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Abstract

Hilbert’s 10th problem, stated in modern terms, is
Find an algorithm that will, given p ∈ Z[x1, . . . , xn], determine if there

exists a1, . . . , an ∈ Z such that p(a1, . . . , an) = 0.
Davis, Putnam, Robinson, and Matiyasevich showed that there is no such

algorithm. But what if we bound the degree of the polynomial? The number
of variables? This paper surveys what is known for these cases.

1 Hilbert’s Tenth Problem
In 1900 Hilbert proposed 23 problems for mathematicians to work on over the
next 100 years (or longer). The 10th problem, stated in modern terms, is

Find an algorithm that will, given p ∈ Z[x1, . . . , xn], determine if there
exists a1, . . . , an ∈ Z such that p(a1, . . . , an) = 0.

Hilbert probably thought this would inspire much deep number theory, and it
did inspire some. But the work on this problem took a very different direction.
Davis, Putnam, and Robinson [9] showed that determining if an exponential dio-
phantine equation has a solution in Z is undecidable. Their proof coded Turing
machines into such equations. Matiyasevich [20] extended their work by show-
ing how to replace the exponentials with polynomials. Hence the algorithm that
Hilbert wanted is not possible. For a self contained proof from soup to nuts see
Davis’ exposition [8]. For more about both the proof and the implications of the
result see the book of Matiyasevich [21].

This raises the obvious question of what happens for particular numbers of
variables n and degree d. I thought that surely there must be a grid on the web
where the d-n-th entry is

• D if the problem for degree ≤ d, and ≤ n variables is Decidable.
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• U if the problem for degree ≤ d, and ≤ n variables is Undecidable.

• ? if the status of the problem for degree ≤ d, and ≤ n variables is unknown.

There is a graph in a German paper, by Bayer et al. [4], that has the information
I want, though it’s hard to read. So putting that aside I ask Why has the quest for
a grid not gotten more attention? Here are some speculations.

1. Logicians work on showing that determining if there is a solution in N is
undecidable. Number theorists worked on showing that determining if there
is a solution in Z is decidable. Since Logicians worked in N and Number
Theorists in Z, a grid would need to reconcile these two related problems.

2. There is a real dearth of positive results, so a grid would not be that inter-
esting.

3. The undecidable results often involve rather large values of d, so the grid
would be hard to draw.

4. Timothy Chow offered this speculation in an email to me: One reason there
isn’t already a website of the type you envision is that from a number-
theoretic (or decidability) point of view, parameterization by degree and
number of variables is not as natural as it might seem at first glance. The
most fruitful lines of research have been geometric, and so geometric con-
cepts such as smoothness, dimension, and genus are more natural than, say,
degree. A nice survey by a number theorist is the book Rational Points on
Varieties by Bjorn Poonen [25]. Much of it is highly technical; however,
reading the preface is very enlightening. Roughly speaking, the current
state of the art is that there is really only one known way to prove that a
system of Diophantine equations has no rational solution.

An alternative to a grid is a paper to collect up all that is known and point to
open problems. This article is that paper. None of the results are mine.

Another alternative is to have a table that gives, for each n, the largest value
of d for which the problem is decidable, and the smallest value of d for which the
problem is known to be undecidable. Anyone can take this paper and create such
a table.

In Section 2 we will relate the problem of seeking solutions in Z with the
problem of seeking solutions in N. In Section 3 we will present values of (d, n)
where the problem is undecidable. In Section 4 we will present values of (d, n)
where the problem is decidable. In Sections 5 and 6 we look at restricted sets of
polynomials. In Section 7 we will discuss the vast area between the decidable and
undecidable cases. In Section 8 we will briefly present Matiyasevich’s discussion
of what Hilbert really wanted in contrast to what happened.



2 Definitions and Reconciling N with Z
Notation 2.1.

1. HZ(d, n) is the problem where the degree is ≤ d, the number of variables is
≤ n, and we seek a solution in Z.

2. HN(d, n) is the problem where the degree is ≤ d, the number of variables is
≤ n, and we seek a solution in N.

3. HZ(d, n) = D means that there is an algorithm to decide HZ(d, n).

4. HZ(d, n) = U means that there is no algorithm to decide HZ(d, n).

5. Similarly for HN(d, n) equal to D or U.

The four parts of the next lemma are usually stated with x1, x2, x3 ∈ N or
x1, x2, x3, x4 ∈ N, and not in the iff form we use. However, we need these state-
ments in the form we present them.

Lemma 2.2.

1. x ∈ N and x is not of the form 4a(8b + 7) (where a, b ∈ N) iff there exists
x1, x2, x3 ∈ Z such that

x = x2
1 + x2

2 + x2
3.

2. x ∈ N and x ≡ 1 (mod 4) iff there exists x1, x2, x3 ∈ Z such that (1) x1, x2 ≡

0 (mod 2), (2) x3 ≡ 1 (mod 2), and

x = x2
1 + x2

2 + x2
3.

3. n ∈ N iff there exists x1, x2, x3 ∈ Z such that n = x2
1 + x2

2 + x2
3 + x3.

Proof.
1) This is Legendre’s three-square theorem. It is sometimes called the Gauss-
Legendre Theorem.
2) Since x ≡ 1 (mod 4), x satisfies the hypothesis of Part 1. Hence there exists
x1, x2, x3 such that

x = x2
1 + x2

2 + x2
3.

Take this equation mod 4.

1 ≡ x2
1 + x2

2 + x2
3 (mod 4).



It is easy to see that the only parities of x1, x2, x3 that work are for two of them
to be even and one of them to be odd.
3) Let n ∈ N. Note that 4n+1 satisfies the premise of Part 2. By Part 2 there exists
x1, x2, x3 ∈ Z such that

4n + 1 = (2x1)2 + (2x2)2 + (2x3 + 1)2

4n + 1 = 4x2
1 + 4x2

2 + 4x2
3 + 4x3 + 1

n = x2
1 + x2

2 + x2
3 + x3.

�

Theorem 2.3.

1. If HZ(2d, 3n) = D, then HN(d, n) = D.

2. If HN(d, n) = U, then HZ(2d, 3n) = U. This is the contrapositive of Part 1.

3. If HZ( f (d, n), 2n + 2) = D, then HN(d, n) = D where

f (d, n) = max{2d, (2n + 3)2n}.

4. If HN(d, n) = U, then HZ( f (d, n), 2n + 2) = U. This is the contrapositive of
Part 3.

Proof.
1) Let p ∈ Z[x1, . . . , xn]. We want to know if there is a solution in N.

Let q be the polynomial of degree 2d with 3n variables that you get if you
replace each xi with x2

i1 + x2
i2 + x2

i3 + xi3 where xi1, xi2, xi3 are 3 new variables. By
Lemma 2.2.3 we have:

p has a solution in N iff q has a solution in Z.
Use that HZ(2d, 3n) = D to determine if q has a solution. Hence HN(d, n) = D.

3) This was proven by Sun [30].
�

Theorem 2.4.

1. If HN(d, n) = D then HZ(d, n) = D.

2. If HZ(d, n) = U then HN(d, n) = U. This is the contrapositive of part 1.



Proof. Let p ∈ Z[x1, . . . , xn]. We want to know if there is a solution in Z. For
each ~b = (b1, . . . , bn) ∈ {0, 1}n let q~b(x1, . . . , xn) be formed as follows: for every i
where bi = 1, replace xi with −xi. It is easy to see that

p has a solution in Z iff
(∃~b)[q~b has a solution in N ].
The result follows. �

In the next section we summarize what is known about HN(d, n).

3 When is HN(d, n) = U? HZ(d, n) = U?
In 1980 Jones [16] announced 16 pairs (d, n) for which HN(d, n) = U. As far
as I can tell, this paper does not have proofs, nor was that its intent. In 1982
Jones [17] provided proofs for 13 of these pairs (12 in Theorem 4 and 1 in Section
3). I emailed Jones about the other three and he told emailed back the following:

• Those with d < 2668 have proofs similar to the (4, 58) case. this was carried
out by Dr. Hideo Wada. (No reference is given.)

• The pair with a very large value of d can be obtained using many relation-
combining theorems, like the one at the end of the 1982 paper, which allow
one to define two squares with one unknown.

In the theorem below we present all 16 statements from the Jones-1980 paper
(noting those whose proof is not in the paper) along with a result by Sun [31] from
2020. We state the results of the form HN(d, n) = U and then apply Theorem 2.3
to obtain results of the form HZ(d′, n′) = U (except for Sun’s result which is
already about HZ).

The proofs involve very clever use of elementary number theory to get the
degrees and number-of-variables reduced.

In some of the results there are absurdly large numbers like 4.6 × 1044. These
are probably upper bounds that might be able to be lowered with a careful exami-
nation of the proofs.

Theorem 3.1.

1. HN(4, 58) = U hence HZ(8, 174) = U.

2. HN(8, 38) = U hence HZ(16, 114) = U.

3. HN(12, 32) = U hence HZ(24, 96) = U.

4. HN(16, 29) = U hence HZ(32, 87) = U. (Not proven in Jone-1982).



5. HN(20, 28) = U hence HZ(40, 84) = U.

6. HN(24, 26) = U hence HZ(48, 78) = U.

7. HN(28, 25) = U hence HZ(56, 75) = U.

8. HN(36, 24) = U hence HZ(72, 72) = U. (Not proven in Jones-1982.)

9. HN(96, 21) = U hence HZ(192, 63) = U.

10. HN(2668, 19) = U hence HZ(5336, 57) = U.

11. HN(200000, 14) = U hence

HZ(400000, 42) = U and HZ(31 × 214, 30) = U.

12. HN(6.6 × 1043, 13) = U hence HZ(13.2 × 1043, 28) = U. (Not proven in
Jones-1982.)

13. HN(1.3 × 1044, 12) = U hence HZ(2.6 × 1044, 36) = U.

14. HN(4.6 × 1044, 11) = U hence HZ(9.2 × 1044, 24) = U.

15. HN(8.6 × 1044, 10) = U hence HZ(17.2 × 1044, 22) = U.

16. HN(1.6 × 1045, 9) = U hence HZ(3.2 × 1045, 20) = U. (Jones’ 1982 paper
presents the proof of this result and credits it to Matiyasevich.)

17. HZ(d, 11) = U for some rather large d. The number d is not stated. (This is
due to Sun [31].)

4 When is HZ(d, n) = D? HN(d, n) = D?
We will need a brief discussion of the following problem which is attributed to
Frobenius.
Given a set of relatively prime positive integers ~a = (a1, . . . , an) find the set

FROB(~a) =

{ n∑
i=1

aixi : x1, . . . , xn ∈ N
}
.

It is known that FROB(~a) is always cofinite. We will need to look at the case
where the a1, . . . , an may have a gcd of d , 1. In this case, FROB(~a) is always a
cofinite subset of dN.

The n = 2 case was solved by James Joseph Sylvester in 1884:



Lemma 4.1. Let a1, a2 ∈ N. Let d = gcd(a1, a2). There exists a finite set F ⊆ dN
such that

FROB(a1, a2) = F ∪ {dx : x ≥ a1a2 − a1 − a2 + 1}

and (a1a2 − a1 − a2)d < FROB(a1, a2).

For the general case there is no neat formula; however, finding FROB(~a) is
decidable. There has been much work on this problem. Beihoffer et al. [5] gives a
fast algorithm and many prior references to other algorithms. We state the relevant
lemma.

Lemma 4.2. Let a1, . . . , an ∈ N. Let d = gcd(a1, . . . , an).

1. There exists finite F and an M ∈ N such that

FROB(~a) = F ∪ {dx : x ≥ M}

and

(M − 1)d < FROB(~a).

2. There is an algorithm that will, given a1, . . . , an, find F and M.

And now for the main theorem of this section!

Theorem 4.3.

1. For all d, HZ(d, 1) = D and HN(d, 1) = D. There is an algorithm that finds
all of the integer roots (which may be the empty set).

2. For all n, HZ(1, n) = D.

3. For all n, HN(1, n) = D.

4. HZ(2, 2) = D.

5. HN(2, 2) = D.

6. For all n, HZ(2, n) = D and HN(2, n) = D.

Proof.
1) These are both easy consequences of the rational root theorem: If ad xd+· · · a1x+

a0 ∈ Z[x] has a rational root p
q then p divides a0 and q divides an.

The above algorithm does not find the roots. One can modify the algorithm
so that it does find the roots; however, that would be a slow algorithm. Cucker et
al. [7] gave a polynomial time algorithm for finding the set of integer roots.



2) Given
∑n

i=1 aixi = b where a1, . . . , an, b ∈ Z, we need to determine if there is a
solution in Z.

First find d = gcd(a1, . . . , an). If d does not divide b then there are no solutions
in Z. If d does divide b then there is a solution in Z: Let x′1, . . . , x

′
n be such that∑n

i=1 aix′i = d and let xi =
bx′i
d .

3) We can phrase any problem we need to solve as follows: Let a1, . . . , an ∈ N
and b1, . . . , bm, b ∈ N. Is there a solution in N of

n∑
i=1

aixi = b +

m∑
i=1

biyi?

Let da = gcd(a1, . . . , an) and db = gcd(b1, . . . , bm).
By Lemma 4.2:

• There is an algorithm that will find finite set Fa and an Ma ∈ N such that

{ n∑
i=1

aixi : x1, . . . , xn ∈ N
}

= Fa ∪ {xd : x ≥ Ma}

• There is an algorithm that will find finite set Fb and an Mb ∈ N such that

{
b +

n∑
i=1

bixi : x1, . . . , xn ∈ N
}

= Fb ∪ {b + xd : x ≥ Mb}

Once we have Fa,Ma, Fb,Mb it is easy to determine if {Fa ∪ {xd : x ≥ Ma} and
{Fb ∪ {b + xd : x ≥ Mb} intersect. If so, then there is a solution to the original
equation, and if not, then there is not.

4) Gauss [12] (27, Art, 216-221) proved this. For a more modern approach,
Lagarias [18] (Theorem 1.2.iii) showed that if p(x, y) ∈ Z[x, y] of degree 2 has a
solution then there is a short proof for this fact (short means of length bounded
by a polynomial in the size of the coefficients). Formally he showed that the
following set is in NP.

{(a, b, c, d, e, f ) ∈ Z6 : (∃x, y ∈ Z)[ax2 + bxy + cx2 + dx + ey + f = 0]}.

(There is a solver on the web here:
https://www.alpertron.com.ar/QUAD.HTM )

5) Gauss’s method to determine if f (x, y) ∈ Z[x, y], of degree 2, has a solution
in Z finds all of the solutions in a nice form. From this form one can determine if
there are any solutions in N.

https://www.alpertron.com.ar/QUAD.HTM


6) For all n, HZ(2, n) = D and HN(2, n) = D. This is a sophisticated theorem
due to Siegel [28]. See also Grunewald and Segal [13]. This result uses the Hasse-
Minkowski Theorem (see Page 32 of Grunewald-Segal). �

5 Some Decidable Subcases

5.1 The Curious Case of HZ(3, 2)

The case of HZ(3, 2) is almost solved.

Def 5.1. An element of Q[x1, . . . , xn] is absolutely irreducible if it is irreducible
over C. For example,

x2 + y2 − 1 is absolutely irreducible, but
x2 + y2 = (x + iy)(x − iy) is not.

A combination of results by Baker and Cohen [3], Poulakis [26], and Poulakis [27]
imply the following theorem:

Theorem 5.2. There is an algorithm which, given any absolutely irreducible poly-
nomial P(x, y) ∈ Z[x, y] of degree 3, determines all integer solutions of the equa-
tion P(x, y) = 0. (See Poulakis [27] for a more precise definition of determines all
integer solutions in the case that there are an infinite number of them.)

The original algorithm (from Baker and Coates) is not practical; however,
Pethő et al. [24] and Stroker-Tzankis [29] have practical algorithms. There is
also an algorithm for solving a large class of cubic equations implemented in
SageMath.

So why isn’t HZ(3, 2) = D? Because the case where P(x, y) has degree 3 but
is not absolutely irreducible is still open.

5.2 If the Variables Are Separated. . .
Ibarra and Dang proved the following.

Def 5.3. P(z1, . . . , zn) is a Presburger Relation if it can be expressed with Z, =

,+, <, and the usual logical symbols. For example
(z1 + z2 < z3 + 12) ∧ (z1 + z4 = 17) is a Presburger formula, but
z1z2 = 13 is not.

Theorem 5.4. The following is decidable:
Instance



(1) For 1 ≤ i ≤ k polynomial pi(y) ∈ Z[y], and linear functions Fi(~x),Gi(~x) ∈
Z[x1, . . . , xn], and (2) a Presburger relation R(z1, . . . , zk).
Question Does there exist y, ~x such that

R(p1(y)F1(~x) + G1(~x), . . . , pk(y)Fk(~x) + Gk(~x) )

holds.

6 The Curious Case of x3 + y3 + z3 = k

Rather than looking at HZ(d, n) let’s focus on one equation that has gotten a lot of
attention:

x3 + y3 + z3 = k.

It is easy to show that, For k ≡ 4, 5 (mod 9), there is no solution in Z. What
about for k . 4, 5 (mod 9)?

1. Heath-Brown [14] conjectured that there are an infinite number of k . 4, 5
(mod 9) for which there is a solution in Z. Others think that, for all k . 4, 5
(mod 9), x3 + y3 + zk = k has a solution in Z.

2. Elkies [10] devised an efficient algorithm to find solutions to x3 +y3 + z3 = k
if there is a bound on x, y, z.

3. Elsehans and Jahnel [11] modified and implemented Elkies algorithm and
determined the following: The only k ≤ 1000, k . 4, 5 mod 9, where they
did not find a solution were

33, 42, 74, 114, 165, 390, 579, 627, 633, 732, 795, 906, 921, and 975.

Their work, and the work of all the items below, required hard mathematics,
clever computer science, and massive computer time.

4. Huisman [15] found a solution for k = 74. For many other values of k where
there were solutions, Huisman found additional solutions.

5. Booker [6] found a solution for k = 33.

6. Booker found a solution for k = 42. This has not been formally published
yet; however, the x, y, z can be found on the Wikipedia site:

https://en.wikipedia.org/wiki/Sums_of_three_cubes

7. The only k ≤ 1000, k . 4, 5 mod 9, where no solution is known are:

114, 165, 390, 579, 627, 633, 732, 795, 906, 921, and 975.

https://en.wikipedia.org/wiki/Sums_of_three_cubes


Consider the function that, on input k, determines if x3 + y3 + z3 = k has a
solution in Z. Is this function computable?

1. I suspect the function is computable. Why? What would a proof that this
function is not computable look like? It would have to code a Turing ma-
chine computation into a very a restricted equation. This seems unlikely to
me. Note also that it may be the case the equation has a solution for every
k . 4, 5 (mod 9), in which case the decision problem is not just decidable–
it’s regular!

2. Daniel Varga has suggested there may be a proof that does not go through
Turing machines. Perhaps some other undecidable problem? Also, there
may be new techniques we just have not thought of yet.

7 Discussion
If I was to draw the grid for HN or HZ mentioned in the introduction there would
be a large space of problems that are open. We give an example of a part of that
space.

Recall that HZ(d, 1) = D, (∀n)[HZ(2, n) = D], and HZ(8, 174) = U. The
following are unknown:

1. HZ(3, 2),HZ(3, 3),HZ(3, 4), . . . .

2. HZ(4, 2),HZ(4, 3),HZ(4, 4), . . . .

3. HZ(5, 2),HZ(5, 3),HZ(5, 4), . . . .

4. HZ(6, 2),HZ(6, 3),HZ(6, 4), . . . .

5. HZ(7, 2),HZ(7, 3),HZ(8, 4), . . . .

6. HZ(8, 2),HZ(8, 3),HZ(8, 4), . . . ,HZ(8, 173).

The situation is worse than it looks. From the discussion in Section 6 we
know that the status of the following function is unknown: Given k, determine if
x3 + y3 + z3 = k has a solution in Z.

What is the smallest n such that, for some d, HZ(d, n) = U? We present an
informed opinion by paraphrasing and combining two passages from Sun [30,
pages 209 and 211]:

1. Matiyasevich and Robinson [22] showed there is a d such that HN(d, 13) =

U.



2. Matiyasevich showed there is a d such that HN(d, 9) = U. By Theorem 2.3
we have that there is a d′ with HZ(d′, 20) = U.

3. Baker [2] showed the following is decidable: Given p ∈ Z[x, y], p homoge-
nous, does it have a solution in Z? This does not show that

(∀d)[HZ(d, 2) = D]

but it points in that direction.

4. (Direct quote from page 209.) In fact, A. Baker, Matijasevič and Robinson
even conjectured that ∃3 is undecidable over N. In our notation, there exists
d such that HN(d, 3) = U.

Suggestions:

1. Since a grid for HN(d, n) or HZ(d, n) is somewhat cumbersome there should
be a website of results.

2. That website should also include classes of equations such as x3 +y3 +z3 = k
and what is known about them.

3. Work on showing HN(d, n) = U or HZ(d, n) = U seems to have stalled.
Perhaps the problems left are too hard. Perhaps the problems left could be
resolved but it would be very messy. Perhaps computer-work could help
(see next point). Perhaps deeper number theory is needed (current results
seem to use clever but somewhat elementary number theory). Perhaps the
problems left are decidable. In any case, there should be an effort in this
direction.

4. There has been some work on getting Universal Turing machines down to
a very small number of states and alphabet size. See, for example, the
work of Aaronson [1], Michel [23], Yedidia and Aaronson [32], See also
the following blog post on this site: https://vzn1.wordpress.com that
you get by clicking on MENU and looking for Undecidability: The Ultimate
Challenge.

There has even been some computer work done in writing compilers for
these machines. It is plausible that by starting from these rather small ma-
chines, smaller polynomials may suffice to simulate them.

https://vzn1.wordpress.com


8 What Would Hilbert Do?
Def 8.1. HQ(d, n) is the problem where the degree is ≤ d, the number of variables
is ≤ n, and we seek a solution in Q.

Matiyasevich [19] (Page 18) gives good reasons why Hilbert might have actu-
ally wanted to solve HQ. Hilbert stated the tenth problem as HZ; however, if HZ
is solvable then HQ is solvable. He might have thought that the best way to solve
HQ is to solve HZ.

What is the status of HQ now? It is an open question to determine if it is
decidable. Hence the problem Hilbert plausibly intended to ask is still open.
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