
The Complexity of Grid Coloring

Daniel Apon ∗

Univ. of MD at College Park

William Gasarch †

Univ. of MD at College Park

Kevin Lawler ‡

Permanent

October 23, 2021

Abstract

A c-coloring of Gn,m = [n] × [m] is a mapping of Gn,m into [c] such that no four
corners forming a rectangle have the same color. In 2009 a challenge was proposed via
the internet to find a 4-coloring of G17,17. This attracted considerable attention from
the popular mathematics community. A coloring was produced; however, finding it
proved to be difficult. The question arises: is the problem of grid coloring is difficult in
general? We present three results that support this conjecture: (1) Given a partial c-
coloring of an Gn,m grid, can it be extended to a full c-coloring? We show this problem
is NP-complete. (2) The statement Gn,m is c-colorable can be expressed as a Boolean
formula with nmc variables. We show that if the Gn,m is not c-colorable then any tree
resolution proof of the corresponding formula is of size 2Ω(c). (We then generalize this
result for other monochromatic shapes.) (3) We show that any tree-like cutting planes

proof that c + 1 by c
(
c+1

2

)
+ 1 is not c-colorable must be of size 2Ω(c3/ log2 c). Note that

items (2) and (3) yield statements from Ramsey Theory which are of size polynomial
in their parameters and require exponential size in various proof systems.

1 Introduction

Notation 1.1 If x ∈ N then [x] denotes the set {1, . . . , x}. Gn,m is the set [n] × [m]. If X
is a set and k ∈ N then

(
X
k

)
is the set of all size-k subsets of X.

On November 30, 2009 the following challenge was posted on Complexity Blog [?].

BEGIN EXCERPT
The 17× 17 challenge: worth $289.00. I am not kidding.

∗University of Maryland, College Park, MD 20742. dapon@cs.umd.edu
†University of Maryland, College Park, MD 20742. gasarch@cs.umd.edu
‡Permanent, Berkeley, CA 94710. kevin@permanentco.com

1

Def 1.2 A rectangle of Gn,m is a subset of the form {(a, b), (a+c1, b), (a+c1, b+c2), (a, b+c2)}
for some a, b, c1, c2 ∈ N. A grid Gn,m is c-colorable if there is a function χ : Gn,m → [c] such
that there are no rectangles with all four corners the same color.

The 17 × 17 challenge: The first person to email me a 4-coloring of G17,17 in LaTeX will
win $289.00. (289.00 is chosen since it is 172.)
END EXCERPT

There are two motivations for this kind of problem. (1) The problem of coloring grids
to avoid rectangles is a relaxations of the classic theorem (a corollary of the Gallai-Witt
theorem) which states that for a large enough grid any coloring yields a monochromatic
square, and (2) grid-coloring problems avoiding rectangles are equivalent to finding certain
bipartite Ramsey Numbers. For more details on these motivations, and why the four-coloring
of G17,17 was of particular interest, see the post [?]. or the paper by Fenner, et al [?].

Brian Hayes, the Mathematics columnist for Scientific American, publicized the chal-
lenge [?]. Initially there was a lot of activity on the problem. Some used SAT solvers, some
used linear programming, and one person offered an exchange: buy me a $5000 computer
and I’ll solve it. Finally in 2012 Bernd Steinbach and Christian Posthoff [?, ?] solved the
problem. They used a rather clever algorithm with a SAT solver. They believed that the
solution was close to the limits of their techniques.

Though this particular instance of the problem was solved, the problem of grid coloring
in general seems to be difficult. In this paper we formalize and prove three different results
that indicate grid coloring is hard.

1.1 Grid Coloring Extension is NP-Complete

Between the problem being posed and resolved the following challenge was posted [?] though
with no cash prize. We paraphrase the post.

BEGIN PARAPHRASE

Def 1.3 Let c,N,M ∈ N.

1. A mapping χ of GN,M to [c] is a c-coloring if there are no monochromatic rectangles.

2. A partial mapping χ of GN,M to [c] is extendable to a c-coloring if there is an extension
of χ to a total mapping which is a c-coloring of GN,M . We will use the term extendable
if the c is understood.

Def 1.4 Let
GCE = {(N,M, c, χ) | χ is extendable}.

GCE stands for Grid Coloring Extension.

2

CHALLENGE: Prove that GCE is NP-complete.
END PARAPHRASE

In Section ?? we show that GCE is indeed NP-complete. This result may explain why
the original 17 × 17 challenge was so difficult. Then again—it may not. In Section ?? we
show that GCE is fixed-parameter tractable. Hence, for a fixed c, the problem might not
be hard. In Section ?? we state open problems.

There is another reason the results obtained may not be the reason why the 17 × 17
challenge was hard. The 17× 17 challenge can be rephrased as proving that (17, 17, 4, χ) ∈
GCE where χ is the empty partial coloring. This is a rather special case of GCE since
none of the spots are pre-colored. It is possible that GCE in the special case where χ is the
empty coloring is easy. While we doubt this is true, we note that we have not eliminated
the possibility.

One could ask about the problem

GC = {(n,m, c) | Gn,m is c-colorable }.

However, this does not quite work. If n,m are in unary, then GC is a sparse set. By
Mahaney’s Theorem [?, ?] if a sparse set is NP-complete then P = NP. If n,m are in binary,
then we cannot show that GC is in NP since the obvious witness is exponential in the input.
This formulation does not get at the heart of the problem, since we believe it is hard because
the number of possible colorings is large, not because n,m are large. It is an open problem
to find a framework within which a problem like GC can be shown to be hard.

1.2 Grid Coloring is Hard for Tree Res

The statement Gn,m is c-colorable can be written as a Boolean formula (see Section ??). If
Gn,m is not c-colorable then this statement is not satisfiable. A Resolution Proof is a formal
type of proof that a formula is not satisfiable. One restriction of this is Tree Resolution.

In Section ?? we define all of these terms. We then show that any tree resolution of the
Boolean Formula representing Gn,m is c-colorable requires size 2Ω(c).

1.3 A Particular Grid Coloring Problem is Hard for Tree-Like
Cutting Planes Proofs

The statement Gn,m is c-colorable is equivalent to the statement A~x ≤ ~b has no 0-1 solution

for some matrix A and vector ~b. (Written as A~x ≤ ~b /∈ SAT .) It is known [?] that Gn,m is
not c-colorable when n = c + 1 and m = c

(
c
2

)
+ 1. A Cutting Planes Proof is a formal type

of proof that A~x ≤ ~b /∈ SAT . One restriction of this is Tree-like Cutting Plane Proofs.
In Section ?? we define all of these terms. We then show that any tree-like CP proof of

A~x ≤ ~b /∈ SAT , where this is equivalent to Gc+1,c(c
2)+1 not being c-colorable, requires size

2Ω(c3/ log2 c).

3

This lower bound on tree-like CP proofs yields a lower bound on tree-res proofs of the
statement that Gc+1,c(c

2)+1 is not c-colorable of 2Ω(c3/ log2 c). This is not too far away from the

upper bound of O(c4).

2 GCE is NP-complete

Theorem 2.1 GCE is NP-complete.

Proof:
Clearly GCE ∈ NP.
Let φ(x1, . . . , xn) = C1 ∧ · · · ∧ Cm be a 3-CNF formula. We determine N,M, c and a

partial c-coloring χ of GN,M such that

(N,M, c, χ) ∈ GCE iff φ ∈ 3-SAT.

The grid will be thought of as a main grid with irrelevant entries at the left side and
below, which are only there to enforce that some of the colors in the main grid occur only
once. The colors will be T, F , and some of the (i, j) ∈ GN,M . We use (i, j) to denote a color
for a particular position.

The construction is in four parts. We summarize the four parts here before going into
details.

1. We will often need to define χ(i, j) to be (i, j) and then never have the color (i, j)
appear in any other cell of the main grid. We show how to color the cells that are not
in the main grid to achieve this. While we show this first, it is actually the last step
of the construction.

2. The main grid will have 2nm+ 1 rows. In the first column we have 2nm blank spaces
and the space (1, 2nm + 1) colored with (1, 2nm + 1). The 2nm blank spaces will be
forced to be colored T or F . We think of the column as being in n blocks of 2m spaces
each. In the ith block the coloring will be forced to be

T
F
...
T
F

if xi is to be set to T , or
F
T
...
F
T

4

if xi is to be set to F .

3. For each clause C there will be two columns. The coloring χ will be defined on most
of the cells in these columns. However, the coloring will extend to these two columns
iff one of the literals in C is colored T in the first column.

4. We set the number of colors properly so that the T and F will be forced to be used in
all blank spaces.

1) Forcing a color to appear only once in the main grid.
Say we want the cell (2, 4) in the main grid to be colored (2, 4) and we do not want this

color appearing anywhere else in the main grid. We can do the following: add a column of
(2, 4)’s to the left end (with one exception) and a row of (2, 4)’s below. Here is what we get:

(2, 4)
(2, 4)
T (2, 4)

(2, 4)
(2, 4)
(2, 4)

(2, 4) (2, 4) (2, 4) (2, 4) (2, 4) (2, 4) (2, 4) (2, 4) (2, 4)

(The double lines are not part of the construction. They are there to separate the main
grid from the rest.)

It is easy to see that in any coloring of the above grid the only cells that can have the
color (2, 4) are those shown to already have that color. It is also easy to see that the color T
we have will not help to create any monochromatic rectangles since there are no other T ’s
in its column. The T we are using is the same T that will later mean TRUE. We could have
used F . If we used a new special color we would need to be concerned whether there is a
monochromatic grid of that color. Hence we use T .

What if some other cell needs to have a unique color? Lets say we also want to color cell
(5, 3) in the main grid with (5, 3) and do not want to color anything else in the main grid
(5, 3). Then we do the following:

(5, 3) (2, 4)
(5, 3) (2, 4)
(5, 3) T (2, 4)
T (2, 4) (5, 3)

(5, 3) (2, 4)
(5, 3) (2, 4)

(5, 3) (2, 4) (2, 4) (2, 4) (2, 4) (2, 4) (2, 4) (2, 4) (2, 4) (2, 4)
(5, 3) (5, 3) (5, 3) (5, 3) (5, 3) (5, 3) (5, 3) (5, 3) (5, 3) (5, 3)

It is easy to see that in any coloring of the above grid the only cells that can have the
color (2, 4) or (5, 3) are those shown to already have those colors.

5

For the rest of the construction we will only show the main grid. If we denote a color as
D (short for Distinct) in the cell (i, j) then this means that (1) cell (i, j) is color (i, j) and
(2) we have used the above gadget to make sure that (i, j) does not occur as a color in any
other cell of the main grid. Note that we when we have D in the (2, 4) cell and in the (5, 3)
cell they denote different colors.

2) Forcing (x, x) to be colored (T, F) or (F, T).
There will be one column with cells labeled by literals. The cells are blank, uncolored. We

will call this row the literal column. We will put to the left of the literal column, separated
by a triple line, the literals whose values we intend to set. These literals are not part of the
construction; they are a visual aid. The color of the literal-labeled cells will be T or F . We
need to make sure that all of the xi have the same color and that the color is different than
that of xi.

Here is an example which shows how we can force (x1, x1) to be colored (T, F) or (F, T).

x1 T F
x1 T F

We will actually need m copies of x1 and m copies of x1. We will also put a row of D’s
on top which we will use later. We illustrate how to do this in the case of m = 3.

D D D D D D D D D D D
x1 D D D D D D D D T F
x1 D D D D D D T F T F
x1 D D D D T F T F D D
x1 D D T F T F D D D D
x1 T F T F D D D D D D
x1 T F D D D D D D D D

We leave it as an exercise to prove that

• If the bottom x1 cell is colored T then (1) all of the x1 cells are colored T , and (2) all
of the x1 cells are colored F .

• If the bottom x1 cell is colored F then (1) all of the x1 cells are colored F , and (2) all
of the x1 cells are colored T .

Note that (1) if we want one literal-pair (that is x1, x1) then we use two columns, (2)
if we want two literal-pairs then we use six columns, and (3) if we want three literal-pairs
then we use ten columns. We leave it as an exercise to generalize the construction to m
literal-pairs using 2 + 4(m− 1) columns.

We will need m copies of x2 and m copies of x2. We illustrate how to do this in the case
of m = 2. We use double lines in the picture to clarify that the x1 and the x2 variables are
not chained together in any way.

6

D D D D D D D D D D D D D
x2 D D D D D D D D D D T F
x2 D D D D D D D D T F T F
x2 D D D D D D T F T F D D
x2 D D D D D D T F D D D D

x1 D D D D T F D D D D D D
x1 D D T F T F D D D D D D
x1 T F T F D D D D D D D D
x1 T F D D D D D D D D D D

We leave it as an exercise to prove that, for all i ∈ {1, 2}:

• If the bottom xi cell is colored T then (1) all of the xi cells are colored T , and (2) all
of the x1 cells are colored F .

• If the bottom xi cell is colored F then (1) all of the xi cells are colored F , and (2) all
of the x1 cells are colored T .

An easy exercise for the reader is to generalize the above to a construction with n variables
with m literal-pairs for each variable. This will take n(2 + 4(m− 1)) columns.

For the rest of the construction we will only show the literal column and the clause
columns (which we define in the next part). It will be assumed that the D’s and T ’s and
F ’s are in place to ensure that all of the xi cells are one of {T, F} and the xi cells are the
other color.

3) How we force the coloring to satisfy ONE clause
Say one of the clauses is C1 = L1 ∨ L2 ∨ L3 where L1, L2, and L3 are literals. Pick an

L1 row, an L2 row, and an L3 row. We will also use the top row, as we will see. For other
clauses you will pick other rows. Since there are m copies of each variable and its negation
this is easy to do.

The two T ’s in the top row in the next picture are actually in the very top row of the
grid.

We put a C1 over the columns that will enforce that C1 is satisfied. We put L1, L2, and
L3 on the side to indicate the positions of the variables. These C1 and the Li outside the
triple bars are not part of the grid. They are a visual aid.

C1 C1

D T T
L3 D F
L2

L1 F D

Claim 1: If χ′ is a 2-coloring of the blank spots in this grid (with colors T and F) then it
CANNOT have the L1, L2, L3 spots all colored F .

7

Proof of Claim 1:
Assume, by way of contradiction, that that L1, L2, L3 are all colored F . Then this is

what it looks like:

C1 C1

D T T
L3 F D F
L2 F
L1 F F D

The two blank spaces are both FORCED to be T since otherwise you get a monochromatic
rectangle of color F . Hence we have

C1 C1

D T T
L3 F D F
L2 F T T
L1 F F D

This coloring has a monochromatic rectangle which is colored T . This contradicts χ′

being a 2-coloring of the blank spots.
End of Proof of Claim 1

We leave the proof of Claim 2 below to the reader.
Claim 2: If χ′ colors L1, L2, L3 anything except F, F, F then χ′ can be extended to a coloring
of the grid shown.
Upshot: A 2-coloring of the grid is equivalent to a satisfying assignment of the clause.

Note that each clause will require 2 columns to deal with. So there will be 2m columns
for this.

4) Putting it all together
Recall that φ(x1, . . . , xn) = C1 ∧ · · · ∧ Cm is a 3-CNF formula.
We first define the main grid and later define the entire grid and N,M, c.
The main grid will have 2nm + 1 rows and n(4m − 2) + 2m + 1 columns. The first

n(4m − 2) + 1 columns are partially colored using the construction in Part 2. This will
establish the literal column. We will later set the number of colors so that the literal column
must use the colors T and F .

For each of the m clauses we pick a set of its literals from the literals column. These
sets-of-literals are all disjoint. We can do this since we have m copies of each literal-pair.
We then do the construction in Part 3. Note that this uses two columns. Assuming that all
of the D’s are colored distinctly and that the only colors left are T and F , this will ensure
that the main grid is c-colorable iff the formula is satisfiable.

The main grid is now complete. For every (i, j) that is colored (i, j) we perform the
method in Part 1 to make sure that (i, j) is the only cell with color (i, j). Let the number
of such (i, j) be C. The number of colors c is C + 2.

8

3 An Example

We can make the construction slightly more efficient (and thus can actually work out an
example). We took m pairs {xi, xi}. We don’t really need all m. If xi appears in a clauses
and xi appears in b clauses then we only need max{a, b} literal-pairs. If a 6= b then we
only need max{a, b}− 1 literal-pairs and one additional literal. (This will be the case in the
example below.)

With this in mind we will do an example- though we will only show the main grid.

(x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x4)

We only need

• one (x1, x1) literal-pair,

• one (x2, x2) literal-pair,

• one (x3, x3) literal-pair,

• one additional x3,

• one (x4, x4) literal-pair.

C1 C1 C2 C2 C3 C3

D D D D D D D D D D D T T T T T T
x4 D D D D D D D D T F D D D D D F
x4 D D D D D D D D T F D D D F D D
x3 D D D D D D T F D D D D D D D D
x3 D D D D T F T F D D D D D D
x3 D D D D T F D D D D D F D D
x2 D D T F D D D D D D D D F D D D
x2 D D T F D D D D D D D D D D
x1 T F D D D D D D D D D D D D F D
x1 T F D D D D D D D D F D D D D D

4 Fixed Parameter Tractability

The 17× 17 problem only involved 4-colorability. Does the result that GCE is NP-complete
really shed light on the hardness of the 17 × 17 problem? What happens if the number of
colors is fixed?

Def 4.1 Let c ∈ N. Let

GCEc = {(N,M,χ) | χ can be extended to a c-coloring of GN,M }.

9

Clearly GCEc ∈ DTIME(cO(NM)). Can we do better? Yes. We will show that GCE is
in time O(N2M2 + 2O(c4)).

Lemma 4.2 Let n,m, c be such that c ≤ 2nm. Let χ be a partial c-coloring of Gn,m. Let U
be the uncolored grid points. Let |U | = u. There is an algorithm that will determine if χ can
be extended to a full c-coloring that runs in time O(cnm22u) = 2O(nm).

Proof: For S ⊆ U and 1 ≤ i ≤ c let

f(S, i) =

{
Y ES if χ can be extended to color S using only colors {1, . . . , i};
NO if not.

(1)

We assume throughout that the coloring χ has already been applied.
We are interested in f(U, c); however, we use a dynamic program to compute f(S, i) for

all S ⊆ U and 1 ≤ i ≤ c. Note that f(∅, i) = Y ES.
We describe how to compute f(S, i). Assume that for all S ′ such that |S ′| < |S|, for all

1 ≤ i ≤ c, f(S ′, i) is known.

1. For all nonempty 1-colorable T ⊆ S do the following (Note that there are at most 2u

sets T .)

(a) If f(S − T, i) = NO then f(S, i) = NO.

(b) If f(S − T, i − 1) = Y ES then determine if coloring T with i will create a
monochromatic rectangle. If not then f(S, i) = Y ES. Note that this takes
O(nm).

2. We now know that for all 1-colorable T ⊆ S (1) f(S − T, i) = Y ES, and (2) either
f(S − T, i − 1) = NO or f(S − T, i − 1) = Y ES and coloring T with i creates a
monochromatic rectangle. We will show that in this case f(S, i) = NO.

Assume that, for all 1-colorable sets T ⊆ S: (1) f(S − T, i) = Y ES, and (2) either
f(S − T, i − 1) = NO or f(S − T, i − 1) = Y ES and coloring T with i creates a rectangle
with χ. Also assume, by way of contradiction, that f(S, i) = Y ES. Let COL be an extension
of χ to S. Let T be the set colored i. Clearly f(S−T, i−1) = Y ES. Hence the second clause
of condition (2) must hold. Hence coloring T with i creates a monochromatic rectangle. This
contradicts COL being a c-coloring.

The dynamic program fills in a table that is indexed by the 2u subsets of S and the c
colors. Each slot in the table takes O(nm2u) to compute. Hence to fill the entire table takes
O(cnm22u) steps.

Lemma 4.3 Assume c+ 1 ≤ N and c
(
c+1

2

)
< M . Then GN,M is not c-colorable. Hence, for

any χ, (N,M,χ) /∈ GCEc.

10

Proof: Assume, by way of contradiction, that there is a c-coloring of GN,M . Since every
column has at least c+ 1 elements the following mapping is well defined: Map every column
to the least ({i, j}, a) such that the {i, j} ∈

(
[c+1]

2

)
and both the ith and the jth row of that

column are colored a. The range of this function has c
(
c+1

2

)
elements. Hence some element

of the range is mapped to at least twice. This yields a monochromatic rectangle.

Lemma 4.4 Assume N ≤ c and M ∈ N. If χ is a partial c-coloring of GN,M then
(N,M,χ) ∈ GCEc.

Proof: The partial c-coloring χ can be extended to a full c-coloring as follows: for each
column use a different color for each blank spot, making sure that all of the new colors in
that column are different from each other.

Theorem 4.5 GCEc ∈ DTIME(N2M2 + 2O(c6)) time.

Proof:

1. Input (N,M,χ).

2. If N ≤ c or M ≤ c then test if χ is a partial c-coloring of GN,M . If so then output
YES. If not then output NO. (This works by Lemma ??.) This takes time O(N2M2).
Henceforth we assume c+ 1 ≤ N,M .

3. If c
(
c+1

2

)
< M or c

(
c+1

2

)
< N then output NO and stop. (This works by Lemma ??.)

4. The only case left is c+ 1 ≤ N,M ≤ c
(
c+1

2

)
. By Lemma ?? we can determine if χ can

be extended in time O(2NM) = O(2c
6
).

Step 2 takes O(N2M2) and Step 4 takes time 2O(c6)), hence the entire algorithm takes
time O(N2M2 + 2O(c6)).

Can we do better? Yes, but it will require a result from [?].

Lemma 4.6 Let 1 ≤ c′ ≤ c− 1.

1. If N ≥ c+ c′ and M > c
c′

(
c+c′

2

)
then GN,M is not c-colorable.

2. If N ≥ 2c and M > 2
(

2c
2

)
then GN,M is not c-colorable. (This follows from a weak

version of the c′ = c− 1 case of Part 1.)

Theorem 4.7 GCEc ∈ DTIME(N2M2 + 2O(c4)) time.

Proof:

11

1. Input (N,M,χ).

2. If N ≤ c or M ≤ c then test if χ is a partial c-coloring of GN,M . If so then output
YES. If not then output NO. (This works by Lemma ??.) This takes time O(N2M2).

3. For 1 ≤ c′ ≤ c− 1 we have the following pairs of cases.

(a) N = c+c′ andM > c
c′

(
c+c′

2

)
then output NO and stop. (This works by Lemma ??.)

(b) N = c+c′ and M ≤ c
c′

(
c+c′

2

)
. By Lemma ?? we can determine if χ can be extended

to a total c-coloring in time 2O(NM). Note that MN ≤ (c + c′) c
c′

(
c+c′

2

)
. On the

interval 1 ≤ c′ ≤ c − 1 this function achieves its maximum when c′ = 1. Hence
this case takes 2O(c4).

Henceforth we assume 2c ≤ N,M .

4. If M > 2
(

2c
2

)
or N > 2

(
2c
2

)
then output NO and stop. (This works by Lemma ??.)

5. The only case left is 2c ≤ N,M ≤ 2
(

2c
2

)
. By Lemma ?? we can determine if χ can be

extended in time 2O(NM) ≤ 2O(c4).

Step 2 and Step 4 together take time O(N2M2 + 2O(c4)).

Even for small c the additive term 2O(c4) is the real timesink. A cleverer algorithm that
reduces this term is desirable. By Theorem ?? this term cannot be made polynomial unless
P=NP.

5 Lower Bound on Tree Res

For n,m, c we define a Boolean formula GRID(n,m, c) such that

Gn,m is c-colorable iff GRID(n,m, c) ∈ SAT.

• The variables are xijk where 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ c. The intention is that,
for all (i, j), there is a k such that xijk is true. We interpret k to be the color of (i, j).

• For all (i, j) we have the clause
c∨

k=1

xijk.

These clauses ensure that every (i, j) has at least one color.

• For all 1 ≤ i < i′ ≤ n and 1 ≤ j < j′ ≤ m we have the clause

c∨
k=1

¬xijk ∨ ¬xi′jk ∨ ¬xij′k ∨ ¬xi′j′k.

These clauses ensure there are no monochromatic rectangles.

12

We do not use clauses to ensure that every (i, j) has at most one color. This is because
if the formula above is satisfied then one can extract out of it a c-coloring of Gn,m by taking
the color of (i, j) to be the least k such that xijk is true.

We show that if Gn,m is not c-colorable then any tree resolution proof of GRID(n,m, c) /∈
SAT requires size 2Ω(c).

5.1 Background on Tree Resolution and the Prover-Delayer Game

The definitions of Resolution and Tree Resolution are standard. Prover-Delayer games were
first defined in [?], however we use the asymmetric version which was first defined in [?]. See
also [?].

Def 5.1 Let ϕ = C1 ∧ · · · ∧ CL be a CNF formula. A Resolution Proof that ϕ /∈ SAT is a
sequence of clauses such that on each line you have either

1. One of the C’s in ϕ (called an AXIOM).

2. A ∨B where on prior lines you had A ∨ x and B ∨ ¬x.

3. The last line has the empty clause.

It is easy to see that if there is a resolution proof that ϕ /∈ SAT then indeed ϕ /∈ SAT . The
converse is also true though slightly harder to prove.

Def 5.2 A Tree Resolution proof is one whose underlying graph is a tree.

Def 5.3 The Prover-Delayer Game has parameters (1) a, b ∈ (1,∞), such that 1
a

+ 1
b

= 1,
(2) p ∈ R+, and (3) a CNF-formula

ϕ = C1 ∧ · · · ∧ CL /∈ SAT.

The game is played as follows until a clause is proven false:

1. The Prover picks a variable x that was not already picked.

2. The Delayer either

(a) Sets x to T or F .

(b) Defers to the Prover.

i. If the Prover sets x to F then the Delayer gets lg a points.

ii. If the Prover sets x to T then the Delayer gets lg b points.

When some clause has all of its literals set to false the game ends. At that point, if the
Delayer has p points then he WINS; otherwise the Prover WINS.

13

We assume that the Prover and the Delayer play perfectly.

1. The Prover wins means the Prover has a winning strategy.

2. The Delayer wins means the Delayer has a winning strategy.

Lemma 5.4 Let a, b ∈ (1,∞) such that 1
a

+ 1
b

= 1, p ∈ R+, ϕ /∈ SAT , ϕ in CNF -form. If
the Delayer wins then EVERY Tree Resolution proof for ϕ has size ≥ 2p.

Note that the lower bound in Lemma ?? is 2p, not 2Ω(p).

5.2 Lower Bound on Tree Resolution

Theorem 5.5 Let n,m, c be such that Gn,m is not c-colorable and c ≥ 9288. Any tree
resolution proof of GRID(n,m, c) /∈ SAT requires size 2Dc where D = 0.836.

Proof:
By Lemma ?? it will suffice to show that there exists a, b ∈ (1,∞) with 1

a
+ 1

b
= 1, such

that the Delayer wins the Prover-Delayer game with parameters a, b,Dc, and GRID(n,m, c).
We will determine a, b later. We will also need parameter r ∈ (0, 1) to be determined.

Here is the Delayers strategy: Assume xijk was chosen by the Prover.

1. If coloring (i, j) with color k will create a monochromatic rectangle then the Delayer
will NOT let this happen—he will set xijk to F . The Delayer does not get any points
but he avoids the game ending. (Formally: if there exists i′, j′ such that xi′jk = xij′k =
xi′j′k = T then the Delayer sets xijk to F .) Otherwise he goes to the next step of the
strategy.

2. If there is a danger that all of the xij∗ will be false for some (i, j) then the Delayer will
set xijk to T . The Delayer does not want to panic and set xijk to T unless he feels he
has to. He uses the parameter r. If there are at least rc values k′ where the Prover has
set xijk′ to F , and there are no xijk′ that have been set to T (by anyone) then Delayer
sets xijk to T . Note that this cannot form a monochromatic rectangle since in step 1
of the strategy xijk would have been set to F .

3. In all other cases the Delayer defers to the Prover.

For the analysis we need two real parameters: q ∈ (0, 1) and s ∈ (0, 3 − 3q). Since we
need 1

a
+ 1

b
= 1 we set b = a

a−1
.

We now show that this strategy guarantees that the Delayer gets at least Dc points.
Since the Delayer will never allow a monochromatic rectangle the game ends when there is
some i, j such that

xij1 = xij2 = · · · = xijc = F.

Who set these variables to F? Either at least qc were set to F by the Prover or at least
(1− q)c were set to F by the Delayer. This leads to several cases.

14

1. At least qc were set to F by the Prover. The Delayer gets at least qc lg a points.

2. At least (1− q)c were set to F by the Delayer. For every k such that the Delayer set
xijk to F there is an (i′, j′) (with i 6= i′ and j 6= j′) such that xi′jk, xij′k, and xi′j′k
were all set to T (we do not know by who). Consider the variables we know were set
to T because Delayer set xijk to F . These variables all have the last subscript of k.
Therefore these sets-of-three variables associated to each xijk are disjoint. Hence there
are at least 3(1 − q)c = (3 − 3q)c variables that were set to T . There are two cases.
Recall that s ∈ (0, 3− 3q).

(a) The Prover set at least sc of them to T . Then the Delayer gets at least sc lg(b) =
sc lg(a/(a− 1)) points.

(b) The Delayer set at least (s − (3 − 3q))c = (s + 3q − 3)c of them to T . If the
Delayer is setting some variable xi′j′k to T it’s because the Prover set rc others of
the form xi′j′k′ to F . These sets-of-rc-variables are all disjoint. Hence the Prover
set at least (s + 3q − 3)rc2 variables to F . Therefore the Delayer gets at least
(s+ 3q − 3)rc2 lg a points.

We need to set a ∈ (1,∞), q, r ∈ (0, 1), and s ∈ (0, 3− 3q) to maximize the minimum of

1. qc lg a

2. sc lg(a/(a− 1))

3. (s+ 3q − 3)rc2

We optimize our choices by setting qc lg a = sc lg(a/(a−1)) (approximately) and thinking
(correctly) that the c2 term in (s+ 3q− 3)rc2 will force this term to be large when c is large.
To achieve this we take

• q = 0.56415. Note that 3− 3q = 1.30755.

• s = 1.30754. Note that s ∈ (0, 3− 3q).

• r = 0.9. Note that (s+ 3q − 3)r = (0.00001) ∗ 0.9 = 0.00009. (Any value of r ∈ (0, 1)
would have sufficed.)

• a = 2.793200

• b = a/(a− 1) = 1.557662 (approximately)

Using these values we get qc lg a, sc lg(a/(a− 1)) ≥ 0.836. We want

(0.00009c2) ≥ 0.836c

(0.00009c) ≥ 0.836

15

c ≥ 9288

With this choice of parameters, for c ≥ 9288, the Delayer gets at least 0.836c points.
Hence any tree resolution proof of GRID(n,m, c) must have size at least 20.836c.

6 Lower Bounds on Tree Res for Other Shapes

We did not use any property specific to rectangles in our proof of Theorem ??. We can
generalize our result to any other shape; however, the constant in 2Ω(c) will change.

First we give a definition of rectangle that will help us to generalize it.

Def 6.1 Let c,N,M ∈ N. A (full or partial) mapping of GN,M to {1, . . . , c} is a c-coloring
if there does not exists a set of points {(a, b), (a + t, b), (a, b + s), (a + t, b + s)} that are all
the same color.

Look at the points

{(a, b), (a+ t, b), (a, b+ s), (a+ t, b+ s)}.
We can view them as

{(s× 0, t× 0) + (a, b), (s× 1, t× 0) + (a, b), (s× 0, t× 1) + (a, b), (s× 1, t× 1) + (a, b)}.

Informally, the set of rectangles is generated by {(0, 0), (0, 1), (1, 0), (1, 1)}. Formally we
can view the set of rectangles on the lattice points of the plane (upper quadrant) as the
intersection of N× N with

⋃
s,t,a,b∈Q

{{(s×0, t×0)+(a, b), (s×1, t×0)+(a, b), (s×0, t×1)+(a, b), (s×1, t×1)+(a, b)}}

Note that the pair of curly braces is not a typo. We are looking at sets of 4-sets of points.
We generalize rectangles.

Def 6.2 Let
S = {(x1, y1), . . . , (xL, yL)}

be a set of lattice points in the plane. Let

stretch(S) =
⋃
s,t∈Q

{{(sx1, ty1), . . . , (sxL, tyL)}}

and
translate(S) =

⋃
a,b∈Q

{{(x1 + a, y1 + b), . . . , (xL + a, yL + b)}}.

These are the sets of points we will be trying to avoid making monochromatic. Hence let

avoid(S) = translate(stretch(S)).

16

We can now generalize the rectangle problem.

Def 6.3 Let N,M ∈ N and S be a set of lattice points. A (partial or full) mapping χ from
GN,M into [c] is a (c, S)-coloring if there are no monochromatic sets in avoid(S).

Def 6.4 Let N,M ∈ N and S be a set of lattice points. Let GRID(n,m, c;S) be the
Boolean formula that can be interpreted as saying that Gn,m is (c, S)-colorable. We omit
details.

The following theorems have proof similar to those in Section ??.

Theorem 6.5 Let n,m ∈ N and S be a set of lattice points. Let n,m, c be such that Gn,m

is not (c, S)-colorable. Any tree resolution proof of GRID(n,m, c;S) /∈ SAT requires size
2Ω(c). The constant in the Ω(c) depends only on |S| and not the nature of S.

One could look at other ways to move the points in S around. There is one we find
particular interesting. We motivate our definition.

What if we wanted to look at colorings that avoided a monochromatic square? The square

{(a, b), (a+ s, b), (a, b+ s), (a+ s, b+ s)}

can be viewed as

{(0, 0) + (a, b), (s, 0) + (a, b), (0, s) + (a, b), (s, s) + (a, b)}.

We generalize this.

Def 6.6 Let
S = {(x1, y1), . . . , (xL, yL)}

be a set of lattice points in the plane. Let

halfstretch(S) =
⋃
s∈Q

{{(sx1, sy1), . . . , (sxL, syL)}}

These are the sets of points we will be trying to avoid making monochromatic. We would
like to call it “avoid” but that name has already been taken; hence we call it avoid2.

avoid2(S) = translate(halfstretch(S)).

(Note that the 2 has no significance. It is just there to distinguish avoid and avoid2.)

Def 6.7 Let N,M ∈ N and S be a set of lattice points. A (partial or full) mapping χ from
GN,M into [c] is a (c, S)2-coloring if there are no monochromatic sets in avoid2(S). (Note
that the 2 has no significance. It is just there to distinguish (c, S) and (c, S)2.)

17

Def 6.8 Let N,M ∈ N and S be a set of lattice points. A (partial or full) mapping χ from
GN,M into [c] is a (c, S)2-coloring if there are no monochromatic sets in avoid2(S).

We can now generalize the square problem.

Def 6.9 Let N,M ∈ N and S be a set of lattice points. Let GRID(n,m, c;S2) be the
Boolean formula that can be interpreted as saying that Gn,m is (c, S)2-colorable. We omit
details.

The following theorems have proof similar to those in Section ??.

Theorem 6.10 Let n,m ∈ N and S be a set of lattice points such that |S| ≥ 2. Let n,m, c be
such that Gn,m is not (c, S)2-colorable. Any tree resolution proof of GRID(n,m, c)2 /∈ SAT
requires size 2Ω(c).

7 Lower Bound on CP-Tree Res for GRID(c + 1, c
(
c
2

)
+

1, c)

By Lemma ?? the formula GRID(c + 1, c
(
c
2

)
+ 1, c) /∈ SAT . Note that it’s just barely not

satisfiable since GRID(c+1, c
(
c
2

)
, c) ∈ SAT. In this section we show that any Cutting Plane

Tree Resolution proof that GRID(c+ 1, c
(
c
2

)
+ 1, c) /∈ SAT requires size 2Ω(c3/ log2 c).

Notation 7.1 Let A be an integer valued matrix and ~b be an integer valued vector such
that there is no 0-1 vector ~x with A~x ≤ ~b. We refer to this as A~x ≤ ~b /∈ SAT .

Any CNF-formula can be phrased in this form with only a linear blowup in size. For
every variable x we have variables x and x and the inequalities

x+ x ≤ 1
−x− x ≤ −1

If C is a clause with literals L1, . . . , Lk then we have the inequality

L1 + · · ·+ Lk ≥ 1

In particular, the formulas GRID(n,m, c) can be put in this form.

7.1 Background on CP-Tree Resolution and Link to Communica-
tion Complexity

The definitions of Cutting Plane Proofs and Tree Cutting Plane Proofs are standard. The
connection to communication complexity (Lemma ??) is from [?] (see also [?] Lemmas 19.7
and 19.11).

18

Def 7.2 A Cutting Planes Proof that A~x ≤ ~b /∈ SAT (henceforth CP Proof) is a sequence
of linear inequalities such that on each line you have either

1. One of the inequalities in A~x ≤ ~b (called an AXIOM).

2. If ~a1 · ~x ≤ c1 and ~a2 · ~x ≤ c2 are on prior lines then (~a1 + ~a2) · ~x ≤ c1 + c2 can be on a
line.

3. If ~a · ~x ≤ c is on a prior line and d ∈ N then d(~a · ~x) ≤ dc can be on a line. (Also if
d ∈ Z− N then reverse the inequality.)

4. If c(~a · ~x) ≤ d is on a prior line then ~a · ~x ≤
⌊
d
c

⌋
can be on a line.

5. The last line is an arithmetically false statement (e.g., 1 ≤ 0).

It is easy to see that if there is a cutting planes proof that A~x ≤ ~b /∈ SAT then indeed
A~x ≤ ~b /∈ SAT . The converse is also true though slightly harder to prove.

Def 7.3 A Tree-like CP proof is one whose underlying graph is a tree.

Def 7.4 Let A be an integer valued matrix and ~b be an integer valued vector such that
A~x ≤ ~b /∈ SAT . Let P1, P2 be a partition of the variables in ~x. The Communication
Complexity problem FI(A,~b, P1, P2) is as follows.

1. For every variable in P1 Alice is given a value (0 or 1).

2. For every variable in P2 Bob is given a value (0 or 1).

3. These assignments constitute an assignment to all of the variables which we denote ~x.

4. Alice and Bob need to determine an inequality in A~x ≤ ~b that is not true.

Lemma 7.5 Let A be an integer valued matrix and ~b be an integer valued vector such that
A~x ≤ ~b /∈ SAT . Let n be the number of variables in ~x. If there is a partition P1, P2 of
the variables such that, for all ε, Rε(FI(A,~b, P1, P2)) = Ω(t) then any tree-like CP proof of

A~x ≤ ~b requires size 2Ω(t/ log2 n).

19

7.2 Lemmas on Communication Complexity

Def 7.6

1. The Hamming weight of a binary string x, denoted w(x), is the number of 1’s in x.

2. The Hamming distance between two, equal-length, binary strings x and y, denoted
d(x, y), is the number of positions in which they differ.

3. For a communication problem P , D(P) denotes the deterministic communication com-
plexity of P and Rε(P) denotes the randomized public coin communication complexity
of P with error ≤ ε.

Def 7.7 We define several communication complexity problems.

1. PHPstrn: Alice gets a string x ∈ Σn, and Bob gets a string y ∈ Σn with |Σ| = 2n− 1.
They are promised that for all i 6= j, the letters xi and xj (resp. yi and yj) are distinct.
By the PHP, there must exist at least one (i, j) ∈ [n] × [n] such that xi = yj. They
are further promised that (i, j) is unique. The goal is to find (i, j). (Alice learns i, and
Bob learns j.)

2. PHPsetn: Alice gets a set x ∈
(

Σ
n

)
, and Bob gets a set y ∈

(
Σ
n

)
with |Σ| = 2n− 1. By

the PHP, there must exist at least one σ ∈ Σ such that σ ∈ x ∩ y. They are further
promised that σ is unique. The goal is to find σ. (Both learn σ.)

3. PrMeetn: Alice gets a string x ∈ {0, 1}n, and Bob gets a string y ∈ {0, 1}n with
n = 2m− 1. They are promised that (1) w(x) = w(y) = m, that (2) there is a unique
i ∈ [n] such that xi = yi = 1, and that (3) for all j 6= i, (xj, yj) ∈ {(0, 1), (1, 0)}. The
goal is to find i. (Both learn i.)

4. UMn: (called the universal monotone relation) Alice is given x ∈ {0, 1}n, and Bob is
given y ∈ {0, 1}n. They are promised that there exists i such that xi = 1 and yi = 0.
The goal is to find some such i. (Both learn i.)

5. PrUMn: This is a restriction of UMn. They are additionally promised (1) n = 2m−1 is
odd, (2) w(x) = m, (3) w(y) = m− 1, and (4) d(x, y) = 1. Hence (a) there is a unique
index i ∈ [n] such that xi = 1 and yi = 0, (b) for all j 6= i, (xj, yj) ∈ {(0, 0), (1, 1)},
and moreover (c) these (0, 0)’s and (1, 1)’s occur in an equal number. The goal is to
find i. (Both learn i.)

6. DISJn: Alice gets a string x ∈ {0, 1}n, and Bob gets a string y ∈ {0, 1}n. They need
to decide if x and y intersect (∃i where xi = yi).

7. PrDISJn: n = 2m + 1 is odd. Alice gets a string x ∈ {0, 1}n, and Bob gets a string
y ∈ {0, 1}n. They are promised that x and y have exactly m + 1 1’s and m 0’s and
intersect at most once. They need to decide if x and y intersect (∃i where xi = yi).

20

We will need the following notion of reduction.

Def 7.8 Let f, g be a communication problem. It can be a decision, a function, and/or a
promise problem.

1. f ≤cc g if there exists a protocol for f that has the following properties.

(a) The protocol may invoke a protocol for g once on an input of length O(n).

(b) Before and after the invocation, the players may communicate polylog bits.

The following lemma is obvious.

Lemma 7.9 If f ≤cc g and (∀ε)[Rε(f) = Ω(n)] then (∀ε)[Rε(g) = Ω(n)].

Lemma 7.10 For all ε Rε(PrUMn) = Ω(n).

Proof: In [?] it was shown that DISJn ≤cc UMn. A closer examination of the proof
shows that it also shows PrDISJn ≤cc PrUMn.

Kalyanasundaram and Schnitger [?] showed that, for all ε, Rε(DISJn) = Ω(n). Razborov [?]
has a simpler proof where he only looks at inputs that satisfy the promise of PrDISJn. Hence
he showed Rε(PrDISJn) = Ω(n). From PrDISJn ≤cc PrUMn, Rε(PrDISJn) = Ω(n), and
Lemma ?? the result follows.

Lemma 7.11

1.
PrUMn ≤cc PrMeetn ≤cc PHPset(n+1)/2.

(The last reduction only holds when n is odd.)

2.
PHPsetn ≤cc PHPstrn.

3. For all ε Rε(PHPstrn) = Ω(n). (This follows from parts 1,2 and Lemmas ??, ??.)

Proof:

PrUMn ≤cc PrMeetn: Alice gets x ∈ {0, 1}n, Bob gets y ∈ {0, 1}n so that (x, y) satisfies the
promise of PrUMn. Let n = 2m − 1. We show that (x, y) satisfies the promise of PrMeetn
and that PrUMn(x, y) = PrMeetn(x, y).

Since w(y) = m− 1, w(y) = n− (m− 1) = m. We still have w(x) = m so w(x) = w(y) =
m. Since there is a unique i ∈ [n] such that xi = 1 and yi = 0, then must be a unique i ∈ [n]
(the same one) such that xi = yi = 1. (This establishes PrUMn(x, y) = PrMeetn(x, y).)
Since for all all j 6= i, (xj, yj) ∈ {(0, 0), (1, 1)}, for all j 6= i, (xj, yj) ∈ {(0, 1), (1, 0)}.

21

PrMeetn ≤cc PHPset(n+1)/2: Alice gets x ∈ {0, 1}n, Bob gets y ∈ {0, 1}n so that (x, y)

satisfies the promise of PrMeetn. Let m = (n + 1)/2. Note that w(x) = w(y) = m. Let Σ
be an alphabet of size n. Both Alice and Bob agree on an ordering of Σ ahead of time.

Alice views her n-bit string x (resp. Bob views his string y) as the bit vector of an
m-element subset of Σ. We denote this subset a (and for Bob b). Clearly (a, b) satisfies the
promise of PHPset(n+1)/2 and PrMeetn(x, y) = PHPset(n+1)/2(a, b).

PHPsetn ≤cc PHPstrn: Σ is an alphabet of size 2n− 1. Alice and Bob agree on an ordering

of Σ ahead of time. Alice gets x ∈
(

Σ
n

)
, Bob gets y ∈

(
Σ
n

)
. The sets x, y satisfy the promise

of PHPsetn.
Alice (Bob) forms the string x′ ∈ Σn (y′ ∈ Σn) which is the elements of x (y) written

in order. Clearly x′, y′ satisfy the promise of PHPstrn. Alice and Bob run the protocol for
PHPstrn on (x′, y′). Alice obtains i, Bob obtains j. The ith element of x′ is the same as the
jth element of y′. This element is σ which is promised in PHPsetn(x, y).

7.3 Lower Bound on CP-Tree Resolution for GRID(c+1, c
(
c
2

)
+1, c)

Theorem 7.12 Let A~x ≤ ~b be the translation of GRID(c + 1, c
(
c
2

)
+ 1, c) into an integer

program. Any Tree-CP proof that A~x ≤ ~b /∈ SAT requires 2Ω(c3/ log2 c) size.

Proof: We do the case where c
(
c
2

)
+ 1 is even (so c ≡ 3 (mod 4). The other cases are

similar but require slight variants of Lemma ??.
Split the (c + 1) × c

(
c
2

)
+ 1 evenly into two halves, both of size ((c + 1) × c

(
c
2

)
+ 1))/2.

Let P1, P2 be the partition of the variables so that Alice gets all of the variables involved in
coloring the left half, and Bob gets all of the variables involved in coloring the right half. We
show that D(CC(A,~b, P1, P2)) = Ω(c3). Note that the number of variables is Θ(c4). Hence,

by Lemma ?? we obtain that the size of any Tree-CP proof of A~x ≤ ~b /∈ SAT requires size
2Ω(c3/ log2 c).

We restrict the problem to the case where every column has c− 1 colors occurring once
and the remaining color occurring twice. Hence one can view a coloring as string of length
2m = c

(
c
2

)
+ 1 over an alphabet of size n = c

(
c
2

)
. Note that Alice and Bob each get a string

of length m over an alphabet of size n = 2m− 1.
In order to find which inequality is violated Alice and Bob need to find which column they

agree on (e.g., Alice’s column i is the same as Bob’s column j). This is precisely the problem
PHPstrn. Hence, by Lemma ?? this problem has communication complexity Ω(n) = Ω(c3).

Therefore, by Lemma ??, any Tree-CP proof of A~x ≤ ~b requires 2c
3/ log2 c.

Lower bounds on Tree-CP proofs yield lower bounds on Tree-Resolution (with a constant
factor loss) (see Prop 19.4 of [?]). Hence we have the following.

Corollary 7.13 Any Tree-resolution proof of GRID(c + 1, c
(
c
2

)
+ 1, c) /∈ SAT requires

2Ω(c3/ log2 c) size.

22

8 Open Problems

8.1 Open Problems Related to NP-Completeness

Open Problem 1: For which sets of lattice points S is the following problem NP-complete?

{(N,M, c, χ) | χ can be extended to a (c, S)-coloring of GN,M}

Open Problem 2: For which sets of lattice points S is the following problem NP-complete?

{(N,M, c, χ) | χ can be extended to a (c, S)2-coloring of GN,M}

Open Problem 3: Improve our FPT algorithm. Develop an FPT algorithm for the variants
we have discussed.

Open Problem 4: Prove that grid coloring problems starting with the empty grid are hard.
This may need a new formalism.

8.2 Open Problems Related to Lower Bounds on Tree Resolution

If φ is a Boolean formula on v variables then it has a Tree Resolution proof of size 2O(v).
Hence there is a tree resolution proof of GRID(n,m, c) of size 2O(nmc). For particular values
of m,n (functions of c) can we do better? We have already obtained this kind of result for
GRID(c+ 1, c

(
c
2

)
+ 1, c) (see Corollary ??).

Open Problem 1: For various n and m that are functions of c such that Gn,m is not
c-colorable, obtain a better lower bound on Tree Resolution than 2Ω(c).

There are unsatisfiable Boolean formulas for which Tree Resolution requires exponential
size, but there are polynomial size resolution proofs.
Open Problem 2: Determine upper and lower bounds for the size of Resolution proofs of
GRID(n,m, c).

8.3 Open Problems Related to Lower Bounds on Tree-CP Refu-
tations

We showed that Tree-CP for GRID(c + 1, c
(
c
2

)
+ 1, c) /∈ SAT require exponential size. For

other families of non-c-colorable grids either show that tree CP proof requires exponential
size or show that there are short tree CP proofs. For other families of non-c-colorable grids
either show that (non-tree) CP proofs requires exponential size or show that CP proofs are
short.

23

9 Acknowledgments

We would like to thank Clyde Kruskal for proofreading and discussion. We would like to
thank Stasys Jukna whose marvelous exposition of the Prover-Delayer games and the tree-
CP proofs inspired the second and third parts of this paper, and for some technical advice
(translation: he found a bug and helped us fix it). We would like to thank Daniel Marx for
pointing out an improvement in the fixed parameter algorithm which we subsequently used.
We would like to thank Wing-ning Li for pointing out that the case of n,m binary, while
it seems to not be in NP, is actually unknown. We would also like to thank Tucker Bane,
Richard Chang, Peter Fontana, David Harris, Jared Marx-Kuo, Jessica Shi, and Marius
Zimand, for listening to Bill present these results and hence clarifying them.

References

[1] O. Beyersdorr, N. Galesi, and M. Lauria. A lower bound for the pigeonhole principle
in the tree-like resolution asymmetric prover-delayer games. Information Processing
Letters, 110, 2010. The paper and a talk on it are here: http://www.cs.umd.edu/

~gasarch/resolution.html.

[2] S. Fenner, W. Gasarch, C. Glover, and S. Purewal. Rectangle free colorings of grids,
2012. http://arxiv.org/abs/1005.3750.

[3] W. Gasarch. The 17×17 challenge. Worth $289.00. This is not a
joke, 2009. http://blog.computationalcomplexity.org/2009/11/

17x17-challenge-worth-28900-this-is-not.html.

[4] W. Gasarch. A possible NP-intermediary problem. http://blog.

computationalcomplexity.org/2010/04/possible-np-intermediary-problem.

html, 2010.

[5] W. Gasarch. The 17×17 SOLVED! (also 18 × 18http://blog.
computationalcomplexity.org/2012/02/17x17-problem-solved-also-18x18.

html, 2012.

[6] B. Hayes. The 17×17 challenge, 2009. http://bit-player.org/2009/

the-17x17-challenge.

[7] S. Homer and L. Longpre. On reductions of NP sets to sparse sets. Journal of Computer
and System Sciences, 48, 1994. Prior version in STRUCTURES 1991.

[8] R. Impagliazzo and T. P. and. Upper and lower bounds for tree-like cutting planes
proofs. In Proceedings of the Ninth Annual IEEE Symposium on Logic in Computer
Science, Paris, France, 1994. http://www.cs.toronto.edu/~toni.

24

[9] S. Jukna. Boolean function complexity: advances and frontiers. Algorithms and Com-
binatorics Vol 27. Springer, 2012.

[10] B. Kalyanasundaram and G. Schnitger. The probabilistic communication complexity of
set intersection. SIAM Journal on Discrete Mathematics, 5:545–557, 1992. Prior version
in C onf. on Structure in Complexity Theory, 1987 (STRUCTURES).

[11] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press,
1997.

[12] S. Mahaney. Sparse complete sets for NP: Solution to a conjecture of Berman and
Hartmanis. Journal of Computer and System Sciences, 25:130–143, 1982.

[13] P. Pudlka and R. Impagliazzo. A lower bound for DLL algorithms for SAT. In Eleventh
Symposium on Discrete Algorithms: Proceedings of SODA ’00, 2000.

[14] A. Razborov. On the distributional complexity of disjointness. Theoretical Computer
Science, 106:385–390, 1992. Prior version in ICALP 1990. Available online at http:

//people.cs.chicago.edu/~razborov/research.

[15] B. Steinbach and C. Posthoff. Extremely complex 4-colored rectangle-free grids: Solu-
tion of an open multiple-valued problem. In Proceedings of the Forty-Second IEEE
International Symposia on Multiple-Valued Logic, 2012. http://www.cs.umd.edu/

~gasarch/PAPERSR/17solved.pdf.

25

