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1) Introduction

We examine the problem of coloring part of a k-colorable graph, while not knowing the
rest of it. To illustrate some of our concepts, we describe a somewhat whimsical scenario,
which we call the Mapmaker’s Dilemma.

Picture a 12th-century mapmaker who is given a map of Europe and the countries
adjacent to Europe, and is told to 4-color the European countries in a manner that is
consistent with some coloring of the entire world. Unfortunately, Asia has not yet been
explored. He cannot expect to find a consistent coloring given incomplete information, but
the people must have their maps colored, so he colors Europe based on the information at
hand. The world is small, and he does not have anything else to do, so this takes negligible
time. From time to time, he receive reports from explorers of newly discovered countries
and their neighbors. (This is a relatively peaceful time, so countries and borders do not
disappear from the map.) This new information may invalidate his 4-coloring of Europe,

so that he has to recolor it, at great cost to his publisher. Four-color photocopying is a

* Supported in part by the National Science Foundation under grants CCR-8808949
and CCR-8958528. Research performed while this author was at the Johns Hopkins

University.
** Supported in part by the National Science Foundation under grants CCR-8803641

and DCR-8405079.



novelty that few can afford; therefore he hopes, through some cleverness, to minimize the
number of times he has to recolor the map of Europe.

We study a problem similar to that of the mapmaker. In particular, we study the
problem of coloring a subgraph H of a k-colorable graph G, where G is given to us only a
little at a time.

In Sections 2 and 3 we formalize this problem in terms of a game with parameters k and
n. The players in the game are named “The Mapmaker” and “The Explorer.” Intuitively,
the mapmaker tries to color n nodes of a k-colorable graph G, while the explorer reveals
more and more of the graph; the explorer wins if he can make the mapmaker change his
mind many times. In Section 4 we prove our main theorem: for 3 < k£ < n the Explorer
has a winning strategy. In Section 5 we show that if & = 2 then the Mapmaker has a
winning strategy.

Informally, our main theorem says that coloring part of a graph in an extendible way
is hard in that it may require looking at all possible colorings. In Section 6 we formalize
and prove this statement in the context of recursive graph theory. For the related problem
of graph k-colorability it is a major open question whether such a brute force algorithm
is required, namely the P=7NP question. Additional discussion of connections between
recursive graph theory and complexity theory may be found in [6]. Other connections
between the work here and complexity theory are in [9]. Lakshmipathy and Winklmann
[9] have previously proved the k = 3 case of Lemma 4, and applied it to communication

complexity theory in an interesting way.

2. Conventions, Definitions, and Notation

Definition: Let G = (V, E) be a graph and let k¥ € N. A k-coloring of G is a function
c:V — {1,...,k} such that if {v1,v2} € E then ¢(v1) # ¢(v2). A graph G is k-colorable
if such a ¢ exists.

Definition: Let G be a graph, let H be a subgraph of G, and let ¢ be a coloring of H. A
coloring ¢' of G is an extension of ¢ if for all v in H, ¢'(v) = ¢(v). A coloring ¢ of H is
(G, k)-extendible if there exists a k-coloring ¢' of G that is an extension of ¢. If the value

of k is understood then we say that ¢ is G-extendible. If the graph G is also understood
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then we say that ¢ is a local coloring of H.

Two colorings ¢; and ¢y are isomorphic (denoted ¢y ~ ¢3) if there exists a permutation
o of {1,2,...,k} such that, for all v in H, ¢1(v) = o(cz(v)). By convention we regard
isomorphic colorings as being the same. A statement such as “G has two k-colorings”
means “G has two nonisomorphic k-colorings.” Formally the term “coloring” should be

replaced by “isomorphism class of colorings” throughout.

Notation: If A is a set and k € N then [A]* denotes the set of all k-element subsets of A,
and [A]<“ denotes the set of all finite subsets of A.

Let G be a k-colorable graph and let H be a subgraph of G. NI(G, H, k) denotes the
number of nonisomorphic (G, k)-extendible colorings of H. NI(k,n) denotes NI(H, H, k).
where H is the graph consisting of n isolated nodes. It is easy to show that NI(k,n) is
exponential in n. We include a proof for completeness. The quantity NI(k,n) is clearly
equal to Zle S(n,s) where S(n,s) is the number of ways of partitioning n identical objects
into s classes (also called a Stirling number of the second kind). We take S(n,0) = 0. By

inclusion-exclusion,

S(n,s)s! = i(—w(j)(s — ),

r=0

Recall that

NI(kn)=3 S(ns) =Y %(_1)r<i> =) :ZZ 38_; "

s=0 r=0

Replacing s — r by ¢ and summing in a different order we obtain

ko k—t  ( k4 k—t ),,
DI I -
t=0 r=0 t=0 r=0
For large n and fixed k this is approximately k™ /k!. X

3. The Local Coloring Game

We describe the local coloring game with parameters k and n, k& < n with two players
named “The Mapmaker” and “The Explorer.” Formally we define the game as follows. In
the first round of the game the Explorer presents G; = H, and the Mapmaker responds
with a k-coloring ¢; of H. In the s'" round the Explorer presents a k-colorable graph
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Gs O G4_1, and the Mapmaker responds with a k-coloring ¢, of H that is G,-extendible.
The game goes on indefinitely. If in the course of the game the Mapmaker presents NI(k,n)
different colorings then the Explorer wins; otherwise the Mapmaker wins.

The main theorem of this paper is that if & > 3 then the Explorer has a winning
strategy. The idea is that whatever G,_;-extendible coloring ¢,_; of H that the Mapmaker
tries during round s — 1, there exists a k-colorable graph G4 O G4_; such that ¢, is not
G-extendible; but all other G4_;-extendible colorings ¢, ¢ % ¢s_1, are G4-extendible. Thus
the Explorer can invalidate exactly one k-coloring of H per stage. The Mapmaker is then

forced to try all k-colorings of H.

4. A Winning Strategy for the Explorer
In the next four lemmas we exhibit graphs that the Explorer will use in his winning
strategy. We only supply the descriptions (and pictures) of the graphs; the proofs that

they work are easy exercises left to the reader.

Lemma 1: Let k,m € N be such that m > 1 and k > 3, let A = {vy,..., v} be a
set of vertices, and let v be a vertex that is not in A. There exists a k-colorable graph
SAME(A,v) such that
1) there exists a k-coloring ¢ of SAME(A,v) where all the vertices in A are colored the
same,
2) if ¢ is a k-coloring of SAME(A,v), where all the vertices in A are colored the same,
then v also has that color,

3) if ¢ is a k-coloring of A, where not all the vertices are colored the same, then for any

color a, there exists a k-coloring ¢’ of SAME(A,v) that extends ¢ such that ¢/(v) = a.

Proof:

If m =1 then let SAME(A,v) be the graph consisting of v and vy connected to every
vertex of a (k — 1)-clique (see Figure 1).

We consider the m = 2 case. Let W be a clique on k — 1 new vertices {wy,...,wg_y}.
To form SAME(A,v) connect v to every vertex in W, connect vy to every vertex in W

except wr_1, and connect vy to wr_y (see Figure 2).
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We now consider the case for general m. Let A = {vy,...,v;,}. Let wy,... w2 be

new vertices, and let w,,—1 be v. Let

m—2
SAJWE(A, ‘U) = SAJWE({Ul 5 ‘02}, 'wl) U U SAJME({LU“ ’UH_Q}, ’LUH.l)
=1
(see Figure 3). X

Lemma 2: Let j,k € N,2<j <k, andlet A= {vy,...,v;} be a set of vertices. There
exists a k-colorable graph LESS(A) such that
1) if ¢ is a k-coloring of LESS(A) then vy,vq,...,v; cannot all be assigned different
colors, i.e. [{c(v) : v € A}| < 7, and
2) any (j — 1)-coloring of A can be extended to a k-coloring of LESS(A).
Proof:
Let W be the complete graph on k —j+ 1 vertices. LESS(A) is formed by connecting

every vertex in A to every vertex in W (see Figure 4). X

Lemma 3: Let k € N, k > 3, and let A = {vy,...,v,,} be a set of vertices. There exists
a k-colorable graph NEQ(A) such that
1) if ¢ is a k-coloring of NEQ(A) then the vertices in A must use more than one color,
ie. [{c(v) : ve A} > 1, and
2) if d is a k-coloring of A such that [{d(v) : v € A}| > 1 then d can be extended to a
k-coloring of NEQ(A).
Proof:
Let I be the graph consisting of an edge connecting two new vertices r; and z,. Let
NEQ(A) = SAME(A,21) USAME(A,x2) U I (see Figure 5). X
The next lemma is the key to the proof of our main theorem. The lemma roughly
states that if H C G and c is an extendible coloring of H, then G can be extended to G’
in such a way to make ¢ not extendible to a coloring of G, but not to exclude any other

coloring.

Lemma 4: Let
a) k € N be such that 3 <k,



b) G be a k-colorable graph,
¢) H be a subgraph of G,
d) ¢ be a G-extendible coloring of H.

There exists a graph G' = SPOIL(k,G, H,¢) such that G' O G and
1) ¢ is not G'-extendible, and
2) if d is any G-extendible coloring of H, d % ¢, then d is G'-extendible.

Proof:
Assume ¢ uses j < k colors. We consider the case j > 2 first.
For 1 <: < jlet A; C H be the set of vertices v such that ¢(v) =. Let vy,...,v; be
new vertices. Let G' = G U ( 5:1 SAME(A;,v;))ULESS({v1,...,v;}) (see figure 6.)
We now consider the j = 1 case. In this case ¢ assigns all the vertices of H the same

color. Let G' = GU NEQ(H). X

Theorem 5: Let k,n € N, 3 < k < n. The Explorer has a winning strategy for the local

coloring game with parameters k£ and n.

Proof:
During stage s > 1 the Mapmaker will present a k-coloring ¢, of H that is G4_1-
extendible. The Explorer’s winning strategy is to play
G, = {SPOIL(k,GS_l,H, ¢s) if SPOIL(k,Gs_1,H,cs) is k-colorable,

G otherwise.
At every stage s < NI(k,n) the Explorer eliminates exactly one k-coloring from being a
Gs-extendible coloring of H. Thus the Mapmaker is forced to present NI(k,n) different
k-colorings of H. X

5. The k =2 Case
Throughout this paper we have been assuming that £ > 3. We show that this is

necessary, i.e. if k = 2 then the Mapmaker has a winning strategy.

Theorem 6: Let n € N, k = 2. The Mapmaker has a winning strategy for the local
coloring game. In fact, if k¥ = 2 then the Mapmaker has a strategy such that he presents

at most n different colorings.



Proof:

In round 1 the Mapmaker colors H arbitrarily. In each subsequent round, if the
Mapmaker can use the same coloring he used in the proceeding round he does so, else he
uses some arbitrary coloring that has not been ruled out.

The only rounds where the Mapmaker must present a new coloring are those where
the Explorer connects two components of H (the path may use vertices that are not in
H). Hence the Mapmaker presents at most n different colorings. X

In the & = 2 case, the Explorer can easily force the Mapmaker to present exactly n

colorings. Hence the result above is tight.

6. An Analog to P=7NP in Recursive Graph Theory
We use the techniques of Section 3 to solve a problem in recursive graph theory that

resembles P=7NP. The problem asks (informally) if a particular problem that can be solved
by a naive exponential brute force algorithm can be solved more efficiently. We show that
the brute force algorithm is optimal. The problem has its roots in [5,7].

Definition: A (possibly infinite) graph G = (V, E) is recursive if every vertex has finite
degree and both V' C N and E C [N]? are recursive (i.e., decidable by a Turing machine
[10,11] )

Many references to articles on recursive graph theory can be found in [3].

Definition: A recursive graph G = (V| E) is recursively k-colorable if there exists a recursive

function f: V — {1,2,...,k} that is a coloring of G (i.e. there is a Turing machine that
computes a k-coloring of G).

Bean [1] proved that there exists a 3-colorable recursive graph that is not recursively
k-colorable for any k. Carstens and Pappinghaus [5] considered coloring algorithms that
are allowed to “change their mind” b times where b is a fixed constant. They showed that
for all £ > 3 there exists a k-colorable recursive graph that cannot be k-colored by such
an algorithm. These results have been extended in ( [7] chapter 5.2).

We consider a similar type of coloring problem and improve on the results in [5,7].

Definition: Let G = (V, E) be a k-colorable recursive graph. A local k-coloring of G is a
function that takes a finite set H C V and outputs a G-extendible k-coloring of H.
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We examine the complexity of local k-colorings. Our measure of complexity is “mind-
changes.” In particular we study algorithms for local k-colorings that are allowed to change
their mind ¢g(n) times on inputs consisting of n vertices. The function ¢ is the complexity
of the algorithm.

In what follows we will interpret the input to a Turing machine as an ordered pair
(H,s) where H is a finite set of vertices and s is a parameter; and the output as a coloring

of those vertices.

Definition: Let f be a function from [N]<¥ to N, and let g be a function from N to N.
The function f is computable by a g-mind-change algorithm if there exist a Turing machine
M, that halts on every input, such that for all H € [N]<¥

a) lims_oo M(H,s) = f(H) (ie., (Is0)(Vs > so)M(H,s) = f(H)).

) [{s « M(H,s) # M(H,s + 1)} < g(|H]),

Algorithms like M in the above definition are called mind-change algorithms.
If {s : M(H,s)# M(H,s+1)}| > b then we say that “M has changed its mind at least
b times on H.” Many references to mind-change algorithms can be found in [4].

Carstens and Pappinghaus [5] showed that one can color a recursive graphs with
a mind-change algorithms that changes its mind an exponential number of times. We

sharpen their result and put it in our terminology.
Theorem T: Let G = (V,E) be a k-colorable recursive graph. There exists a local k-
coloring of G that is computable by a ¢g-mind-change algorithm where g(n) = NI(n,k)—1.

Proof:
The following mind-change algorithm M changes its mind only when the k-coloring

it thought was correct is shown not to be G-extendible.
ALGORITHM for M
1) Input(H,s).
2) If s = 0 then output the coloring that maps all elements of H to 1.
3) Compute ¢ = M(xz,s — 1) and G5 = (V;, Es) where
Vs =(VNn{1,2,...,s})UH
E;=En{(z,y) : v,y € V,}
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4) If ¢ is Gs-extendible then output ¢, else output a k-coloring of H that is G extendible

(for definiteness take the least coloring relative to a fixed ordering).

END OF ALGORITHM
Let H CV, |H| =n. If a k-coloring ¢ of H is not Gs-extendible then, for all t > s,

¢ is not G-extendible. Therefore each k-coloring of H is tried at most once. Since there

are NI(n,k) different k-colorings of H
{s : M(H,s) # M(H,s+1)}| < NI(k,n)—1.

Since the number of mind-changes is bounded, lim,_.oc M(H,s) exists. We denote
this k-coloring by ¢. We show that ¢ is G-extendible. Assume, by way of contradiction,
that ¢ is not G-extendible. By a compactness argument (similar to those in [8] ) there
exists t € N such that ¢ is not G;-extendible. Hence lim,_.oc M(H,s) # ¢, a contradiction.
X

We now show that the brute-force algorithm in Theorem 7 is optimal.

Let My, Ms, Ms, ... be an acceptable numbering [10,11] of all Turing machines (i.e.,

from e the code for M, can be recovered and M, can be run on an input).
Definition: A (infinite) recursive partition of N is a partition N = |Ji=, Z; where each Z;
is a (infinite) set, and the function that maps x to the ¢ such that « € Z; is recursive.

Definition: Let (—, —) be a recursive bijection from N x N to N (e.g. (4,17) is the number
that the ordered pair (4,17) gets mapped to).

Theorem 8: Let k > 3. There exists a k-colorable recursive graph G such that every mind-
change algorithm that computes a local k-coloring of G requires NI(k,n)—1 mind-changes
on an infinite number of inputs H of arbitrarily large cardinality.
Proof:

We construct G to satisfy the following requirements, indexed by (e,n) € N:

R ny: If M, computes a local k-coloring of G in the limit, then (3H C V), |H| = n,
such that M, changes its mind at least NI(k,n) — 1 times on H.

9



Let {Z<e7n>}<°:,n>:1 be an infinite recursive partition of N. For every (e,n) € N we
construct a k-colorable recursive graph G(e,n) whose vertex set is a subset of Z(, ,, to
satisfy requirement R, ,). To construct G(e,n) we essentially play the local coloring game
with parameters k and n, where the algorithm M, plays the role of the Mapmaker, and
we play the role of the Explorer. Since each G(e,n) is recursive, and {Z<e’n>}<°:’n>:1 is a
recursive partition, the graph G = U?:’w:l G(e,n) is recursive.

Fix (e,n) € N. Let Z be Z( ny. Let M be M.. We construct G = G(e,n) in stages.
G denotes G at the end of stage s. The final graph G will be | J -, Gs.

CONSTRUCTION

Stage 0: Let H be the set consisting of the least n numbers in Z. Let Gy have vertex set
H and no edges.

Stage s+1: Run M(H,s). If the computation halts then let ¢ be the number of steps it
took. If M(H,s) is a Gs-extendible k-coloring of H, and SPOIL(k,G,,H,M(H,s)) is
k-colorable, then set

Goy1 = SPOIL(K,G,, H, M(H,s)),

making sure that the new vertices added are the least numbers in Z that are greater than
both t and the total number of steps the construction has taken before this stage; otherwise
set Gs41 to Gs.
END OF CONSTRUCTION

If there is an s such that M(H,s) does not converge then the construction never goes
past stage s. Even though we do not know if this happens or not, the graph G is recursive.
A number t is a vertex iff ¢ enters the graph during the first ¢ steps (not stages) of the
construction. A pair (¢1,t2) is an edge iff (¢1,t2) becomes an edge of the graph in the
first max(¢q,t2) steps. Both of these conditions can be tested recursively by running the
construction for a finite number of steps.

We show that requirement R ) is satisfied. Assume M = M. computes a local
k-coloring of G in the limit. Let H be as in the construction of G(e,?). Assume, by way

of contradiction, that

{s : M(H,s) # M(H,s+1)}| < NI(k,n) — 1.
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Let s be the minimal stage such that M(H,s) has reached its limit. At stage s of the
construction M(H,s) will be seen to be a G-extendible coloring. Since the number of
mind-changes before s is less than NI(k,n) — 1, the number of G-extendible colorings of
H that have been spoiled is less than NI(k,n) — 1. Therefore SPOIL(k,Gs, H,M(H,s))
is k-colorable, so G441 will be set to SPOIL(k,Gs,H,M(H,s)). Hence M(H,s) cannot
be a Gs41-extendible coloring of H, so M cannot compute a local k-coloring of G in the
limit. X
There are stronger recursive conditions that can be imposed on a graph.

Definition: A graph G is highly recursive if it is recursive and the function that produces
all the neighbors of a given vertex is recursive.

Theorem 8 is true for highly recursive graphs with the same proof. The status of
Theorem 8 for decidable graphs, as defined by Bean [1], is unknown.

7. Open Problems

One can add more parameters to the local coloring game. For example, a bound g¢
on the genus of G can be specified as a parameter. In the technical report version of this
paper [2] we show that for ¢ = 0 (G planar), with & = 3, the Explorer has a winning
strategy. For ¢ > 1 all problems associated with such games are open.

Another variation allows the Mapmaker to use m colors where m > k. That is,
although the explorer is constrained to keep the graph k-colorable, the mapmaker can use
m > k colors, where m is an added parameter of the problem. By techniques used in [1]
to show that every highly recursive k-colorable graph is recursively 2k-colorable, one can
show that if the Mapmaker can use 2k colors than he has a strategy in which he presents
only O(n?) different colorings. For values of m between k and 2k it is an open problem to

determine who wins.

8. Acknowledgements
We would like to thank Mark Berman, Clyde Kruskal, Kevin Rappoport and Rodica

Simion for useful discussions.

REFERENCES

11



10.

11.

. Bean, D.R. Effective Coloration. Journal of Symbolic Logic 41 (1976), 469-480.

BeiGeL, R. AND GasarcH, W.I. The Mapmaker’s Dilemma.  The University of

Maryland at College Park, TR 2262 (also UMIACS TR 89-59).

BeiGeL, R. AND GasarcH, W.I. On the Complexity of Finding the Chromatic Number
of a Recursive Graph I: The Bounded Case. Annals of Pure and Applied Logic 45
(November 1989), 1-38.

BEeI1GEL, R., GasarcH, W.I., AND Hay, L. Bounded Queries Classes and the Difference

Hierarchy. Archive for Math. Logic 29 (December 1989), 69-84.

. CARrsTENS, H.G. AND PaPPINGHAUS, P. Recursive Coloration of Countable Graphs.

Annals of Pure and Applied Logic 25 (1983), 19-45.

CarsTENS, H.G. aND PappinGHAUsS, P. Extensible Algorithms. In Logic and Ma-
chines: Decision Problems and Complexity, Rodding, Ed., Springer-Verlag, Berlin,
1984. Lecture Notes in Computer Science 171.

GasarcH, W.I. Recursion Theoretic Techniques in Complexity Theory and Combi-

natorics. Ph.D thesis, Harvard University 1985.

. GRAHAM, R., SPENCER, J., AND RoTHCHILD, A. Ramsey Theory. Wiley, 1980.

. LaksaMIPATHY, N. AND WINKLMANN, K. Global Graph Problems Tend to be In-

tractable. Journal of Computing and System Science 32 (1986), 407-428.

RocGEeRrs, H. JR. Theory of Recursive Functions and Effective Computability. McGraw
Hill, New York, 1967. (Also MIT Press, Cambridge MA., 1987).

SoARe, R.I.  Recursively Enumerable Sets and Degrees. Springer Verlag (Omega
Series), Berlin, 1987.

12



