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Abstract

Ramsey, Erdős-Rado, and Conlon-Fox-Sudakov have given proofs of the 3-hypergraph

Ramsey Theorem with better and better upper bounds on the 3-hypergraph Ramsey numbers.

Ramsey and Erdős-Rado also prove the a-hypergraph Ramsey Theorem. Conlon-Fox-Sudakov

note that their upper bounds on the 3-hypergraph Ramsey Numbers, together with a recurrence

of Erdős-Rado (which was the key to the Erdős-Rado proof), yield improved bounds on the

a-hypergraph Ramsey numbers. We present all of these proofs and state explicit bounds for

the 2-color case and the c-color case. We give a more detailed analysis of the construction of

Conlon-Fox-Sudakov and hence obtain a slightly better bound.

1 Introduction

The 3-hypergraph Ramsey numbers R(3, k) were first shown to exist by Ramsey [8]. His upper

bounds on them were enormous. Erdős-Rado [3] obtained much better bounds, namely R(3, k) ≤
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224k . Recently Conlon-Fox-Sudakov [2] have obtained R(3, k) ≤ 22(2+o(1))k . We present all three

proofs. For the Conlon-Fox-Sudakov proof we give a more detailed analysis that required a non-

trivial lemma, and hence we obtain slightly better bounds. Before starting the second and third

proofs we will discuss why they improve the prior ones.

We also present extensions of all three proofs to the a-hypergraph case. The first two are known

proofs and bounds. The Erdős-Rado proof gives a recurrence to obtain a-hypergraph Ramsey Num-

bers from (a − 1)-hypergraph Ramsey Numbers. As Conlon-Fox-Sudakov note, this recurrence

together with their improved bound on R(3, k), yield better upper bounds on the a-hypergraph

Ramsey Numbers. Can the Conlon-Fox-Sudakov method itself be extended to a proof of the a-

hypergraph Ramsey Theorem? It can; however (alas), this does not seem to lead to better upper

bounds. We include this proof in the appendix in the hope that someone may improve either the

construction or the analysis to obtain better bounds on the a-hypergraph Ramsey Numbers.

For all of the proofs, the extension to c colors is routine. We present the results as notes;

however, we leave the proofs as easy exercises for the reader.

2 Notation and Ramsey’s Theorem

Def 2.1 Let X be a set and a ∈ N. Then
(

X
a

)
is the set of all subsets of X of size a.

Def 2.2 Let a, n ∈ N. The complete a-hypergraph on n vertices, denoted Ka
n, is the hypergraph

with vertex set V = [n] and edge set E =
(
[n]
a

)

Notation 2.3 In this paper a coloring of a graph or hypergraph always means a coloring of the

edges. We will abbreviate COL({x1, . . . , xa}) by COL(x1, . . . , xa). We will refer to a c-coloring

of the edges of the complete hypergraph Ka
n as a c-coloring of

(
[n]
a

)
.
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Def 2.4 Let a ≥ 1. Let COL be a c-coloring of
(
[n]
a

)
. A set of vertices H is a-homogeneous for

COL if every edge in
(

H
a

)
is the same color. We will drop the for COL when it is understood. We

will drop the a when it is understood.

Convention 2.5 When talking about 2-colorings will often denote the colors by RED and BLUE.

Note 2.6 In Definition 2.4 we allow a = 1. Note that a c-coloring of
(
[n]
1

)
is just a coloring of the

numbers in [n]. A homogenous subset H is a subset of points that are all colored the same. Note

that in this case the edges are 1-subsets of the points and hence are identified with the points.

Def 2.7 Let a, c, k ∈ N. Let R(a, k, c) be the least n such that, for all c-colorings of
(
[n]
a

)
there

exists an a-homogeneous set H ∈
(
[n]
k

)
. We denote R(a, k, 2) by R(a, k). We have not shown that

R(a, k, c) exists; however, we will.

We state Ramsey’s theorem for 1-hypergraphs (which is trivial) and for 2-hypergraphs (just

graphs). The 2-hypergraph case (and the a-hypergraph case) is due to Ramsey [8] (see also [4, 6,

7]). The bound we give on R(2, k) seems to be folklore (see [6]).

Def 2.8 The expression ω(1) means a function that goes to infinity monotonically. For example,

blg lg nc.

The following are well known.

Theorem 2.9 Let k ∈ N and c ≥ 2.

1. R(1, k) = 2k − 1.

2. R(1, k, c) = ck − c + 1.

3. R(2, k) ≤
(
2k−2
k−1

)
≤ 22k−0.5 lg(k−1)−Ω(1).
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4. R(2, k, c) ≤ (c(k−1))!
(k−1)!)c ≤ cck−0.5 logc(k−1)+O(c).

5. For all n, for every 2-coloring of
(
[n]
2

)
, there exists a 2-homogenous set H of size at least

1
2
lg n + ω(1). (This follows from Part 3 easily. In fact, all you need is R(2, k) ≤ 22k−Ω(1).)

Note 2.10 Theorem 2.9.2 has an elementary proof. A more sophisticated proof, by David Con-

lon [1] yields R(2, k) ≤ k−E log k
log log k

(
2k
k

)
, where E is some constant. A simple probabilistic argu-

ment shows that R(2, k) ≥ (1 + o(1)) 1
e
√

2
k2k/2. A more sophisticated argument by Spencer [9]

(see [6]), that uses the Lovasz Local Lemma, shows R(2, k) ≥ (1 + o(1))
√

2
e

k2k/2.

We state Ramsey’s theorem on a-hypergraphs [8] (see also [6, 7]).

Theorem 2.11 Let a, k, c ∈ N. For all k ∈ N, R(a, k, c) exists.

3 Summary of Results

We will need both the tower function and Knuth’s arrow notation to state the results.

Notation 3.1

c ↑a k =



ck if a = 0,

ck, if a = 1,

1, if k = 0,

c ↑a−1 (c ↑a (k − 1)), otherwise.

Def 3.2 We define TOW which takes on a variable number of arguments.

1. TOWc(b) = cb.

2. TOWc(b1, . . . , bL) = cb1TOWc(b2,...,bL).

When c is not stated it is assumed to be 2.
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Example 3.3

1. TOW(2k) = 22k.

2. TOW(1, 4k) = 224k .

3. TOW(1) = 2, TOW(1, 1) = 22, TOW(1, 1, 1) = 222 .

The list below contains both who proved what bounds and the results we will prove in this

paper.

1. Ramsey’s proof [8] yields:

(a) R(3, k) ≤ 2 ↑2 (2k − 1) = TOW(1, . . . , 1) where the number of 1’s is 2k − 1.

(b) R(a, k) ≤ 2 ↑a−1 (2k − 1).

2. The Erdős-Rado [3] proof yields:

(a) R(3, k) ≤ 224k−lg(k−2) .

(b) R(a, k) ≤ 2(R(a−1,k−1)+1
a−1 ) + a− 2.

(c) Using the recurrence they obtain the following: For all a ≥ 4, R(a, k) ≤ TOW(1, a−

1, a− 2, . . . , 3, 4k − lg(k − a + 1)− 4(a− 3))).

3. The Conlon-Fox-Sudakov [2] proof yields:

(a) R(3, k) ≤ 2B(k−1)1/222k where B =
(

e√
2π

)3 ∼ 1.28.

(b) If you combine this with the recurrence obtained by Erdős-Rado then one obtains:

i. R(3, k) ≤ TOW(B(k − 1)1/2, 22k).

ii. R(4, k) ≤ TOW(1, 3B(k − 2)1/2, 22k−2).

iii. R(5, k) ≤ TOW(1, 4, 3B(k − 3)1/2, 22k−4).
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iv. For all a ≥ 6, for almost all k,

R(a, k) ≤ TOW(1, a− 1, a− 2, . . . , 4, 3B(k − a + 2)1/2, 22k−2a+6).

4. The Appendix contains an alternative proof of the a-hypergraph Ramsey Theorem based on

the ideas of Conlon-Fox-Sudakov. Since it does not yield better bounds we do not state the

bounds here.

Notation 3.4 PHP stands for Pigeon Hole Principle.

We will need the following lemma whose easy proof we leave to the reader.

Lemma 3.5 For all b, b1, . . . , bL ∈ N the following hold.

1. TOW(b1, . . . , bi, bi+1, bi+2 . . . , bL) ≤ TOW(b1, . . . , 1, bi+1 + lg(bi), bi+2, . . . , bL).

2. TOW(b1, . . . , bL)b = TOW(bb1, b2, . . . , bL).

3. (1 + δ)TOW(b1, . . . , bL) ≤ TOW(b1, b2, . . . , bL + δ).

4. (1 + δ)TOW(b1, . . . , bL)b ≤ TOW(bb1, b2, . . . , bL + δ). (This follows from 1 and 2.)

5. 2TOW(b1,...,bL) = TOW(1, b1, . . . , bL).

6. 2(1+δ)TOW(b1,...,bL)b ≤ TOW(1, bb1, b2, . . . , bL + δ). (This follows from 4 and 5.)

7. lg(c)(TOW(1, . . . , 1)) = 1 (there are c 1’s).

4 Ramsey’s Proof

Theorem 4.1 For almost k R(3, k) ≤ 2 ↑2 (2k − 1) = TOW(1, . . . , 1) where there are 2k − 1

1’s.
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Proof:

Let n be a number to be determined. Let COL be a 2-coloring of
(
[n]
3

)
. We define a sequence

of vertices,

x1, x2, . . . , x2k−1.

Here is the basic idea: Let x1 = 1. This induces the following coloring of
(
[n]−{1}

2

)
:

COL∗(x, y) = COL(x1, x, y).

By Theorem 2.9 there exists a 2-homogeneous set for COL∗ of size 1
2
lg n + ω(1). Keep that 2-

homogeneous set and ignore the remaining points. Let x2 be the least vertex that has been kept

(bigger than x1). Repeat the process.

We describe the construction formally.

CONSTRUCTION

V0 = [n]

Assume 1 ≤ i ≤ 2k − 1 and that Vi−1, x1, x2, . . . , xi−1, c1, . . . , ci−1 are all defined. We define

xi, COL∗, Vi, and ci:

xi = the least number in Vi−1

Vi = Vi−1 − {xi} (We will change this set without changing its name.)

COL∗(x, y) = COL(xi, x, y) for all {x, y} ∈
(

Vi

2

)
Vi = the largest 2-homogeneous set for COL∗

ci = the color of Vi

KEY: for all y, z ∈ Vi, COL(xi, y, z) = ci.

END OF CONSTRUCTION
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When we derive upper bounds on n we will show that the construction can be carried out for

2k − 1 stages. For now assume the construction ends.

We have vertices

x1, x2, . . . , x2k−1

and associated colors

c1, c2, . . . , c2k−1.

There are only two colors, hence, by PHP, there exists i1, . . . , ik such that i1 < · · · < ik and

ci1 = ci2 = · · · = cik

We take this color to be RED. We show that

H = {xi1 , xi2 , . . . , xik}.

is 3-homogenous for COL. For notational convenience we show that COL(xi1 , xi2 , xi3) = RED.

The proof for any 3-set of H is similar. By the definition of ci1 (∀A ∈
(

Vi1
−{xi1

}
2

)
)[COL(A ∪

{xi1)}) = ci] In particular

COL(xi1 , xi2 , xi3) = ci1 = RED.

We now see how large n must be so that the construction can be carried out. By Theorem 2.9,

if k is large, at every iteration Vi gets reduced by a logarithm, cut in half, and then an ω(1) is added.

Using this it is easy to show that, for almost all k,

|Vj| ≥
1

2
(lg(j) n) + ω(1).
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We want to run this iteration 2k − 1 times Hence we need

|V2k−1| ≥
1

2
log

(2k−1)
2 n + ω(1) ≥ 1.

We can take n = TOW(1, . . . , 1) where 1 appears 2k − 1 times, and use Lemma 3.5.

Note 4.2 The proof of Theorem 4.1 generalizes to c-colors to yield

R(3, k, c) ≤ c ↑2 (ck − c + 1) = TOWc(1, . . . , 1)

where the number of 1’s is ck − c + 1.

We now prove Ramsey’s Theorem for a-hypergraphs.

Theorem 4.3 For all a ≥ 1, for all k ≥ 1, R(a, k) ≤ 2 ↑a−1 (2k − 1).

Proof:

We prove this by induction on a. Note that when we have the theorem for a we have it for a

and for all k ≥ 1.

Base Case: If a = 1 then, for all k ≥ 1, R(1, k) = 2k − 1 ≤ 2 ↑0 (2k − 1) = 4k − 2.

Induction Step: We assume that, for all k, R(a− 1, k) ≤ 2 ↑a−2 (2k − 1).

Let k ≥ 1. Let n be a number to be determined later. Let COL be a 2-coloring of
(
[n]
a

)
. We

show that there is an a-homogenous set for COL of size k.

CONSTRUCTION

V0 =]n].

Assume 1 ≤ i ≤ 2k − 1 and that Vi−1, x1, x2, . . . , xi−1, c1, . . . , ci−1 are all defined. We define

xi, COL∗, Vi, and ci:
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xi = the least number in Vi−1

Vi = Vi−1 − {xi} (We will change this set without changing its name.)

COL∗(A) = COL(xi ∪ A) for all A ∈
(

Vi

a−1

)
)

Vi = the largest a− 1-homogeneous set for COL∗

ci = the color of Vi

KEY: For all 1 ≤ i ≤ 2k − 1, (∀A ∈
(

Vi

a−1

)
)[COL(A ∪ xi) = ci]

END OF CONSTRUCTION

When we derive upper bounds on n we will show that the construction can be carried out for

2k − 1 stages. For now assume the construction ends.

We have vertices

x1, x2, . . . , x2k−1

and associated colors

c1, c2, . . . , c2k−1.

There are only two colors, hence, by PHP, there exists i1, . . . , ik such that i1 < · · · < ik and

ci1 = ci2 = · · · = cik

We take this color to be RED. We show that

H = {xi1 , xi2 , . . . , xik}.
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is a-homogenous for COL. For notational convenience we show that COL(xi1 , . . . , xia) = RED.

The proof for any a-set of H is similar. By the definition of ci1 (∀A ∈
(

Vi1
a−1

)
)[COL(A∪ xi1) = ci]

In particular

COL(xi1 , . . . , xia) = ci1 = RED.

We show that if n = 2 ↑a−1 (2k− 1) then the construction can be carried out for 2k− 1 stages.

Claim 1: For all 0 ≤ i ≤ 2k − 1, |Vi| ≥ 2 ↑a−1 (2k − (i + 1)).

Proof of Claim 1: We prove this claim by induction on i. For the base case note that

|V0| = n = 2 ↑a−1 (2k − 1).

Assume |Vi−1| ≥ 2 ↑a−1 (2k−i). By the definition of the uparrow function and by the inductive

hypothesis of the theorem,

|Vi−1| ≥ 2 ↑a−1 (2k − i) = 2 ↑a−2 (2 ↑a−1 (2k − (i + 1))) ≥ R(a− 1, 2 ↑a−1 (2k − (i + 1))).

By the construction Vi is the result of applying the (a−1)-ary Ramsey Theorem to a 2-coloring

of
(

Vi−1

a

)
. Hence |Vi| ≥ 2 ↑a−1 (2k − (i + 1)).

End of Proof of Claim 1

By Claim 1 if n = 2 ↑a−1 (2k − 1) then the construction can be carried out for 2k − 1 stages.

Hence R(a, k) ≤ 2 ↑a−1 (2k − 1).

The proof of Theorem 4.1 is actually an ω2-induction that is similar in structure to the original

proof of van der Warden’s theorem [5, 6, 10].

Note 4.4 The proof of Theorem 4.3 generalizes to c colors yielding

R(a, k, c) ≤ c ↑a−1 (ck − c + 1).
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5 The Erdős-Rado Proof

Why does Ramsey’s proof yield such large upper bounds? Recall that in Ramsey’s proof we do

the following:

• Color a node by using Ramsey’s theorem (on graphs). This cuts the number of nodes down

by a log (from m to Θ(log m)). This is done 2k − 1 times.

• After the nodes are colored we use PHP once. This will cut the number of nodes in half.

The key to the large bounds is the number of times we use Ramsey’s theorem. The key insight

of the proof by Erdős and Rado [3] is that they use PHP many times but Ramsey’s theorem only

once. In summary they do the following:

• Color an edge by using PHP. This cuts the number of nodes in half. This is done R(2, k −

1) + 1 times.

• After all the edges of a complete graph are colored we use Ramsey’s theorem. This will cut

the number of nodes down by a log.

We now proceed formally.

Theorem 5.1 For almost all k, R(3, k) ≤ 224k−lg(k−2)
.

Proof:

Let n be a number to be determined. Let COL be a 2-coloring of
(
[n]
3

)
. We define a sequence

of vertices,

x1, x2, . . . , xR(2,k−1)+1.

Recall the definition of a 1-homogeneous set for a coloring of singletons from the note follow-

ing Definition 2.4. We will use it here.
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Here is the intuition: Let x1 = 1. Let x2 = 2. The vertices x1, x2 induces the following

coloring of {3, . . . , n}.

COL∗(y) = COL(x1, x2, y).

Let V1 be a 1-homogeneous for COL∗ of size at least n−2
2

. Let COL∗∗(x1, x2) be the color of V1.

Let x3 be the least vertex left (bigger than x2).

The number x3 induces two colorings of V1 − {x3}:

(∀y ∈ V1 − {x3})[COL∗
1(y) = COL(x1, x3, y)]

(∀y ∈ V1 − {x3})[COL∗
2(y) = COL(x2, x3, y)]

Let V2 be a 1-homogeneous for COL∗
1 of size |V1|−1

2
. Let COL∗∗(x1, x3) be the color of V2.

Restrict COL∗
2 to elements of V2, though still call it COL∗

2. We reuse the variable name V2 to be

a 1-homogeneous for COL∗
2 of size at least |V2|

2
. Let COL∗∗(x1, x3) be the color of V2. Let x4 be

the least element of V2. Repeat the process.

We describe the construction formally.

CONSTRUCTION

x1 = 1

V1 = [n]− {x1}

Let 2 ≤ i ≤ R(2, k − 1) + 1. Assume that x1, . . . , xi−1, Vi−1, and COL∗∗ :
({x1,...,xi−1}

2

)
→

{RED, BLUE} are defined.

xi = the least element of Vi−1

Vi = Vi−1 − {xi} (We will change this set without changing its name).
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We define COL∗∗(x1, xi), COL∗∗(x2, xi), . . ., COL∗∗(xi−1, xi). We will also define smaller

and smaller sets Vi. We will keep the variable name Vi throughout.

For j = 1 to i− 1

1. COL∗ : Vi → {RED, BLUE} is defined by COL∗(y) = COL(xj, xi, y).

2. Let Vi be redefined as the largest 1-homogeneous set for COL∗. Note that |Vi| decreases by

at most half.

3. COL∗∗(xj, xi) is the color of Vi.

KEY: For all 1 ≤ i1 < i2 ≤ i, for all y ∈ Vi, COL(xi1 , xi2 , y) = COL∗∗(xi1 , xi2).

END OF CONSTRUCTION

When we derive upper bounds on n we will show that the the construction can be carried out

for R(2, k − 1) + 1 stages. For now assume the construction ends.

We have vertices

X = {x1, x2, . . . , xR(2,k−1)+1}

and a 2-coloring COL∗∗ of
(

X
2

)
. By the definition of R(2, k − 1) + 1 there exists a set

H = {xi1 , . . . , xik}.

such that the first k − 1 elements of it are a 2-homogenous set for COL∗∗. Let the color of this

2-homogenous set be RED. We show that H (including xik) is a 3-homogenous set for COL. For

notational convenience we show that COL(xi1 , xi2 , xi3) = RED. The proof for any 3-set of H is

similar.

By the definition of COL∗∗ for all y ∈ Vi2 , COL(xi1 , xi2 , y) = COL∗∗(xi1 , xi2) = RED. In

particular COL(xi1 , xi2 , xi3) = RED.
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We now see how large n must be so that the construction be carried out. Note that in stage i

|Vi| be decreases by at most half, i times. Hence |Vi+1| ≥ |Vi|
2i .

Therefore

|Vi| ≥
|V1|

21+2+···+(i−1)
≥ n− 1

2(i−1)2
.

We want |VR(2,k−1)+1| ≥ 1. It suffice so take n = 2R(2,k−1)2 + 1.

By Theorem 2.9

R(2, k − 1)2 + 1 ≤ (22k−0.5 lg(k−2))2 ≤ 24k−lg(k−2).

Hence

R(3, k) ≤ 224k−lg(k−2)

.

Note 5.2 A slightly better upper bound for R(3, k) can be obtained by using Conlon’s upper bound

on R(2, k) given in Note 2.10.

Note 5.3 The proof of Theorem 5.1 generalizes to c-colors yielding

R(3, k, c) ≤ cc2ck−logc(k−2)+O(c)

.

We state Ramsey’s theorem on a-hypergraphs [8] (see also [6, 7]).

Theorem 5.4

1. For all a ≥ 2, for all k, R(a, k) ≤ 2(R(a−1,k−1)+1
a−1 ) + a− 2.

2. R(3, k) ≤ TOW(1, 4k − lg(k − 2)).
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3. For all a ≥ 4, for almost all k,

R(a, k) ≤ TOW(1, a− 1, a− 2, . . . , 3, 4k − lg(k − a + 1)− 4(a− 3)).

Proof:

1) Assume that R(a− 1, k − 1) exists and a ≥ 2.

CONSTRUCTION

x1 = 1

... =
...

xa−2 = a− 2

Va−2 = [n]− {x1, . . . , xa−2}. We start indexing here for convenience.

Let a − 1 ≤ i ≤ R(a − 1, k − 1) + 1. Assume that x1, . . . , xi−1, Vi−1, and COL∗∗ :({x1,...,xi−1}
a−1

)
→ {RED, BLUE} are defined.

xi = the least element of Vi−1

Vi = Vi−1 − {xi} (We will change this set without changing its name).

We define COL∗∗(A ∪ {xi}) for every A ∈
({x1,...,xi−1}

a−1

)
. We will also define smaller and

smaller sets Vi.

For A ∈
({x1,...,xi−1}

a−1

)
1. COL∗ : Vi → {RED, BLUE} is defined by COL∗(y) = COL(A ∪ {y}).

2. Let Vi be redefined as the largest 1-homogeneous set for COL∗. Note that |Vi| decreases by

at most half.

3. COL∗∗(A ∪ {xi}) is the color of Vi.

KEY: For all l ≤ i1 < · · · < ia ≤ i, COL(xi1 , . . . , xia) = COL∗∗(xi1 , . . . , xia−1).
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END OF CONSTRUCTION

When we derive upper bounds on n we will show that the the construction can be carried out

for R(a− 1, k − 1) + 1 stages. For now assume the construction ends.

We have vertices

X = {x1, x2, . . . , xR(a−1,k−1)+1}

and a 2-coloring COL∗∗ of
(

X
2

)
. By the definition of R(a− 1, k − 1) + 1 there exists a set

H = {xi1 , . . . , xik}.

such that the first k − 1 elements of it are a (a − 1)-homogenous set for COL∗∗. Let the color of

this (a − 1)-homogenous set be RED. We show that H (including xik) is a a-homogenous set for

COL. For notational convenience we show that COL(xi1 , . . . , xia) = RED. The proof for any

a-set of H is similar, including the case where the last vertex is xik .

By the definition of COL∗∗ for all y ∈ Vi2 , COL(xi1 , . . . , xia−1 , y) = COL∗∗(xi1 , . . . , xia−1) =

RED. In particular COL(xi1 , . . . , xia) = RED.

We now see how large n must be so that the construction can be carried out. Note that during

stage i there will be
(

i
a−2

)
times where |Vi| decreases by at most half. Hence |Vi+1| ≥ |Vi|

2(
i

a−2)
.

Therefore

|Vi| ≥
|Va−2|

2(a−2
a−2)+(a−1

a−2)+( a
a−2)+···+(i−1

a−2)
=

n− a + 2

2( i
a−1)

.

We want |VR(a−1,k−1)+1| ≥ 1.

Hence we need

|VR(a−1,k−1)+1| ≥
n− a + 2

2(R(a−1,k−1)+1
a−1 )

≥ 1
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n− a + 2 ≥ 2(R(a−1,k−1)+1
a−1 )

Hence

n ≥ 2(R(a−1,k−1)+1
a−1 ) + a− 2.

Therefore

R(a, k) ≤ 2(R(a−1,k−1)+1
a−1 ) + a− 2.

2) This is a restatement of Theorem 5.1.

3) We use Lemma 3.5 throughout this proof implicitly. We will also use a weak form of the

recurrence from Part 1, namely:

R(a, k) ≤ 2R(a−1,k−1)a−1

.

We prove the bound on R(a, k) for a ≥ 4 by induction on a.

Base Case: a = 4: By Part 2, R(3, k) ≤ TOW(1, 4k − lg(k − 2)). Hence

R(4, k) ≤ 2R(3,k−1)2 ≤ TOW(1, 3, 4k−log(k−3)−4) = TOW(1, 3, 4k−log(k−3)−4×(4−3)).

Induction Step: We assume

R(a− 1, k − 1) ≤ TOW(1, a− 2, . . . , 3, 4(k − 1)− lg((k − 1)− (a− 1) + 1)− 4(a− 4))

= TOW(1, a− 2, . . . , 3, 4k − 4− lg(k − a + 1)− 4(a− 3)).

Hence
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R(a, k) ≤ 2R(a−1,k−1)a−1 ≤ TOW(1, a− 1, a− 2, . . . , 3, 4k − lg(k − a + 1)− 4(a− 3)).

Corollary 5.5 For all a ≥ 3, for almost all k, R(a, k) ≤ TOW(1, 1, . . . , 1, 4k) where there are

a− 2 1’s. (This is often called 2 to the 2 to the 2 . . ., a− 2 times and then a 4k at the top.)

Note 5.6 The proof of Theorem 5.4 easily generalizes to yield the following.

1. For all a ≥ 2, for all k, R(a, k, c) ≤ c(
R(a−1,k−1,c)+1

a−1 ) + a− 2.

2. R(3, k, c) ≤ TOWc(1, 2ck − logc(k − 2) + O(c)).

3. For all a ≥ 4, for almost all k,

R(a, k, c) ≤ TOWc(1, a− 1, a− 2, . . . , 3, 2ck − logc(k − a + 1) + O(c)).

6 The Conlon-Fox-Sudakov Proof

Recall the following high level description of the Erdős-Rado proof:

• Color an edge by using PHP. This cuts the number of nodes in half. This is done R(2, k −

1) + 1 times.

• After all the edges of a complete graph are colored we use Ramsey’s theorem. This will cut

the number of nodes down by a log.

Every time we colored an edge we cut the number of vertices in half. Could we color fewer

edges? Consider the following scenario:
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COL∗∗(x1, x2) = RED and COL∗∗(x1, x3) = BLUE. Intuitively the edge from x2 to x3 might

not be that useful to us. Therefore we will not color that edge!

Two questions come to mind:

Question: How will we determine which edges are potentially useful?

Answer: We will associate to each xi a 2-colored 1-hypergraph Gi that keeps track of which edges

(xi′ , xi) are colored, and if so what they are colored. For example, if COL∗∗(x7, x9) = RED then

(7, RED) ∈ G9. (We use the terminology 2-colored 1-hypergraphs and the notation Gi so that

when we extend this to the a-hypergraph Ramsey Theorem, in the appendix, the similarity will be

clear.)

We will have x1 = 1 and G1 = ∅. Say we already have

x1, . . . , xi

G1, . . . , Gi.

Assume i′ < i. Assume that for each of COL∗∗(x1, xi), . . . , COL∗∗(xi′−1, xi) we have either de-

fined it or intentionally chose to not define it. We are wondering if we should define COL∗∗(xi′ , xi).

At this point the vertices of Gi are a subsets of {1, . . . , i′ − 1}. If Gi is equal (not just isomorphic)

to Gi′ (as colored 1-hypergraphs) then we will define COL∗∗(xi′ , xi) and add i′ to Gi with that

color. If Gi is not equal to Gi′ then we will not define COL∗∗(xi′ , xi).

Question: Since we only color some of the edges how will we use Ramsey’s theorem?

Answer: We will not. Instead we go until one of the 1-hypergraphs has k monochromatic points.

Hence we will be using the 1-ary Ramsey Theorem. (When we prove the a-hypergraph Ramsey

theorem we will use the (a− 2)-hypergraph Ramsey Theorem.)

We need a lemma that will help us in both the case of c = 2 and the case of general c.
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Lemma 6.1 Let S ⊆ [c]∗ be such that no string in S has ≥ k−1 of any i ∈ [c]. Then the following

hold:

1. ∑
σ∈S

|σ| ≤ k3/2−c/2cc(k−1)+2

(
e√
2π

)c+1

2. If c = 2 then the summation is bounded above by
(

e√
2π

)3
k1/222k.

Proof:

Let

A =
∑

{|σ| : σ ∈ [c]∗, σ contains at most k − 1 of any element}.

Grouping by the number of appearances of each element of [c], we get

A =
k−1∑
j1=0

· · ·
k−1∑
jc=0

(j1 + . . . + jc)
(j1 + . . . + jc)!

j1! · · · jc!
.

We may split up the innermost sum to get c different sums, each containing a single ji in the

summand. Since each of these sums is equal, we get

A = c ·
k−1∑
j1=0

j1 ·
k−1∑
j2=0

· · ·
k−1∑
jc=0

(j1 + . . . + jc)!

j1! · · · jc!
.

We split this up into the part which depends on jc, and the part which doesn’t:

A = c ·
k−1∑
j1=0

j1 ·
k−1∑
j2=0

· · ·
k−1∑
jc=0

(j1 + . . . + jc−1)!

j1! · · · jc−1!

(
j1 + . . . + jc

jc

)
. (1)

Claim For all `, with 0 ≤ ` ≤ c− 1,

A ≤ c ·
k−1∑
j1=0

j1∏`−1
i=0(j1 + ik)

·
k−1∑
j2=0

· · ·
k−1∑

jc−`=0

B` ·
(

j1 + . . . + jc−` + `k

jc−`

)
,
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where

B` =
(j1 + . . . + jc−`−1 + `k)!

j1! · · · jc−`−1!(k − 1)!`

does not depend on jc−`. Note that, in the case ` = c − 1, all the inner sums are gone, so we are

left with

A ≤ c ·
k−1∑
j1=0

j1∏c−2
i=0(j1 + ik)

·Bc−1 ·
(

j1 + (c− 1)k

j1

)
.

Proof of Claim

We will prove this by induction on `. The base case is Equation 1.

For the inductive step, we need only to look at the innermost sum, whose value we call S.

S =
k−1∑

jc−`=0

B` ·
(

j1 + . . . + jc−` + `k

jc−`

)

= B` ·
k−1∑

jc−`=0

(
j1 + . . . + jc−` + `k

jc−`

)

= B` ·
(

j1 + . . . + jc−`−1 + `k + k

k − 1

)
.

Here we used Pascal’s 2nd Identity:

n∑
b=0

(
a + b

b

)
=

(
a + n + 1

n

)
.

with a = j1 + . . . + jc−`−1 + `k.
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Writing our answer out in terms of factorials, we get

S =
(j1 + . . . + jc−`−1 + `k)!

j1! · · · jc−`−1!(k − 1)!`
· (j1 + . . . + jc−`−1 + (` + 1)k)!

(k − 1)!(j1 + . . . + jc−`−1 + `k + 1)!

=
(j1 + . . . + jc−`−1 + `k)!

(j1 + . . . + jc−`−1 + `k + 1)!
· (j1 + . . . + jc−`−1 + (` + 1)k)!

j1! · · · jc−`−1!(k − 1)!`+1

=

(
1

j1 + . . . + jc−`−1 + `k + 1

)
· (j1 + . . . + jc−`−1 + (` + 1)k)!

j1! · · · jc−`−1!(k − 1)!`+1

≤
(

1

j1 + `k

)
· (j1 + . . . + jc−`−1 + (` + 1)k)!

j1! · · · jc−`−1!(k − 1)!`+1

=

(
1

j1 + `k

) (
(j1 + . . . + jc−`−2 + (` + 1)k)!

j1! · · · jc−`−2!(k − 1)!`+1

) (
j1 + . . . + jc−`−1 + (` + 1)k

jc−`−1

)
.

=

(
1

j1 + `k

)
B`+1

(
j1 + . . . + jc−`−1 + (` + 1)k

jc−`−1

)
.

Reinserting this value S back into the formula for A, and factoring the fraction 1
j1+`k

to the

outermost sum, we get the desired result.

The induction stops when we hit the outermost sum, where the format of the summand changes.

End of Proof of Claim

Using this claim, with ` = c− 1, we get the bound

A ≤ c ·
k−1∑
j1=0

j1∏c−2
i=0(j1 + ik)

·Bc−1 ·
(

j1 + (c− 1)k

j1

)
.

Note the first fraction: the j1 in the numerator cancels with the i = 0 term of the denominator. As

for the rest of the terms, they reach their maxima when j1 = 0.
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Renaming j1 to be n and filling in the value of Bc−1, we get

A ≤ c ·
k−1∑
n=0

n∏c−2
i=0(n + ik)

· ((c− 1)k)!

(k − 1)!c−1
·
(

n + (c− 1)k

n

)

≤ c∏c−2
i=1 ik

· ((c− 1)k)!

(k − 1)!c−1

k−1∑
n=0

(
n + (c− 1)k

n

)

=
c

(c− 2)!kc−2
· ((c− 1)k)!

(k − 1)!c−1

k−1∑
n=0

(
n + (c− 1)k

n

)

=
c

(c− 2)!kc−2
· ((c− 1)k)!

(k − 1)!c−1
·
(

ck

k − 1

)

=
c

(c− 2)!kc−2
· ((c− 1)k)!

(k − 1)!c−1
· (ck)!

(k − 1)!((c− 1)k + 1)!

≤ c

(c− 2)!kc−2
· ((c− 1)k)!

((c− 1)k + 1)!
· (ck)!

(k − 1)!c

=
c

(c− 2)!kc−2
· 1

(c− 1)k + 1
· (ck)!

(k − 1)!c

≤ c2k

c!
· (ck)!

k!c

Now we use the bounds associated with Stirling’s approximation:

√
2πn

(n

e

)n

≤ n! ≤ e
√

n
(n

e

)n
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A ≤ c2k

c!
· e(ck)1/2(ck)ck

(2πk)c/2kck

≤ e

c!
· cck+5/2k3/2−c/2(2π)−c/2

≤ e√
2πc(c/e)c

· cck+5/2k3/2−c/2(2π)−c/2

≤ cc(k−1)+2k3/2−c/2

(
e√
2π

)c+1

.

The following proof is by Conlon-Fox-Sudakov [2]; however, we do a more careful analysis

with the aide of Lemma 6.1.2.

Theorem 6.2 For all k, R(3, k) ≤ 2B(k−1)1/222k
where B = ( e√

2π
)3 ∼ 1.28.

Proof: Let n be a number to be determined. Let COL be a 2-coloring of
(
[n]
3

)
.

We define a finite sequence of vertices x1, x2, . . . , xL where we will bound L later. For every

1 ≤ i ≤ L we will also define Gi, a 2-colored 1-hypergraph. We will represent Gi as a subset of

N × {RED, BLUE}. For example, Gi could be {(1, RED), (4, BLUE), (5, RED)}. The notation

Gi = Gi ∪ {(12, RED)} means that we add the edge {12} to Gi and color it RED. When we

refer to the vertices of the Gi 1-hypergraph we will often refer to them as 1-edges since (1) in a

1-hypergraph, vertices are edges, and (2) the proof will generalize to a-hypergraphs more easily.

We use the term 1-edges so the reader will remember they are vertices also.

The construction will stop when one of the Gi has a 1-homogenous set of size k − 1 (more

commonly called a set of k − 1 monochromatic points). We will later show that this must happen.

Recall the definition of a 1-homogeneous set relative to a coloring of a 1-hypergraph from the

note following Definition 2.4. We will use it here.
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Here is the intuition: Let x1 = 1 and x2 = 2. Let G1 = ∅. The vertices x1, x2 induces the

following coloring of {3, . . . , n}.

COL∗(y) = COL(x1, x2, y).

Let V1 be a 1-homogeneous set of size at least n−2
2

. We will only work within V1 from now on. Let

COL∗∗(x1, x2) be the color of V1. Let G2 = {(1, COL∗∗(x1, x2)}.

Let x3 be the least vertex in V1. The number x3 induces two colorings of V1 − {x3}:

COL∗
1,3(y) = COL(x1, x3, y)

COL∗
2,3(y) = COL(x2, x3, y)

Let V2 be a 1-homogeneous for COL∗
1,3 of size |V1|−1

2
. Let COL∗∗(x1, x3) be the color of V2.

We also set G3 = {(1, COL∗∗(x1, x3))}, though we will may add to G3 later. Restrict COL∗
2,3 to

elements of V2, though still call it COL∗
2,3. We will only work within V2 from now on.

Will we color (x2, x3)? If G2 = G3 (that is, if they both colored 1 the same) then YES. If not

then we won’t. This is the KEY— every time we color an edge we divide V in half. We will not

always color an edge- only the promising ones. Hence V will not decrease as quickly as was done

in the proof of Theorem 5.1.

If G2 = G3 then we reuse the variable name V2 to be a 1-homogeneous for COL∗
2,3 of size at

least |V2|
2

. Let COL∗∗(x2, x3) be the color of V2. Add (2, COL∗∗(x2, x3)) to G3.

If G2 6= G3 then we do not color (x2, x3) and do not add anything to G3.

In the actual construction we will not define COL∗∗ since the information it contains will be

stored in the 2-colored 1-hypergraphs Gi.

We describe the construction formally.

Def 6.3 Let Gi1 , Gi2 be 2-colored 1-hypergraphs. Let j ∈ N.
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1. Gi1 and Gi2 agree on j if, either (1) Gi1 and Gi2 both have 1-edge j and color it the same or,

(2) neither Gi1 nor Gi2 has 1-edge j.

2. Gi1 and Gi2 agree on {1, . . . , j} if Gi1 and Gi2 agree on all of the 1-edges in the set

{1, . . . , j}.

3. Gi1 and Gi2 disagree on j if either (1) Gi1 and Gi2 both have 1-edge j and color it differently

or (2) one of them has 1-edge j but the other one does not.

CONSTRUCTION

x1 = 1

x2 = 2

G1 = ∅

V1 = [n]− {x1, x2}

COL∗(y) = COL(x1, x2, y) for all y ∈ V1

V2 = the largest 1-homogeneous set for COL∗

G2 = {(1, the color of V2)}

KEY: for all y ∈ V2, COL(x1, x2, y) is the color of 1 in G2.

Let i ≥ 2, and assume that Vi−1, x1, . . . , xi−1, G1, . . . , Gi−1 are defined. If Gi−1 has a 1-

homogenous set of size k − 1 then stop (yes, k − 1- this is not a typo). Otherwise proceed.

Gi = ∅ (This will change.)

xi = the least element of Vi−1

Vi = Vi−1 − {xi} (We will change this set without changing its name.)

We will add some colored 1-edges to Gi. We will also define smaller and smaller sets Vi. We

will keep the variable name Vi throughout.

For j = 0 to i− 1
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1. If Gj = Gi then proceed, else go to the next value of j. (Note that we are asking if Gj = Gi

at a time when Gi’s vertex set is a subset of {1, . . . , j − 1}.)

2. COL∗ : Vi → {RED, BLUE} is defined by COL∗(y) = COL(xj, xi, y).

3. Vi is the largest 1-homogeneous set for COL∗. Note that |Vi| decreases by at most half.

4. Gi = Gi ∪ {(j, color of Vi)}

KEY: Let 1 ≤ i1 < i2 ≤ i such that i1 is a 1-edge of Gi2 . Let ci1 be such that (i1, ci1) ∈ Gi2 . For

all y ∈ Vi, COL(xi1 , xi2 , y) = ci1 .

END OF CONSTRUCTION

When we derive upper bounds on n we will show that the construction ends. For now assume

the construction ends.

When the construction ends we have a GL that has a 1-homogenous set of size k − 1. We

assume the color is RED. Let {i1 < i2 < · · · < ik−1} be the 1-homogenous set. Define ik = L.

We show that

H = {xi1 , . . . , xik}

is a 3-homogenous set with respect to the original coloring COL. For notational convenience we

show that COL(xi1 , xi2 , xi3) = RED. The proof for any 3-set of H is similar, even for the case

where the last point is xL.

Look at Gi2 . Since i2 is a 1-edge in GL we know that Gi2 and GL agree on all 1-edges in

{1, . . . , i2 − 1}. Since (i1, RED) ∈ GL and i1 ≤ i2 − 1, (i1, RED) ∈ Gi2 . Hence, for all y ∈ Vi2 ,

COL(xi1 , xi2 , y) = RED. In particular COL(xi1 , xi2 , xi3) = RED.

We now establish bounds on n.

Def 6.4 Let G = V be a 2-colored 1-hypergraph on vertex set V = {L1 < · · · < Lm} and edge

set E. Define squash(G) to be G′ = (V ′, E ′), the following 2-colored 1-hypergraph:
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• The vertex sets V ′ = {1, . . . ,m}.

• For each edge {Li} in E the edge {i} is in E ′.

• The color of {i} in G′ is the color of {Li} in G.

Claim 1: For all 2 ≤ i1 < i2, squash(Gi1) 6= squash(Gi2).

Proof of Claim 1: Assume, by way of contradiction, that i1 < i2 and squash(Gi1) = squash(Gi2).

Let Gi1 have vertex set U1. Let f1 be the isomorphism that maps U1 to the vertex set of squash(Gi1).

Note that f1 is order preserving. If f1 is applied to a number not in U1 then the result is undefined.

Let U2 and f2 be defined similarly for Gi2 .

We will prove that, for all 1 ≤ j ≤ i1 − 1, (1) f1 and f2 agree on {1, . . . , j}, (2) Gi1 and Gi2

agree on {1, . . . , j}. The proof will be by induction on j.

Base Case: j = 1. Since 2 ≤ i1, i2, the edge E = {1} is in both Gi1 and Gi2 , hence f1(1) = f2(1).

If the color of E is different in Gi1 and Gi2 then squash(Gi1) 6= squash(Gi2). Hence the color of

E is the same in both graphs. Hence Gi1 and Gi2 agree on {1}.

Induction Step: Assume that Gi1 and Gi2 agree on {1, 2, . . . , j− 1}. Assume that f1 and f2 agree

on {1, . . . , j − 1}. We use these assumptions without stating them. Look at what happens when

Gi1 (Gi2) has to decide what to do with j.

If Gj and Gi1 agree on {1, . . . , j − 1} then, since j < i1, Gj also agrees with Gi2 on {1, . . . , j−

1}. Hence edge E = {j} will be put into both Gi1 and Gi2 . Hence j will be a vertex in both Gi1

and Gi2 so f1(j) = f2(j). Since f1 and f2 agree on {1, . . . , j} and squash(Gi1) = squash(Gi2),

E must be the same color in Gi1 and Gi2 . Hence Gi1 and Gi2 agree on {1, . . . , j}.

If Gj does not agree with Gi1 on {1, . . . , j− 1} then there must be an edge E ∈ {1, . . . , j− 1}

such that Gj and Gi1 disagree on E. Hence Gj and Gi2 disagree on E. Thus j will not be made a

vertex of Gi1 or Gi2 ever. Hence both f1(j) and f2(j) are undefined. The edge E is not added to

Gi1 or Gi2 in stage j. Since Gi1 and Gi2 agree on {1, . . . , j − 1} they agree on {1, . . . , j}.
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We now know that Gi1 and Gi2 agree on {1, . . . , i1 − 1}. Note that Gi1 only has vertices

in {1, . . . , i1 − 1}. Look at stage i1 in the construction of Gi2 . Since Gi1 agrees with Gi2 on

{1, . . . , i1 − 1} i1 is an vertex in Gi2 . At that point Gi2 will have more vertices then Gi1 hence

squash(Gi1) 6= squash(Gi2). This is a contradiction.

End of Proof of Claim 1

We now bound L, the length of the sequence. The sequence G1, G2, . . . , will end when some

Gi has 2k − 3 points in it (so at least k − 1 must be the same color) or earlier. For all i, map Gi

to squash(Gi). This mapping is 1-1 by Claim 1. Hence the length of the sequence is bounded by

the number of 2-colored 1-hypergraphs on an initial segment of {1, . . . , 2k− 3} so L ≤ 20 + · · ·+

22k−3 ≤ 22k−2 − 1. We have shown the construction terminates.

Strangely enough, this is not quite what we care about when we are bounding n. We care about

the number of edges in all of the Gi’s since each edge at most halves the number of vertices.

By Lemma 6.1, the number of edges in all of the Gi is bounded by B(k − 1)1/222k where

B =
(

e√
2π

)3. Hence the number of times |V | is cut in at most half is bounded by that same

quantity. Hence it suffices to take n = 2B(k−1)1/222k .

Note 6.5 For c ≥ 2 let Bc =
(

e√
2π

)c+1. The proof of Theorem 6.2 generalize to c colors yielding

R(3, k, c) ≤ cBc(k−1)1/2cck .

Theorem 6.6 Throughout this theorem B = ( e√
2π

)3 ∼ 1.28.

1. R(3, k) ≤ TOW(B(k − 1)1/2, 22k).

2. R(4, k) ≤ TOW(1, 3B(k − 2)1/2, 22k−2).

3. R(5, k) ≤ TOW(1, 4, 3B(k − 3)1/2, 22k−4).
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4. For all a ≥ 6, for almost all k,

R(a, k) ≤ TOW(1, a− 1, a− 2, . . . , 4, 3B(k − a + 2)1/2, 22k−2a+6)

Proof:

Part 1 is a restatement of Theorem 6.2.

From Theorem 5.4 we have R(a, k) ≤ 2R(a−1,k−1)a−1
. We apply this recurrence to Part 1 to get

Part 2, and to Part 2 to get Part 3. We then use it to get Part 4 by induction.

Note 6.7 For c ≥ 2 let Bc =
(

e√
2π

)c+1. The proof of Theorem 6.6 generalize to c colors yielding

the following.

1. R(3, k, c) ≤ TOWc(Bc(k − 1)1/2, cck).

2. R(4, k, c) ≤ TOWc(1, 3B(k − 2)1/2, cck−c).

3. R(5, k, c) ≤ TOWc(1, 4, 3B(k − 3)1/2, cck−2c).

4. For all a ≥ 6, for almost all k,

R(a, k, c) ≤ TOWc(1, a− 1, a− 2, . . . , 4, 3B(k − a + 2)1/2, cck−ac+3c)

7 Open Problems

The best known lower bounds are attributed to Erdős and Hajnal in [6]. They are as follows:

1. R(3, k) ≥ 2Ω(k2) by a simple probabilistic argument.

2. R(a, k) ≥ TOW(1, . . . , 1, Ω(k2)) (a−1 1’s) by the lower bound on R(3, k) and the stepping

up lemma.
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For 4 colors the situation is very different. Erdős and Hajnal showed that

R(3, k, 4) ≥ 22Ω(k)

.

Obtaining matching upper and lower bounds for the hypergraph Ramsey Numbers seems to be

a hard open problem. We suspect that a bound of the form R(a, k) ≤ 22k+o(k) can be obtained.
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A Extending Conlon-Fox-Sudakov to a-Hypergraph Ramsey

In this appendix we extend the Conlon-Fox-Sudakov proof to prove the a-hypergraph Ramsey

Theorem. Unfortunately it does not yield better bounds on R(a, k, 2). We include it in the hope

that in the future someone may modify the construction, or our analysis of it, to yield better bounds.

In order to prove an upper bound on R(a, k)) (and R(a, k, c)) we need a lemma similar to

Lemma 6.1. The lemma below gives a crude estimate. It is possible that a more careful bound

would lead to a better analysis of the construction and hence to a better bound on the hypergraph

Ramsey numbers.

Lemma A.1 Let S be the subset of c-colored complete (a− 2)-hypergraphs whose vertex sets are

an initial segments of N and that have no (a− 2)-homogenous set of size k − 1. Then

∑
(V,E,COL)∈S

|E| ≤ R(a− 2, k − 1, c)a−1cR(a−2,k−1,c)a−2

.
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Proof:

The largest size of V such that a c-colored (a−2)-hypergraph (V, E) has no (a−2)-homogenous

set of size k − 1 is bounded above by R(a− 2, k − 1, c). Hence we want to bound.

R(a−2,k−1,c)∑
i=1

∑
(V,E,COL)∈S,|V |=i

|E| ≤
R(a−2,k−1,c)∑

i=1

∑
(V,E,COL)∈S,|V |=i

ia−2.

The number of c-colored (a − 2)-hypergraphs on i vertices is bounded above by cia−2 . Hence

we can bound the above sum by

∑R(a−2,k−1,c)
i=1 cia−2

ia−2 ≤ R(a− 2, k − 1, c)2R(a−2,k−1,c)a−2

R(a− 2, k − 1, c)a−2

≤ R(a− 2, k − 1, c)a−12R(a−2,k−1,c)a−2

Theorem A.2 For all a ≥ 3, for all k ≥ 3

R(a, k) ≤ 2R(a−2,k−1)a−12R(a−2,k−1)a−2

.

Proof:

Let n be a number to be determined. Let COL be a 2-coloring of
(
[n]
a

)
.

We define a finite sequence of vertices x1, x2, . . . , xL where we will bound L later. For every

1 ≤ i ≤ L we will also define Gi, a 2-colored (a−2)-hypergraph. We will represent Gi as a subset

of
(

N
a−2

)
× {RED, BLUE}. For example, if a = 6, Gi could be

{({1, 2, 4, 5}, RED), ({1, 3, 4, 9}, BLUE), ({4, 5, 6, 10}, RED)}.

The notation Gi = Gi∪{{12, 13, 19, 99}, RED))} means that we add the edge {12, 13, 19, 99}
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to Gi and color it RED in Gi.

The construction will stop when one of the Gi has a (a− 2)-homogenous set of size k− 1. We

will later show that this must happen.

Def A.3 Let Gi1 , Gi2 be 2-colored (a− 2)-hypergraphs. Let J ∈
(

N
a−2

)
.

1. Gi1 and Gi2 agree on J if either (1) Gi1 and Gi2 both have edge J and color it the same or

(2) neither Gi1 nor Gi2 has edge J .

2. Gi1 and Gi2 agree on {1, . . . , j} if Gi1 and Gi2 agree on all of the edges in
(

[j]
a−2

)
.

3. Gi1 and Gi2 disagree on J if either (1) Gi1 and Gi2 both have edge J and color it differently

or (2) one of them has edge J but the other one does not.

CONSTRUCTION

x1 = 1

x2 = 2

... =
...

xa−1 = a− 1

G1 = ∅

G2 = ∅
...

...

Ga−2 = ∅

Va−2 = [n]− {x1, . . . , xa−1}. We start indexing here for convenience.

COL∗(y) = COL(x1, x2, . . . , xa−1, y) for all y ∈ Va−2

Va−1 = the largest (a− 2)-homogeneous set for COL∗

Ga−1 = ({1, . . . , a− 2}, the color of Va−1)

The Gi’s will be 2-colored (a− 2)-hypergraphs.
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KEY: for all y ∈ Va−1, COL(x1, . . . , xa−1, y) is the color of {1, . . . , a− 2} in Ga−1.

Let i ≥ a−1, and assume that Vi−1, x1, . . . , xi−1, and G1, . . . , Gi−1 are defined. If Gi−1 has an

(a− 2)-homogenous set of size k − 1 then stop (yes k − 1- this is not a typo). Otherwise proceed.

Gi = ∅ (This will change.)

xi = the least element of Vi−1

Vi = Vi−1 − {xi} (We will change this set without changing its name.)

We will add colored (a − 2)-edges to Gi. We will also define smaller and smaller sets Vi. We

will keep the variable name Vi throughout.

In the next step we will, for all J ∈
(
[i−1]
a−2

)
, consider adding J to Gi. The order in which we

consider the J matters. Assume the order first considers each edge whose maximum entry is a−2,

then each edges with maximum entry is a− 1, etc, until the maximum entry is i− 1.

For J ∈
(
[i−1]
a−2

)
1. If for every j ∈ J , Gj and Gi agree on {1, . . . , j − 1} then proceed, otherwise go to the next

J . (Note that when edge J is being considered all of the edges J ′ with max(J ′) < max(J)

have already been decided upon. Hence if J becomes an edge of Gi then it will always be

the case that, for every j ∈ J , Gj and Gi agree on {1, . . . , j − 1}.

2. COL∗ : Vi → {RED, BLUE} is defined by COL∗(y) = COL(J ∪ {xi, y}).

3. Vi is the largest 1-homogeneous set for COL∗. Note that |Vi| decreases by at most half.

4. Gi = Gi ∪ {(J, the color of Vi )}

KEY: Let A ∈
(
[i−1]
a−2

)
and b > max(A) such that A is an (a − 2)-edge of Gi. Let cA be such that

(A, cA) ∈ Gi. For all y ∈ Vi, COL(A ∪ {xb, y}) = cA.

END OF CONSTRUCTION
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When we derive upper bounds on n we will show that the construction ends. For now assume

the construction ends.

When the construction ends we have a GL that has a (a − 2)-homogenous set of size k − 1.

We assume the color is RED. Let {i1 < i2 < · · · < ik−1} be the (a − 2)-homogenous set. Define

ik = L. We show that

H = {xi1 , . . . , xik}

is a a-homogenous set with respect to the original coloring COL. For notational convenience we

show that COL(xi1 , . . . , , xia) = RED. The proof for any a-set of H is similar, even for the case

where the last point is xL.

Look at Gia−1 . Since ia−1 is a vertex in GL we know that Gia−1 and GL agree on {1, . . . , ia−1 − 1}.

Since (ia−1, RED) ∈ GL and i1, . . . , ia−2 ≤ i2 − 1, ({i1, . . . , ia−2}, RED) ∈ Gia−1 . Hence, for all

y ∈ Via−1 , COL(xi1 , . . . , xia−2 , xia−1 , y) = RED. In particular COL(xi1 , . . . , xia) = RED.

We now establish bounds on n.

Def A.4 Let G be a 2-colored (a − 2)-hypergraph on vertex set V = {L1 < · · · < Lm} and edge

set E. Define squash(G) to be G′ = (V ′, E ′), the following 2-colored (a− 2)-hypergraph:

• The vertex sets V ′ = {1, . . . ,m}.

• For each edges {Li1 , . . . , Lia−2} in E the edge {i1, . . . , ia−2} is in E ′.

• The color of {i1, . . . , ia−2} in G′. is the color of {Li1 , . . . , Lia−2} in G.

Claim 1: For all a− 1 ≤ i1 < i2, squash(Gi1) 6= squash(Gi2).

Proof of Claim 1: Assume, by way of contradiction, that a − 1 ≤ i1 < i2 and squash(Gi1) =

squash(Gi2). Let Gi1 have vertex set U1 and let f1 be the isomorphism that maps U1 to the vertex

set of squash(Gi1). Note f1 is order preserving and, if f1 is applied to a number not in U1, then the

result is undefined. Define U2 and f2 for Gi2 similarly.
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We will prove that, for all 1 ≤ j ≤ i1 − 1, (1) f1 and f2 agree on {1, . . . , j}, (2) Gi1 and Gi2

agree on {1, . . . , j}. The proof will be by induction on j.

Base Case: j ∈ {1, 2, . . . , a − 2}. Since a − 1 ≤ i1, i2 the edge E = {1, 2, . . . , a − 2} is in both

Gi1 and Gi2; therefore, f1(1) = f2(1), . . ., f1(a− 2) = f2(a− 2). If the color of E is different in

Gi1 and Gi2 then squash(Gi1) 6= squash(Gi2). Hence the color of E is the same in both graphs.

Thus we have that Gi1 and Gi2 agree on {1, . . . , a− 2}.

Induction Step: Assume that Gi1 and Gi2 agree on {1, 2, . . . , j− 1}. Assume that f1 and f2 agree

on {1, . . . , j − 1}. We use these assumptions without stating them throughout. Look at what

happens when Gi1 (Gi2) has to decide what to do with j.

If Gj and Gi1 agree on {1, . . . , j − 1} then, since j < i1, Gj also agrees with Gi2 on {1, . . . , j−

1}. Hence the edge {1, 2, . . . , a− 3, j} will be put into both Gi1 and Gi2 . Hence j will be a vertex

in both Gi1 and Gi2 so f1(j) = f2(j). Let E ∈
(

[j]
a−2

)
such that j ∈ E. If for every vertex

j′ of E, Gj′ and Gi1 agree on {1, . . . , j′ − 1} then, since j′ < i1, Gj′ also agrees with Gi2 on

{1, . . . , j′ − 1}. Hence E will be in both Gi1 and Gi2 . Since f1 and f2 agree on {1, . . . , j} and

squash(Gi1) = squash(Gi2), E must be the same color in Gi1 and Gi2 . Hence every edge put into

Gi1 in stage j is also in Gi2 and with the same color. By a similar argument we can show that every

edge put into Gi2 in stage j is also in Gi1 and with the same color. Hence Gi1 and Gi2 agree on

{1, . . . , j}.

If Gj does not agree with Gi1 on {1, . . . , j − 1} then there must be an edge E ∈
(
[j−1]
a−2

)
such

that Gj and Gi1 disagree on E. Hence Gj and Gi2 disagree on E. Thus j will not be made a vertex

of Gi1 or Gi2 ever. Hence both f1(j) and f2(j) are undefined. No new edges are added to Gi1 or

Gi2 in stage j hence, since Gi1 and Gi2 agree on {1, . . . , j − 1} they agree on {1, . . . , j}.

We now know that Gi1 and Gi2 agree on {1, . . . , i1 − 1}. Note that Gi1 only has vertices

in {1, . . . , i1 − 1}. Look at stage i1 in the construction of Gi2 . Since Gi1 agrees with Gi2 on

{1, . . . , i1− 1}, i1 will be a vertex of Gi1 . At that point Gi2 will have more vertices then Gi1 hence

squash(Gi1) 6= squash(Gi2). This is a contradiction.
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End of Proof of Claim 1

Claim 2: All of the Gi are complete (a− 2)-hypergraphs.

Proof of Claim 2:

Let i1 < i2 < · · · < ia−2 be vertices of Gi. We will show that {i1, . . . , ia−2} is an edge in Gi.

For all 1 ≤ j ≤ a−2, since ij is a vertex of Gi we know that Gij and Gi agree on {1, . . . , ij−1}.

Hence, in stage i, this will be noted and {i1, . . . , ia−2} will be added to Gi.

End of Proof of Claim 2

We now bound L, the length of the sequence. The sequence G1, G2, . . . , will end when some Gi

has R(a−2, k−1) vertices (since by the definition of R(a−2, k−1) there will be a homogenous set

of size (k− 1) or earlier. For all i ≥ a− 2 map Gi to squash(Gi). This mapping is 1-1 by Claim 1.

Hence the length of the sequence is bounded by the a − 3 plus the number of 2-colored (a − 2)-

hypergraphs on an initial segment of {1, . . . , R(a−2, k−1)}, so L ≤ a−3+20+· · ·+2R(a−2,k−1) ≤

2R(a−2,k−1)+1 + a− 4. We have shown the construction terminates.

Strangely enough, this is not quite what we care about when we are bounding n. We care about

the number of edges in all of the Gi’s since each edge at most halves the number of vertices.

By Lemma A.1 the number of edges in all of the Gi’s is bounded above by

R(a− 2, k − 1)a−12R(a−2,k−1)a−2

.

Hence the number of times that the number of vertices are decreased by at most half is bounded by

this same quantity. Therefore it suffices to take n = 2R(a−2,k−1)a−12R(a−2,k−1)a−2

. Hence

R(a, k) ≤ 2R(a−2,k−1)a−12R(a−2,k−1)a−2

.
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