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Abstract

If A ⊆ ω, n ≥ 2, and the function max({x1, . . . , xn} ∩ A) is partial recursive, it
is easily seen that A is recursive. In this paper, we weaken this hypothesis in various
ways (and similarly for “min” in place of “max”) and investigate what effect this has
on the complexity of A. We discover a sharp contrast between retraceable and co-
retraceable sets, and we characterize sets which are the union of a recursive set and a
co-r.e., retraceable set. Most of our proofs are noneffective. Several open questions are
raised.
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1 Introduction

It is easy to see that, for A ⊆ ω and n ≥ 2, if the (partial) function max({x1, . . . , xn}∩A) is
partial recursive, then A is recursive. Suppose, on the other hand, that one can effectively
eliminate a possibility for max({x1, . . . , xn}∩A), specifically, that one can, for any n distinct
natural numbers x1, . . . , xn, calculate an i, 1 ≤ i ≤ n, such that xi 6= max({x1, . . . , xn}∩A).
What does this tells us about A? In particular, must A be recursive? Suppose that one
then weakens the assumption to the existence of a recursive function g such that, for all
x1, . . . , xn, Wg(x1,...,xn) is a proper subset of {x1, . . . , xn} containing max({x1, . . . , xn}∩A).
Do we now have more possibilities for the complexity of A? In this paper we consider
questions of this sort, including analogous questions regarding “min” in place of “max.” In
many cases we find that the methods we use are at least as interesting as the statements of
the theorems.

2 Background Material

Definition 2.1 Let n, k ≥ 1, and let f :ωk → ω.

1. f ∈ EN(n) if there exist n partial recursive functions ϕ1, . . . , ϕn such that, for
all x1, . . . , xk, there exists an i, 1 ≤ i ≤ n, such that ϕi(x1, . . . , xk) converges to
f(x1, . . . , xk). If f ∈ EN(n), we say that f is n-enumerable. Note that f is recursive
iff f is 1-enumerable.

2. f ∈ SEN(n) if there exist n total recursive functions g1, . . . , gn such that, for all
x1, . . . , xk, there exists an i, 1 ≤ i ≤ n, such that gi(x1, . . . , xk) = f(x1, . . . , xk). If
f ∈ SEN(n), we say that f is strongly n-enumerable.

Definition 2.2 Let A ⊆ ω, and n ≥ 1.

1. CA
n :ωn → {0, 1}n is the function defined by

CA
n (x1, . . . , xn) = (χA(x1), . . . , χA(xn)),

where χA is the characteristic function of A.

2. #A
n :ωn → {0, . . . , n} is the function defined by

#A
n (x1, . . . , xn) = |{i : 1 ≤ i ≤ n ∧ xi ∈ A}|.

In his PhD thesis, Stanford University, 1987, Richard Beigel proved the following inter-
esting theorem.

Theorem 2.3 (Nonspeedup Theorem [1, 2]) If (∃n ≥ 1)[CA
n ∈ EN(n)], then A is re-

cursive.

Beigel conjectured that if #A
n ∈ EN(n) for some n ≥ 1, then A is recursive. In 1987,

Owings proved the following weak form of Beigel’s conjecture.

Theorem 2.4 (Weak Cardinality Theorem [14]) If (∃n ≥ 1)[#A
n ∈ SEN(n)], then

A is recursive.

3



Using entirely different methods, Martin Kummer proved Beigel’s conjecture in 1990.

Theorem 2.5 (Cardinality Theorem [9]) If (∃n ≥ 1)[#A
n ∈ EN(n)], then A is recur-

sive.

Kummer’s proof of the Cardinality Theorem rested on the next two lemmas.

Definition 2.6 For n ∈ ω, Bn is the full binary tree of height n.

Lemma 2.7 ([9]) Let T be a subtree of 2<ω, the full binary tree with ω levels, and let
n ≥ 1. If B4n−2 can be embedded in T , then there exist natural numbers x1, . . . , xn, nodes
τ1, . . . , τn+1 of T , and b ∈ {0, 1} such that, for i, j with 1 ≤ i ≤ n and 1 ≤ j ≤ n+ 1,

τj(xi) =

{
1− b, if 1 ≤ i < j;
b, if j ≤ i ≤ n.

Lemma 2.8 (R.E. Tree Lemma [9]) let T be an r.e. subtree of 2<ω. If, for some m ≥ 1,
Bm cannot be embedded in T , then every infinite branch of T is recursive.

In 1972, Jockusch and Soare proved the following important theorem.

Theorem 2.9 ([7]) If a function f is recursive in every member of some nonempty Π0
1

class of subsets of ω, then f is recursive.

Definition 2.10 For A ⊆ ω, A is extensive if every partial recursive function ϕ having a
finite range can be extended to a total function f which is recursive in A.

(The Turing degrees of the extensive sets are the same as the Turing degrees of the consistent
extensions of Peano arithmetic [4]. They are called DNR2 [4] or PA [8].)

It is well-known, and easy to prove, that there exists a nonempty Π0
1 class all of whose

members are extensive; thus we have the following proposition.

Proposition 2.11 If a function f is recursive in every extensive set, then f is recursive.

As observed by Kummer and Stephan [11], it follows from Owings’ proof of the Weak
Cardinality Theorem that if #A

n ∈ EN(n) for some n ≥ 1, then A is recursive in every
extensive set. So there exist two completely different—and seemingly unrelated—proofs of
the Cardinality Theorem.

Recently, Jockusch has extended Theorem 2.9 as follows:

Theorem 2.12 ([5]) If A is r.e. in every member of some nonempty Π0
1 class of subsets

of ω, then A is r.e.

Thus we get the following proposition.

Proposition 2.13 If A is r.e. in every extensive set, then A is r.e.

For completeness, we include Jockusch’s proof of Theorem 2.12.
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Proof of Theorem 2.12: Let T be a recursive tree with at least one infinite branch.
Suppose that A is r.e. in every infinite branch of T , but that A is not r.e.

We inductively define an infinite sequence (T−1, T0, T2, . . .) of infinite recursive trees so
that

• for every e, Te is a subtree of Te−1, and

• the intersection of all these trees has at least one infinite branch.

Let T−1 = T . Assume that Te−1 has been defined, and that Te−1 is an infinite recursive
tree. For every n ∈ ω, let Te,n = {σ ∈ Te−1 : {e}σ

|σ|(n) ↑}. Then let Be = {n : Te,n is finite}.
For every n with Te,n finite, there exists a natural number m such that {e}σ

|σ|(n) ↓ for all
σ ∈ Te−1 with |σ| = m, and such an m can be found effectively. Therefore, Be is r.e.;
moreover, A 6= Be, since A is not r.e. To define Te, we have two cases to consider.

• Be 6⊆ A: Let Te = Te−1.

• Be ⊆ A: Then Be ⊂ A, so choose n ∈ A−Be and let Te = Te,n.

In either case, Te is an infinite recursive subtree of Te−1; furthermore, A 6= WC
e for any

infinite branch C of Te.
Let Tω =

⋂
{Te : e ≥ −1}. Then Tω is an infinite closed subtree of T , and so has an

infinite branch C. However, A 6= WC
e for any e, contradicting our hypothesis that A is r.e.

in every infinite branch of T .

Definition 2.14 Let n ≥ 1. An n-ary selector function is a function f :ωn → ω such that
f(x1, . . . , xn) ∈ {x1, . . . , xn} for all x1, . . . , xn.

Definition 2.15 For A ⊆ ω, A is semirecursive if there is a recursive selector func-
tion f :ω2 → ω such that, for all x1, x2, {x1, x2} ∩A 6= ∅ ⇒ f(x1, x2) ∈ A.

Kummer and Stephan [12] have shown that if A is r.e., then A is semirecursive iff
CA

2 ∈ SEN(3). The proof we give here is adapted from a proof given in an unpublished
technical paper [10].

Proposition 2.16 ([10, 12]) Let A be r.e. Then A is semirecursive iff CA
2 ∈ SEN(3).

Proof:

⇒: Suppose that A is semirecursive via selector function f . We define (total) recursive
functions g1, g2, g3 so that, for all x, y,

CA
2 (x, y) ∈ {g1(x, y), g2(x, y), g3(x, y)}.

Let x, y ∈ ω, and suppose that f(x, y) = x. (The case where f(x, y) = y is similar.) Let
g1(x, y) = (1, 1), g2(x, y) = (1, 0), and g3(x, y) = (0, 0).

⇐: Suppose that CA
2 ∈ SEN(3), and note that this is equivalent to the existence of a

recursive function g:ω×ω → {0, 1}×{0, 1} such that, for all x, y, either (g(x, y))0 = χA(x)
or (g(x, y))1 = χA(y). Also, we can assume that g(y, x) = ((g(x, y))1, (g(x, y))0).
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Let

B1 = {z : (∃x ∈ A)[g(x, z) = (0, 0)]},
B2 = {z : (∃x ∈ B1)[g(x, z) = (1, 0)]}.

Then B1 and B2 are r.e., and B1, B2 ⊆ A.
If B1 ∪ B2 = A, then A is recursive and, therefore, semirecursive. So assume that

B1 ∪ B2 ⊂ A, and choose u ∈ A − (B1 ∪ B2). We define a recursive selector function f so
that A is semirecursive via f .

Let x, y ∈ ω. If g(x, y) = (1, 1), enumerate A until x or y appears and let f(x, y)
be whichever one appears first. If g(x, y) = (0, 1), let f(x, y) = y; if g(x, y) = (1, 0), let
f(x, y) = x. If g(x, y) = (0, 0), use the value of g(x, u) to define f(x, y); there are four cases
to consider.

• g(x, u) = (1, 1): Then x ∈ A, so let f(x, y) = x.

• g(x, u) = (0, 1): Then x /∈ A, so let f(x, y) = y.

• g(x, u) = (0, 0): Then x /∈ A, else u ∈ B1, so let f(x, y) = y.

• g(x, u) = (1, 0): Since g(x, y) = (0, 0) = g(y, x), it must be the case that y /∈ A, since

y ∈ A⇒ x ∈ B1 ⇒ u ∈ B2,

in contradiction to the choice of u. Thus let f(x, y) = x.

3 Preliminaries

Definition 3.1 Let A ⊆ ω, and let n ≥ 1. IFIRSTA
n , ILASTA

n , IMINA
n , and IMAXA

n are
the n-ary functions defined as follows.

1.

IFIRSTA
n (x1, . . . , xn) =

{
least i such that xi ∈ A, if (∃i)[xi ∈ A];
0, if (∀i)[xi /∈ A].

2.

ILASTA
n (x1, . . . , xn) =

{
greatest i such that xi ∈ A, if (∃i)[xi ∈ A];
0, if (∀i)[xi /∈ A].

3.

IMINA
n (x1, . . . , xn) = IFIRSTA

n (y1, . . . , yn),

IMAXA
n (x1, . . . , xn) = ILASTA

n (y1, . . . , yn),

where (y1, . . . , yn) is the unique rearrangement of (x1, . . . , xn) satisfying y1 ≤ y2 ≤
· · · ≤ yn. (For example, if n = 4 and (x1, x2, x3, x4) = (3, 4, 1, 3), then (y1, y2, y3, y4) =
(1, 3, 3, 4).) Note that IMINA

n and IMAXA
n are symmetric functions.
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Definition 3.2 Let A ⊆ ω, and let n ≥ 1.

1. A has an n-ary IMAX-limiter if IMAXA
n ∈ EN(n).

2. A has a strong n-ary IMAX-limiter if IMAXA
n ∈ SEN(n).

3. Let g be a recursive n-ary function.

(a) g is an n-ary IMAX-limiter for A if, for all x1, . . . , xn, IMAXA
n (x1, . . . , xn) ∈

Wg(x1,...,xn) ⊂ {0, . . . , n}.
(b) g is a strong n-ary IMAX-limiter for A if, for all x1, . . . , xn, IMAXA

n (x1, . . . , xn) ∈
Dg(x1,...,xn) ⊂ {0, . . . , n}. (For e ∈ ω, De is the eth canonical finite set: D0 = ∅;
for e > 0, De consists of the natural numbers y1, . . . , yk such that e = Σk

i=12
yi .)

4. n-ary IMIN-limiter and strong n-ary IMIN-limiter are defined analogously, with IMIN
in place of IMAX.

Definition 3.3 Let A ⊆ ω.

1. A is retraceable if there is a partial recursive function ψ such that

• if a1 is the least element of A, then ψ(a1) ↓= a1, and
• for every n ≥ 1, if an and an+1 are the nth smallest and n+1st smallest elements

of A, respectively, then ψ(an+1) ↓= an.

(Note that every recursive set is retraceable.) If such a ψ exists, ψ is said to be a
retracing function for A.

2. A is strongly retraceable if A has a retracing function that is (total) recursive.

In this paper we shall attempt to characterize, for a fixed natural number n ≥ 2, those
sets A for which one of the four n-ary functions defined above is either n-enumerable or
strongly n-enumerable. In general, we obtain only partial results. For example, we show
that IMAXA

2 ∈ SEN(2) iff A is the union of a recursive set and a strongly retraceable set,
but we obtain no characterization of sets A such that IMAXA

2 ∈ EN(2).
One of our results tells us that a nonrecursive set cannot have both an IMAX-limiter

and an IMIN-limiter.
The reader may wonder why we have not considered the functions MAXA

n (x1, . . . , xn) =
max(A∩ {x1, . . . , xn}) and MINA

n (x1, . . . , xn) = min(A∩ {x1, . . . , xn}). The main reason is
that these functions are not defined when {x1, . . . , xn} ∩A = ∅. What would it mean for a
set A to have a MAX-limiter? We feel the following definition is the most natural.

Definition 3.4 Let A ⊆ ω, and let n ≥ 2.

1. A has an n-ary MAX-limiter if there is an n-ary selector function f ∈ EN(n− 1) such
that f(x1, . . . , xn) = max({x1, . . . , xn} ∩A) whenever {x1, . . . , xn} ∩A 6= ∅.

2. strong n-ary MAX-limiter, n-ary MIN-limiter, and strong n-ary MIN-limiter are de-
fined analogously.

Most questions concerning MAX- and MIN-limiters can be reduced to questions about
IMAX- and IMIN-limiters—or can be settled by similar techniques. Thus, in this paper,
we shall not deal extensively with these types of limiters.
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4 Results

Theorem 4.1 If A has an n-ary IMIN-limiter for some n ≥ 1, then A is co-r.e.

Proof: First, we suppose that A has a strong n-ary IMIN-limiter for some n ≥ 1. We
proceed by induction on n. If n = 1, then IMINA

n —and therefore A—is recursive. If n > 1,
choose a recursive n-ary function g so that, for all x1, . . . , xn,

IMINA
n (x1, . . . , xn) ∈ Dg(x1,...,xn) ⊂ {0, . . . , n}.

There are two cases.

• For every x1 /∈ A, there exist x2, . . . , xn such that x1 ≤ x2 ≤ · · · ≤ xn and 1 /∈
Dg(x1,...,xn): Then

A = {x1 : (∃x2, . . . , xn)[x1 ≤ x2 ≤ · · · ≤ xn ∧ 1 /∈ Dg(x1,...,xn)] }.

In this case, A is clearly co-r.e.

• There exists x1 /∈ A such that 1 ∈ Dg(x1,...,xn) for all x2, . . . , xn with x1 ≤ x2 ≤
· · · ≤ xn: Using the values of A(0), . . . , A(x1), we will define a recursive (n − 1)-ary
function h so that, for all y1, . . . , yn−1,

IMINA
n (y1, . . . , yn−1) ∈ Dh(y1,...,yn−1) ⊂ {0, . . . , n− 1}.

Using the induction hypothesis, it then follows that A is co-r.e.

Let y1, . . . , yn−1 ∈ ω. We can assume that y1 ≤ · · · ≤ yn−1. If y1 ≤ x1, define
h(y1, . . . , yn−1) by

Dh(y1,...,yn−1) =

{
{1, 2, . . . , n− 1}, if y1 ∈ A;
{0, 2, . . . , n− 1}, if y1 /∈ A.

(If n = 2, Dh(y1,...,yn−1) is defined to be {1} if y1 ∈ A, and {0} otherwise.) If x1 < y1,
define h(y1, . . . , yn−1) by

Dh(y1,...,yn−1) = {k : (k = 0∧k ∈ Dg(x1,y1,...,yn−1)) ∨ (k > 0∧k+1 ∈ Dg(x1,y1,...,yn−1))}.

If the n-ary IMIN-limiter for A is not strong, we must replace Dg(x1,...,xn) by Wg(x1,...,xn).
However, if C is any extensive set, there exists a function h recursive in C such that
Wg(x1,...,xn) ⊆ Dh(x1,...,xn) ⊂ {0, . . . , n}. We then mimic the foregoing proof and conclude
that A is r.e. in C. By Proposition 2.13, A is r.e.

We have no idea how to prove Theorem 4.1 without appealing to Proposition 2.13.
Perhaps it can be done, but the argument may be much more intricate.

The following refinement of Theorem 4.1 will prove useful.

Proposition 4.2 A has a strong binary IMIN-limiter g such that 0 ∈ Dg(x,y) for all x, y
iff A is retraceable and co-r.e.
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Proof:

⇒: Suppose that A has a strong binary IMIN-limiter g such that 0 ∈ Dg(x,y) for all x, y.
We can assume that A is nonempty, and that |Dg(x,y)| = 2 for all x, y. By Theorem 1, we
know that A is co-r.e. We define a (total) recursive function f that retraces A. (Note that
this will actually show that A is strongly retraceable. This will not pose a problem in the
proof of the converse, since it has been shown by Dekker and Myhill [3] that every co-r.e.
set which is retraceable is strongly retraceable.) Let a be the smallest element of A.

Let f(a) = a and, for y ∈ ω − {a}, let f(y) be the greatest number x < y such that
Dg(x,y) = {0, 1}, if such an x exists; otherwise, let f(y) = y. Note that, for every y ∈ A
with y > a, f(y) is the greatest number x < y such that x ∈ A; hence f retraces A.

⇐: Suppose that A is retraceable and co-r.e. Choose a (total) recursive retracing function f
for A. (See [3] for a proof that such an f exists.) We define a strong binary IMIN-limiter g
for A so that 0 ∈ Dg(x,y) for all x, y.

Let x, y ∈ ω. We can assume that x ≤ y. If x = y, let Dg(x,y) = {0, 1}. If x < y,
simultaneously enumerate A and compute f(y), f(f(y)), . . .. Define Dg(x,y) according to
which of the following three events occurs first:

• x enters A: Set Dg(x,y) = {0, 2}.

• y enters A: Set Dg(x,y) = {0, 1}.

• For some n, x = f (n)(y) (note that this will occur if {x, y} ⊆ A; moreover, if x =
f (n)(y), then y ∈ A⇒ x ∈ A): Set Dg(x,y) = {0, 1}.

Corollary 4.3 A has a binary MIN-limiter iff A is co-r.e. and retraceable.

Proof:

⇒: Suppose that A has a binary MIN-limiter f . Then f ∈ EN(1) (hence f is recursive) and
f(x, y) = min(A∩{x, y}) whenever A∩{x, y} 6= ∅. We define a strong binary IMIN-limiter g
for A so that 0 ∈ Dg(x,y) for all x, y, from which it follows (by Proposition 4.2) that A is
co-r.e. and retraceable.

Let x, y ∈ ω. We can assume that x ≤ y. If x = y, let Dg(x,y) = {0, 1}. If x < y, let

Dg(x,y) =

{
{0, 1}, if f(x, y) = x;
{0, 2}, if f(x, y) = y.

⇐: Suppose that A is co-r.e. and retraceable. By Proposition 4.2, A has a strong binary
IMIN-limiter g such that 0 ∈ Dg(x,y) for all x, y. We define a binary MIN-limiter f for A.

Let x, y ∈ ω. We can assume that x 6= y. If x < y (the case y < x is similar), let

f(x, y) =

{
x, if Dg(x,y) ⊆ {0, 1};
y, if Dg(x,y) = {0, 2}.
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Theorem 4.4 A has a strong binary IMIN-limiter iff A is the union of a recursive set and
a co-r.e., retraceable set.

Proof:

⇒: Suppose that A has a strong binary IMIN-limiter g. We can assume that |Dg(x,y)| = 2
for all x, y. First, we show that CA

2 ∈ SEN(3), i.e., we define a recursive binary function f
so that, for all x, y, CA

2 (x, y) ∈ Df(x,y) ⊂ {(0, 0), (0, 1), (1, 0), (1, 1)}.
Let x, y ∈ ω. If x = y, let Df(x,y) = {(0, 0), (1, 1)}. If x < y, let

Df(x,y) =


{(1, 0), (0, 1), (1, 1)}, if 0 /∈ Dg(x,y);
{(0, 0), (0, 1)}, if 1 /∈ Dg(x,y);
{(0, 0), (1, 0), (1, 1)}, if 2 /∈ Dg(x,y).

If x > y, let Df(x,y) = {(i, j) : (j, i) ∈ Df(y,x)}.
By Theorem 4.1, A is co-r.e. Moreover, since CA

2 ∈ SEN(3), it follows easily that
CA

2 ∈ SEN(3). Thus, by Proposition 2.16, A is semirecursive. From this it follows that
A is semirecursive. Choose a recursive binary selector function h so that A is semirecursive
via h.

Define a recursive set B by

B = {y : (∃x < y)[0 /∈ Dg(x,y) ∧ h(x, y) = y]}.

Then B ⊆ A. Let C = A−B. Now C is co-r.e., since A is co-r.e. and B is recursive.
It remains to show that C is retraceable. We define a strong binary IMIN-limiter k

for C so that 0 ∈ Dk(x,y) for all x, y, from which it follows (by Proposition 4.2) that C is
retraceable.

Let x, y ∈ ω. We can assume that x ≤ y. If x = y, let Dk(x,y) = {0, 1}. If x < y, let

Dk(x,y) =


{0, 2}, if x ∈ B;
Dg(x,y), if 0 ∈ Dg(x,y) ∧ x /∈ B;
{0, 1}, otherwise.

Note that if x < y and the first two clauses in the definition of k(x, y) fail, then 0 /∈ Dg(x.y)

and x /∈ B. If y ∈ B, then y /∈ C, since C ⊆ B. If, on the other hand, y /∈ B, then (by the
definition of B and the fact that 0 /∈ Dg(x,y)) h(x, y) = x. In either case, {x, y} ∩ C 6= ∅ ⇒
x ∈ C. Thus k is as claimed.

⇐: Suppose that A = B ∪ C, where B is recursive and C is co-r.e. and retraceable. We
define a strong binary IMIN-limiter g for A.

Let x, y ∈ ω. We can assume that x ≤ y. If x = y, let Dg(x,y) = {0, 1}. If x < y, let
Dg(x,y) = {1, 2} if {x, y} ∩B 6= ∅; otherwise (i.e., if {x, y} ∩B = ∅), define Dg(x,y) as in the
proof of Proposition 4.2 (using C and C in place of A and A, respectively).

We cannot characterize the class {A : A has a binary IMIN-limiter}. One reason is that
Proposition 2.16 fails if SEN is replaced by EN: It is well known (see [6]) that there exist r.e.
sets that are not semirecursive; note, however, that if A is any r.e. set, then CA

2 ∈ EN(3).
Also, we have not characterized any of the classes {A : A has a strong n-ary IMIN-limiter},
n > 2.
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By Theorem 4.4, IMINA
2 ∈ SEN(2) iff A is the union of a recursive set and a co-r.e.,

retraceable set. Martin [13] has shown that IFIRSTA
2 ∈ SEN(2) iff A is recursive. The

following theorem is an extension of her result.

Theorem 4.5 If IFIRSTA
2 ∈ EN(2), then A is recursive.

Proof: First, we consider the case where IFIRSTA
2 ∈ SEN(2) and give Martin’s argu-

ment. By assumption, there exists a recursive binary function f such that, for all x1, x2,
IFIRSTA

2 (x1, x2) ∈ Df(x1,x2) ⊂ {0, 1, 2}. We can assume that |Df(x1,x2)| = 2 for all (x1, x2).
We define a recursive binary function g so that, for all x1, x2, #A

2 (x1, x2) ∈ Dg(x1,x2) ⊂
{0, 1, 2}. By the Weak Cardinality Theorem, A is recursive.

Let x1, x2 ∈ ω. If x1 = x2, let Dg(x1,x2) = {0, 2}. So assume that x1 6= x2.
If Df(x1,x2) = {1, 2} or Df(x2,x1) = {1, 2}, then A∩{x1, x2} 6= ∅, so let Dg(x1,x2) = {1, 2}.

If Df(x1,x2) = {0, 2} or Df(x2,x1) = {0, 2}, then A ∩ {x1, x2} 6= ∅, so let Dg(x1,x2) = {0, 1}.
If neither of these conditions is satisfied, then Df(x1,x2) = {0, 1} = Df(x2,x1), hence |A ∩
{x1, x2}| 6= 1, so let Dg(x1,x2) = {0, 2}.

Now suppose that IFIRSTA
2 ∈ EN(2), and let B be any extensive set. Then there

exists a binary function f recursive in B such that, for all x1, x2, IFIRSTA
2 (x1, x2) ∈

Df(x1,x2) ⊂ {0, 1, 2}. By a relativization of the above argument, A is recursive in B. Hence
by Proposition 2.11, A is recursive.

We now investigate which sets have IMAX-limiters.

Theorem 4.6 If A is a retraceable set such that IMAXA
n ∈ EN(n) for some n ≥ 1, then

A is recursive.

Proof: Suppose that A is a retraceable set such that IMAXA
n ∈ EN(n) for some n ≥ 1.

Choose a retracing function ψ for A. For x1, . . . , xn ∈ ω with x1 ≤ · · · ≤ xn, CA
n (x1, . . . , xn)

can be readily calculated from IMAXA
n (x1, . . . , xn) and ψ. Hence CA

n ∈ EN(n). Thus A is
recursive, by the Nonspeedup Theorem.

In contrast to Theorem 4.6, we have the following theorem, from which it follows that
if A is retraceable, then IMAXA

n ∈ EN(2).

Theorem 4.7 Let n ≥ 1. If A is the union of a recursive set and a retraceable set, then
IMAXA

n ∈ EN(2).

Proof: Suppose that A = B ∪ C, where B is recursive and C is retraceable. Choose
a retracing function ψ for C. We define partial recursive functions ϕ1, ϕ2 so that, for all
x1, . . . , xn ∈ ω, at least one of the functions ϕ1, ϕ2 converges to IMAXA

n (x1, . . . , xn) on
input (x1, . . . , xn).

Let x1, . . . , xn ∈ ω. We can assume that x1 ≤ · · · ≤ xn. Computem = |{x1, . . . , xn}∩B|.
If m = 0, then {x1, . . . , xn} ⊆ B (hence IMAXA

n (x1, . . . , xn) = 0, since A ⊆ B), so let
ϕ1(x1, . . . , xn) = 0 and let ϕ2(x1, . . . , xn) diverge.

If m > 0, let y1, . . . , ym be such that {y1, . . . , ym} = {x1, . . . , xn} ∩ B and m >
1 ⇒ y1 < · · · < ym. (Note that y1, . . . , ym are the only candidates for membership in
{x1, . . . , xn} ∩A, since A ⊆ B.) We define ϕ1(x1, . . . , xn), ϕ2(x1, . . . , xn) so that if ym ∈ A,
then ϕ1(x1, . . . , xn) will output IMAXA

n (x1, . . . , xn); otherwise, ϕ2(x1, . . . , xn) will do so.
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First, consider the possibility that ym ∈ A. Let r = max({i : xi = ym}), and note that
ym ∈ A⇒ IMAXA

n (x1, . . . , xn) = r, so let ϕ1(x1, . . . , xn) = r.
Next, consider the possibility that ym /∈ A (in which case ym ∈ C, since ym ∈ B and

A = B ∩ C). Search for k ≥ 1 and w1, . . . , wk ∈ ω such that

• wk = ym,

• ψ(w1) ↓= w1,

• for every i with 1 ≤ i < k, ψ(wi+1) ↓= wi, and

• k > 1 ⇒ w1 < · · · < wk.

If such k,w1, . . . , wk are found (in which case ym ∈ A ⇒ ym ∈ C ⇒ {w1, . . . , wk} ⊆
C ⇒ {w1, . . . , wk} ⊆ A), let p be the greatest element of {1, . . . ,m − 1} such that yp /∈
{w1, . . . , wk}, if such a p exists. If it does, then

ym ∈ C ⇒ yp ∈ C ⇒ yp ∈ A,

so let s = max({i : xi = yp}), and let ϕ2(x1, . . . , xn) = s. If k,w1, . . . , wk are found but
p does not exist, then ym ∈ A ⇒ {y1, . . . , ym} ⊆ A, so let ϕ2(x1, . . . , xn) = 0. (Note that,
regardless of the existence of p, ym ∈ A⇒ ϕ2(x1, . . . , xn) ↓= IMAXA

n (x1, . . . , xn).)

The following theorem is presented without proof, because the main part of the argument
is very similar to the proof of Theorem 4.7.

Theorem 4.8 A is retraceable iff there exists a partial recursive function ϕ such that
ran(ϕ) ⊆ {0, 1} and IMAXA

2 (x1, x2) ∈ {ϕ(x1, x2), 2} for all x1, x2.

Theorem 4.9 A has a strong binary IMAX-limiter iff A is the union of a recursive set
and a strongly retraceable set.

Proof:

⇒: Suppose that A has a strong binary IMAX-limiter f . We can assume that |Df(x,y)| = 2
for all x, y. Define a recursive set B by

B = {y : (∃x < y)[2 /∈ Df(x,y)] }.

Then B ⊆ A. Let C = A − B. We can assume that C is nonempty. We define a (total)
recursive function g that retraces A. Let c be the least element of C.

For y ∈ ω, let g(y) be the greatest number x < y such that x /∈ B and 1 /∈ Df(x,y), if
such an x exists; otherwise, let g(y) = y. Note that, for every y,

y ∈ C ⇒ (g(y) ∈ C ∧ g(y) ≤ y ∧ (g(y) = y iff y = c)).

Also, for all w, y,

(y ∈ C ∧ g(y) < w < y ∧ w /∈ B) ⇒ Df(w,y) = {1, 2} ⇒ w ∈ A⇒ w /∈ C.

Thus, for every y ∈ C − {c}, g(y) is the greatest number x < y such that x ∈ C; hence g
retraces C.
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⇐: Suppose that A = B ∪ C, where B is recursive and C is strongly retraceable. We can
assume that B ∩ C = ∅, since it is easily verified that C − B is also strongly retraceable.
Choose a (total) recursive retracing function f for C. We define a strong binary IMAX-
limiter g for A.

Let x, y ∈ ω. We can assume that x ≤ y. If x = y, let Dg(x,y) = {0, 2}. If x < y and
B ∩ {x, y} 6= ∅, let

Dg(x,y) =

{
{0, 2}, if x ∈ B;
{0, 1}, if x /∈ B ∧ y ∈ B.

If x < y and {x, y} ⊆ B, determine whether or not there exist k ≥ 1 and w1, . . . , wk ∈ ω
such that

• wk = y,

• f(w1) = w1,

• for every i with 1 ≤ i < k, f(wi+1) = wi, and

• k > 1 ⇒ w1 < · · · < wk.

If such k,w1, . . . , wk exist, let S = {w1, . . . , wk}; otherwise, let S = ∅. Then let

Dg(x,y) =

{
{0, 2}, if x ∈ S;
{1, 2}, otherwise.

Note that y ∈ A⇒ IMAXA
2 (x, y) = 2 ∈ Dg(x,y); moreover,

y ∈ A⇒ y ∈ C ⇒ (S ⊆ C ∧ S 6= ∅) ⇒ (x ∈ C iff x ∈ S) ⇒ (x ∈ A iff x /∈ S).

Hence IMAXA
2 (x, y) ∈ Dg(x,y), regardless of whether y ∈ A.

It is natural to conjecture that IMAXA
2 ∈ EN(2) iff A is the union of a retraceable set

and a recursive set, but we can prove only the “if” direction. Thus we do not know exactly
which sets have binary IMAX-limiters.

We conclude by showing that it is impossible for a nonrecursive set to have both an
IMAX-limiter and an IMIN-limiter.

Theorem 4.10 If A has an n-ary IMAX-limiter and an m-ary IMIN-limiter for some
n,m ≥ 1, then A is recursive.

Proof: Suppose that A has an n-ary IMAX-limiter g and an m-ary IMIN-limiter h for
some n,m ≥ 1. Without loss of generality, we can assume that m ≤ n. We say that a
node σ of the full binary tree 2<ω is consistent with g if, for all x1, . . . , xn ∈ ω with x1 ≤
· · · ≤ xn < |σ|, max({j : σ(xj) = 1}) ∈ Wg(x1,...,xn), where we define max({j : σ(xj) = 1})
to be 0 if σ(x1) = · · · = σ(xn) = 0. Similarly, we define what it means for σ to be consistent
with h.

Now let T consist of those nodes of 2<ω which are consistent with both g and h. Then
T is an r.e. subtree of 2<ω, and A is an infinite branch of T . According to Lemma 2.7, if
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B4n−2 can be embedded in T , then there exist natural numbers x1, . . . , xn, nodes τ1, . . . , τn+1

of T , and b ∈ {0, 1} such that, for i, j with 1 ≤ i ≤ n and 1 ≤ j ≤ n+ 1,

τj(xi) =

{
1− b, if 1 ≤ i < j;
b, if j ≤ i ≤ n.

If b = 0, then one of the nodes τ1, . . . , τn+1 is not consistent with g (else {0, . . . , n} ⊆
Wg(x1,...,xn), in contradiction to the assumption that Wg(x1,...,xn) ⊂ {0, . . . , n}). If b = 1,
then, confining our attention to x1, . . . , xm, one of the nodes τ1, . . . , τm+1 is not consistent
with h. Therefore, B4n−2 cannot be embedded in T , and so, by the R.E. Tree Lemma, A is
recursive.
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