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1 Introduction

This paper will detail our findings of known ideal and non-ideal access structures
for secret sharing schemes and ways of determining whether or not a scheme is
ideal. We will use Dr. William Gasarch’s Cryptography slides to define a (t,m)
secret sharing scheme as a scheme which involves a “dealer” giving out shares
of a predetermined secret to m parties, where 1 ≤ t ≤ m. Any group of size ≥ t
is able to discover the secret, but any group of size < t is unable to determine
the secret.

2 Definitions

We define an access structure as a monotone collection of subsets of parties
[1, p. 786]. In other words, for a (t,m) secret sharing scheme, groups of size
t and and subsets of that group are able to discover the secret. For exam-
ple, if we have 3 parties, {0, 1, 2} and a (2, 3) secret sharing scheme, the sets
{0, 1}, {1, 2}, {0, 2}, {0, 1, 2} are able to discover the secret. Access structures
give a broader definition of a secret sharing scheme. For example, schemes not
defined by (t,m) can also be represented by access structures. An example is
where you want to restrict a pair of participants from being able to reveal the
secret. Then we would have an access structure of {{0, 1}, {1, 2}, {0, 1, 2}}.

A perfect secret sharing scheme is defined as a scheme where no information is
leaked if any parties outside of the access structure gather together [3, p. 468].
For the example above, if party 2 tries to discover the secret, they will not gather
any information from attempting, since they are not part of the access structure.

An ideal secret sharing scheme is a perfect scheme where all shares are in the
domain of the secret [3, p. 468]. We define this as ”if the secret is length s,
then all shares are a maximum of length s.” It could also be understood that all
shares are part of the same set as the secret. Different papers have stated differ-
ent definitions of ideal secret sharing schemes, but we have chosen the broader
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one.

In general, the definitions are one of these:

• |secret| = |share|

• |secret| ≥ |share|

• share ∈ Dom(secret)

3 What access structures are known to be ideal

3.1 Threshold Access Structures (Blakely, Shamir)

We know these access structures are ideal and proven so by Shamir [9]. We will
not mention much about them since they are covered in Dr. William Gasarch’s
lecture slides [5].

3.2 Multilevel Access Structure (Simmons)

This is a hierarchical sort of structure, proposed by Simmons and proven ideal
by Brickell. It works as follows:

“Each participant is assigned a level which is a positive integer and the access
structure consists of those subsets which contain at least r participants all of

level at most r.” [3, p. 469]

For instance, look at the following examples [3, p. 469]. If two people with rank
2 can find the secret, then:

• Three people with rank 3 can find the secret.

• One person with rank 2 and two people with rank 3 can find the secret.

This access structure is a hierarchical one, in which different ranks can be
used to use more or less people, depending on the requirements for reach secret.
More information on this particular data structure can be found here.

3.3 Compartmented Access Structure (Simmons)

This access structure was also proven ideal by Brickell in the same paper [3,
p. 469]. It works like so:

“There are different “compartments” (groups), say C1, . . . , Cu, and positive
integers t1, . . . , tu and a t. The access structure consists of all subsets
containing at least ti from Ci for 1 ≤ i ≤ u, and a total of at least t

participants.” [3, p. 469]
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4 What access structures are known not to be
ideal

4.1 Vámos Matroids

Vámos Matroids are not ideal access structures. Brickell and Davenport detailed
matroids in their study of secret sharing and questioned if all matroids were
ideal access structures, given that some had been proven to be ideal [4, p. 126].
However, P.D Seymour proved that Vámos Matroids are not suitable for secret
sharing, and therefore not an ideal access structure [8, p .5].
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5 What makes secret schemes ideal

We found various ways in which one can determine whether access structures
are ideal or not. These are:

• Monotone Circuits

• Matroids

• Graphs

5.1 Monotone Circuits

We understand monotone circuits to be circuits that can compute monotone
formulas. These formulas and relationship to monotone access structure as de-
scribed by Benaloh and Leichter. [2]

It turns out that monotone circuits can be used to determine whether an
access structure is ideal or not. In essence, if you can represent an access struc-
ture’s subsets as a circuit with two inputs, and it consists of only AND and OR
gates, and has a single output, then the access structure is ideal [3, p. 475].

5.2 Matroids

We use the following definition of Polymatroids from Padró:

“A polymatroid is a pair (Q, f), where Q is a finite set, and f is a map
f : P(Q)→ R satisfying the following properties:

• f(∅) = 0

• f is monotone increasing : if A ⊆ B ⊆ Q, then f(A) ≤ f(B)

• f is submodular : f(A ∪B) + f(A ∩B) ≤ f(A) + f(B)
for all A,B ⊆ Q” [7]

It would seem that matroids can be used to determine whether an access
structure is ideal. Brickel and Davenport showed that matroids are “closely
related” to access structures [1, p. 786]. Furthermore, Padró claims that an
access structure is ideal if and only if it is part of some polytropic matroid [7,
p. 34].

5.3 Graphs

Graphs can also be used to determine whether an access structure is ideal or
not. Considering the following definition:

“For a graph G = (V,E), consider access structure Γ[G] in which the
participants are identified to the vertices of G and the edges correspond to the

minimal qualified subsets.” [7, p. 35].
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Given this definition, we can arrive at the following two propositions:

“Let G be a connected graph. Then access structure Γ[G] is a matroid port if
and only if G is a complete multipartite graph.” [7, p. 36].

“If G is a complete multipartite graph, then the access structure Γ[G] admits a
vector space secret sharing scheme” [7, p. 36].

Which lead to the following equivalences [7, p. 37].:

• G is a complete multipartite graph

• Γ[G] is a vector space access structure

• Γ[G] is an ideal access structure

• Γ[G] is a matroid port

• σ(Γ[G]) < 3
2
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6 Conclusion

Secret sharing refers to the method of splitting a secret (known as a share)
and distributing it among a group. Only when a certain number of individu-
als come together can the secret be unraveled: individual shares on their own
have no use. Ideal secret sharing schemes are perfect schemes where the size
of each share is at most the size of the secret itself, or if the shares are taken
from the same domain as the secret. These ideal schemes are sought after by
researchers due to them being vital to information-theoretic secret sharing. Be-
ing information-theoretically secure implies that even with unlimited computing
power, the system cannot be cracked or broken. The Threshold Scheme from
Blakely and Shamir, Multilevel Access Structures as proposed by Simmons, and
the random shares secret sharing scheme are all examples of ideal secret sharing
schemes. However, all information-theoretic schemes have the common limita-
tions of the shares being at least as long as the secret and they all require the
distribution of random bits. There are many other schemes that give up some
of the unconditional security found in information-theoretically secure ones to
be more efficient. However, they still maintain enough security to be considered
as secure as other common cryptographic primitives. These types of schemes
fall under the computationally secure category.

Going forward, it may be worth looking into ideal secret sharing schemes
which are computationally secure, rather than information-theoretic secure.
Krawczyk touches on this in one of his papers regarding schemes with shares
shorter than the secret, where the scheme relies on computational limits to create
more efficiency in terms of space and communication due to the shorter amount
of information necessary in the scheme [6, p .137]. These schemes would be
very similar to the ideas of real-world encryption schemes, where computational
limits such as discrete logarithm and factoring are assumed to be too hard and
inefficient for computers to crack without extra information, and would provide
a more realistic solution to secret sharing.
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