data for Pollard
Rho, so the correlation between M size and the Pollard Rho runtime is stronger than
that of the distance.

5 Conclusion

From the aforementioned results, we are able to better understand the strengths
of each algorithm and thus determine features of safe M = pq for practical RSA
implementations. We see a direct correlation between factoring time and semiprime
size for five of the six algorithms tested. Hence, a good encryption scheme should
use p and q as large as possible. Additionally, the results suggest that some of the
algorithms perform exceptionally well for smaller values of |p − q|. These include
Fermat’s method (with or without Golomb’s techniques) and Pollard Rho. A safe
moduli should have primes factors that are relatively far. Finally, the smoothness test
indicates that there is a relationship between the largest prime factor of φ(p) = p− 1
and the efficiency of the Pollard P − 1 factoring algorithm. To prevent suspectibility
to this factoring attack, the largest prime factor of p−1 both q−1 must be very large
in proportion to p and q. These traits are easier to satisfy if larger prime numbers are
used. Ultimately, by avoiding unsafe p and q, the algorithms studied in this paper will
be unable to quickly factor the semiprime public key. Carefully choosing secure RSA
moduli greatly increases the time needed for an attacker to decrypt private messages.

In the future, I plan to continue this project by identifying additional characteris-
tics of safe pq. I will research the time response of other more sophisticated algorithms
to pq traits in this paper. I also aim to study trends of the Golomb algorithm. My
hope is to streamline my current program to further reduce the number of candidate
a. I will also continue the search for anomaly N inputs for values outside of the 104

and 105 range. Additionally, I hope to test intermediate values rather than those for
which N ≡ 0 mod 1000.
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