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Abstract

Measure and category (or rather, their recursion-theoretical counter-
parts) have been used in theoretical computer science to make precise
the intuitive notion “for most of the recursive sets.” We use the no-
tions of effective measure and category to discuss the relative sizes
of inferrible sets, and their complements. We find that inferable sets
become large rather quickly in the standard hierarchies of learnability.
On the other hand, the complements of the learnable sets are all large.

1 Introduction

Determining the relative size of denumerable sets, and those with cardinal-
ity ℵ1, led mathematicians to develop the notions of measure and category
[Oxt71]. We investigate an application of measure and category techniques to
a branch of learning theory called inductive inference [AS83]. The models of
learning used in this field have been inspired by features of human learning.

The goal of this work is to determine the relative sizes of classes of infer-
able sets of functions. The idea is to determine when, within the well studied
hierarchies of identification criteria, the classes of learnable functions become
“large.”

Every learning algorithm maintains a space of possible solutions, called
the hypothesis space. Indeed, a large part of of the computational resources
invested by a learning algorithm are devoted to the creation and maintenance
of the hypothesis space. A hypothesis space that is just large enough to
accommodate a “small” learning problem may not be large enough to include
at least one correct solution for every possible instance of a larger learning
problem. Hence, to learn a “large” class would require a larger hypothesis
space than would be required to learn a “small” class. As the hypothesis
space grows, so does the amount of resources required to search through it.
We find a point where the size of the hypothesis space takes a significant leap
from small, with respect to category and/or measure, to large. The fact that
such a crossover point exists is not surprising. What is of interest is that we
can isolate where the point is.

We are also interested in the sizes of the complements (with respect to
the set of recursive functions) of the learnable classes. The idea is that if
the complement of a class is small, then the class itself must be significantly
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larger than any class with a large complement. It turns out that unless an
inference criteria is sufficiently powerful so as to be able to learn all the
recursive functions, then the complement of the learnable sets of functions
is large. This means that every practical learning system must be very far
from general purpose.

The notions of measure and category have been studied within the con-
text of theoretical computer science. Mehlhorn [Mel73] and Lutz [Lut92]
used constructive notions of category and measure to study subrecursive
degree structures. Ben-David and Gurvits [BG95] have begun an investiga-
tion that relates the VC-dimension of a set of reals with its measure. This
may be useful in PAC-learning since the VC-dimension plays a large role
there [BEHW89].

2 Technical Preliminaries

We use the following notation throughout this paper.

Notation 2.1

1. The natural numbers are denoted by IN. The rational numbers are
denoted by Q. The positive rationals are denoted by Q+.

2. For strings σ and τ , σ ⊑ τ denotes the situation where σ is a prefix of
τ . If σ is a proper prefix of τ , we will write σ ⊏ τ . If f is a 0-1 valued
function then σ ⊏ f means that σ is an initial segment of f .

3. {0, 1}∗ is the set of all finite sequences of 0’s and 1’s.

4. {0, 1}ω is the set of all infinite sequences of 0’s and 1’s.

5. REC0,1 is the set of all 0-1 valued recursive functions. (For a formal
treatment of recursive functions see [MY78, Rog67, Smi94, Soa87].)

6. If m is a partial function then m(x) ↓ means that m is defined on
arguments x.
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2.1 Measure and Category

We will be looking at the size of subsets of REC0,1. To do so we identify
a function f : IN → {0, 1} with the sequence f(0)f(1)f(2) · · ·. Conversely,
every element of {0, 1}ω is associated to a 0-1 valued function, though it need
not be recursive.

We now describe two ways to view the size of subsets of {0, 1}ω and hence
the size of subsets of REC0,1. In both cases we will end up with a notion of
‘small.’

The idea of measure comes from [Bor05, Bor14], see [Oxt71]. It is more
convenient for us to use the martingale functions [Sch71, Lut92, Lut93]. In-
tuitively, a martingale m is a betting strategy. A player starts with capital
m(ϵ) and bets on the successive values of a sequence of bits. After he has
seen the initial segment σ his capital is m(σ) and he bets m(σb)/2 that the
next bit is b for b = 0, 1. In the following definition we require that the wages
must sum up to the current capital m(σ). If the outcome is b, he receives
twice his wager on b and looses his wager on 1 − b. His capital after σb
is therefore m(σb), as intended. This gambling terminology is used in our
proofs.

Definition 2.2 A (partial) function m : {0, 1}⋆ → Q+ ∪ {0} is a martingale
if for all σ, if m(σ0) ↓ or m(σ1) ↓ then

1. m(σ) ↓, m(σ0) ↓ and m(σ1) ↓, and

2. m(σ) = m(σ0)+m(σ1)
2

.

Definition 2.3 Let f ∈ {0, 1}ω. We say m wins on f if

1. For all n, m(f(0) · · · f(n)) ↓, and

2. lim supn→∞ m(f(0) · · · f(n)) = ∞.

We say m loses on f if m does not win on f . If S ⊆ {0, 1}ω then m wins on
S if m wins on every f ∈ S.

Let S ⊆ {0, 1}ω. Suppose there exists a martingale m that wins on S. Then
every A ∈ S is somewhat predictable; intuitively, S is small. The next
definition is based on this intuition.
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Definition 2.4 Let S ⊆ {0, 1}ω. S has measure zero if there is a martingale
m that wins on S. S has (partial) recursive measure 0 if there exists a
(partial) recursive martingale m that wins on S. If m is partial recursive
then m has to be defined on all initial segments of elements of S. We denote
S having (partial) recursive measure 0 by (µP (S) = 0) µR(S) = 0. (Schnorr
[Sch71] showed that the above definition of measure 0 is equivalent to the
classical one,and related martingales to Martin-Löf randomness.)

Terwijn [Ter95] pointed out that partial recursive measure zero sets are not
closed under union (see the remark after Theorem 5.1) and therefore the
term “measure” is somewhat euphemistic. However, our intuition as to why
partial recursive measure 0 is “small” is still valid.

Next we review an effective notion of category [Kur58, Oxt71]. We will
give two definitions of effectively meager. Lisagor [Lis81] (also see Fen-
ner [Fen91, Theorem 3.7]) showed that they are equivalent. We first need to
define the notion of a Banach-Mazur game.

Definition 2.5 Let S ⊆ {0, 1}ω. The Banach-Mazur game associated with
S is defined as follows. On the first move player I chooses σ1 ∈ {0, 1}∗ and
player II chooses τ1 such that σ1 ⊑ τ1. In all subsequent moves the player
picks a proper extension of the current string. If the final infinite string is in
S then player I wins, else player II wins.

Definition 2.6 Let S ⊆ {0, 1}ω. We refer to the Banach-Mazur game as-
sociated with S throughout this definition. A (recursive) strategy is a (re-
cursive) function strat from {0, 1}∗ to {0, 1}∗ such that σ ⊏ strat(σ). strat
is a winning strategy for player I if the following sequence of plays leads to
player I winning: player I plays strat(ϵ), player II plays τ1, player I plays
strat(τ1), player II plays τ2, player I plays strat(τ2) . . .. Note that player II’s
moves are not constrained except that they have to follow the rules of the
game and thus be extensions of the current string. A winning strategy for
player II is defined similarly.

Let S ⊆ {0, 1}ω. Imagine that player II has a winning strategy for the
Banach-Mazur game associated with S. Then player II can (in the long run)
force the string being constructed to not be in S. Hence S is ‘small.’ The
next definition is based on this intuition.
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Definition 2.7 A set C ⊆ {0, 1}ω is meager iff there is a winning strategy
for player II in the Banach-Mazur game associated to C. A set C ⊆ REC0,1

is effectively meager iff there is a recursive winning strategy for player II in
the Banach-Mazur game associated to C. Note that this strategy beats any
strategy for player I, even nonrecursive ones.

Definition 2.8 (Due to Mehlhorn [Mel73]) A set C ⊆ REC0,1 is effectively
meager iff there is a sequence {hk}k∈ω of uniformly recursive functions hk :
{0, 1}∗ → {0, 1}∗ such that σ ⊑ hk(σ) for all k, σ, and for every f ∈ C there
is k such that hk(σ) ̸⊑ f for all σ. (This formalizes that C is contained in
an effective union of effectively nowhere dense sets.)

2.2 Learning Theory

The basic model of learning used in this paper was first used by philosophers
interested in modeling the scientific method [Put75]. The model was studied
formally by linguists who were interested in the learning of natural languages
[Gol67] and cast recursion theoretically in [BB75]. Since we will be consid-
ering learning recursive functions we need a fixed acceptable programming
system (see [MY78, Rog67, Smi94, Soa87].)

Notation 2.9 Throughout this paper M0,M1, . . . is a standard list of all
Turing machines, M

()
0 ,M

()
1 , . . . is a standard list of all oracle Turing machines.

φ0, φ1, . . . is the acceptable programming system, obtained by letting φe be
the partial recursive function computed by Me.

Convention 2.10 All the recursive functions we deal with will be inREC0,1,
hence we will assume that all the φe are partial 0-1 valued functions.

The following definitions are from [CS83]. Usually these definitions yield
subsets of the recursive functions, however we will take them to yield subsets
of REC0,1 for this paper.

Definition 2.11 An inductive inference machine (IIM) M is a total Turing
machine. We informally interpretM to be trying to learn a recursive function
f by viewing M as taking as input the values f(0), f(1), . . . (one value at a
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time) and producing output (from time to time) in the form of a program
intended to compute f . If almost all the programs are the same, and compute
f , then we say thatM EX-identifies f orM learns f in the limit. EX stands
for EXplains as we are thinking of a program for f as an explanation for f ’s
behaviour. If almost all the programs compute f , but are not necessarily the
same, then M BC-identifies f . BC stands for Behavorially Correct since we
only insist that the programs output behave the same as f does. Formally,
M computes a total function from {0, 1}∗ to IN. The input is an initial
segment of the function to be inferred, and the output is the current guess
as to an index of that function. The indices output by IIMs are relative to
the acceptable programming system {φe}∞e=0 specified in Notation 2.9.

Convention 2.12 If the output of an IIM is 0 then we interpret this as
meaning ‘no guess at this time’.

Definition 2.13 Let S ⊆ REC0,1. Then S ∈ EX (BC) if there exists an
IIM M such that for all f ∈ S, M EX-identifies f (BC-identifies f).

Example 2.14 Let
S0 = {σ0ω : σ ∈ {0, 1}∗}

and
S1 = {f : 1e0 ⊏ f ∧ φe = f ∧ f ∈ REC0,1}.

Note that S0 ∈ EX and S1 ∈ EX. Techniques of Blum and Blum [BB75],
or Case and Smith [CS83], can be used to show that S0 ∪ S1 /∈ EX.

Definition 2.15 The set S1 in Example 2.14 is called the set of self-describing
functions.

We consider several restrictions and enhancements to EX. One restriction
of EX is to bound the number of times an IIM outputs a program that is
different from the most recently produced program. When this happens, we
say the M has made a mind change.
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Definition 2.16 S ∈ EXn if there exists an IIM M such that for all f ∈ S,
M EX-identifies f , and changes its mind at most n times.

Example 2.17 Note that the set S1 of self-describing functions is in EX0.

Another restriction on learning is to insist that the guesses made are total.

Definition 2.18 S ∈ PEX if S ∈ EX via an IIM that, on any input σ,
outputs an index of a total function. (The P in PEX stands for “Poppe-
rian” since this definition was intended to model Karl Popper’s philosophy
of science. See [CS83] for further EXplanation.)

One way to expand the class of functions being learned is to allow the final
conjecture output to be incorrect on some number of points.

Definition 2.19 If f and g are partial recursive functions and k ∈ IN then
f =k g (f =∗ g) means that f and g agree on all but at most k points (on
all but a finite number of points). If f and g agree on x then it is possible
that f(x) ↑ and g(x) ↑. If they disagree on x then it is possible that f(x) ↓
and g(x) ↑.

Definition 2.20 S ∈ EXk (S ∈ EX∗) if there exists an IIM M such that
for all f ∈ S, when M is run on initial segments of f , (1) almost all the
programs output are the same, say e, and (2) φe =

k f (φe =
∗ f). Note that

the final conjecture φe may diverge on the points where it disagrees with f .

Another way to expand the class of functions being learned is to have more
algorithms involved in the learning.

Definition 2.21 Let m,n be such that 1 ≤ m ≤ n. A set of recursive
functions S is in [m,n]EX (concept from [Smi82, OSW86], notation from
[PS88]) if there exist n IIMs M1,M2,. . ., Mn such that for every f ∈ S there
exist i1, . . . , im, 1 ≤ i1 < · · · < im ≤ n, such that Mi1 , . . . ,Mim all EX-infer
f . If m = 1 then in the literature this is referred to as inferring S by a team
of n IIMs.
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Team learning has been shown to be equivalent to a form of learning resem-
bling the well known “process of elimination” [FKS94] and strongly related
to probabilistic learning [PS88, Pit89]. The class [m,n]EX0 has been in-
vestigated extensively in [DPVW91, DKV92, DKV93, Vel89, JS90]. We can
combine several of the modifications mentioned above.

Definition 2.22 For I ∈ {PEX,EX,BC}, a, b ∈ IN − {0} with a ≤ b,
and c, d ∈ IN ∪ {∗} one can define [a, b]Id

c . If c = ∗ then we are allowing
unbounded mindchanges which is the standard definition of PEX, EX, and
BC. If c ̸= ∗ then BCc = EXc.

The following lemma is well-known [CS83, Smi82]:

Lemma 2.23 If I ∈ {PEX,EX}, a, b ∈ IN − {0} with a ≤ b, and c, d ∈
IN ∪ {∗}, then REC0,1 /∈ [a, b]Id

c . However, REC0,1 ∈ BC∗.

3 Categoricity of Inferable Classes

In this section we consider a class to be small if it is effectively meager. We
show that every set in PEX is small, but that there exists a set in EX0

that is not small. This shows that the constraint of outputing only indices
for total functions is very restrictive: all sets in PEX are small, while the
weakest natural inference class that does not have this constraint, EX0, can
learn a set that is not small. Since virtually every inference class is either a
subset of PEX or a superset of EX0 the results here settle virtually all open
questions that could be raised.

Theorem 3.1 Every set in PEX is effectively meager.

Proof: Suppose S ∈ PEX via IIM M . We describe a recursive winning
strategy strat for player II of the Banach-Mazur game for S. Suppose that
it is player II’s turn to play and that σ is the finite function that has been
determined by the game so far. Let x be the least value not in the domain
of σ. Let e = M(σ). Since S ∈ PEX, φe is a recursive function. Player
II plays σ · (1 − φe(x)). (By Convention 2.10 φe(x) ∈ {0, 1}.) Clearly, the
function constructed is not in S.
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Theorem 3.2 There exists a set S ∈ EX0 that is not effectively meager.

Proof: Let S = S1, the set of self describing functions (see Defini-
tion 2.15). We show that player II cannot have a recursive winning strategy
for the Banach-Mazur game associated to S. Let strat be a recursive strat-
egy for player II. We describe a recursive winning strategy that player I can
use to defeat player II. The strategy implicitly uses the recursion theorem.
Player I first plays 1e0 where e is the index of the recursive set that is the
limit of the sequence defined by

σ1 = 1e0;
σ2i = strat(σ2i−1);

σ2i+1 = σ2i0.

From then on player I will always extend the current string by 0. The set
f produced is the recursive set described by φe. Hence f ∈ S, so strat is
not a winning strategy. Since this proof was for any recursive strat, player
II cannot have a recursive winning strategy.

4 Recursive Measure

In this section we consider a class S to be small if µR(S) = 0. The behaviour
of natural inference classes with respect to this notion of size is identical to
that of effective meagerness: every set in PEX is small, but that there exists
a set in EX0 that is not small. Hence again we see that the constraint of
outputing only indices for total functions is very restrictive. Since virtually
every inference class is either a subset of PEX or a superset of EX0 the
results here settle virtually all open questions that could be raised.

To show that every set in PEX has recursive measure 0 we state a more
general theorem. As Terwijn [Ter95] pointed out, this follows from [Lut92,
Lemma 3.10] where it is stated in terms of density systems; for the conve-
nience of the reader we present a self-contained proof.

Definition 4.1 Let S ⊆ REC0,1. S is uniformly r.e. if there exists a recur-
sive function g such that S = {λx.g(i, x) : i ≥ 0}.
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Theorem 4.2 If S is a uniformly r.e. subset of REC0,1 then µR(S) = 0.

Proof: Since S is uniformly r.e. there exists a recursive function g such
that S = {λx.g(i, x) : i ≥ 0}.

Let m(λ) = 1. Assume m(σ) is defined. We define m(σ0) and m(σ1)
simultaneously. Find the minimal i ≤ |σ| such that for all x, |x| ≤ |σ|,
g(i, x) = σ(x). Let g(i, |σ|) = b. We bet on b: Let m(σb) = 3

2
m(σ) and

m(σ(1− b)) = 1
2
m(σ).

Let f be the recursive function being fed to the martingale. Let e be the
minimal i such that (∀x)[g(i, x) = f(x)]. The i picked in determining m(|σ|)
will reach a limit of e. Once it reaches that limit the martingale always bets
on the correct answer. Hence the theorem is established.

Corollary 4.3 If S ∈ PEX then µR(S) = 0.

Proof: Let S ∈ PEX via M . Note that S ⊆ S ′ = {φM(σ) : σ ∈ {0, 1}∗}.
Since S ∈ PEX we know that M only outputs indices of total machines, so
S ′ ⊆ REC0,1. S ′ is easily seen to be uniformly r.e., hence, by Theorem 4.2,
µR(S

′) = 0. Since S ⊆ S ′, µR(S) = 0.

Theorem 4.4 There exists S ∈ EX0 such that µR(S) ̸= 0.

Proof: Let S = S1, the set of self describing functions (see Defini-
tion 2.15). We show that if m is any recursive martingale then there exists
an f ∈ S such that m loses on f . Let m be a martingale. Recall that, for all
σ, either m(σ0) ≤ m(σ) or m(σ1) < m(σ).

We construct f by an initial segment argument. At the end of stage s we
have σs ∈ {0, 1}∗. f will be lims→∞ σs.

BEGIN CONSTRUCTION

Stage 0: σ0 = 1e0 where e is the index of the function we are constructing
(we use the recursion theorem implicitly).

Stage s+1: Let x = |σs|, the least undefined point. Let

σs+1 =
{
σs0 if m(σs0) ≤ m(σs);
σs1 if m(σs1) < m(σ).
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END OF CONSTRUCTION

One can easily show by induction that (∀s)[m(σs) ≤ m(σ0)]. Hence m loses
on f .

5 Partial Recursive Measure

In this section we consider a class S to be small if µP (S) = 0. We show
that every set in EX0 is small, but that there exists a set in EX1 that is
not small. The question arises as to how much power we must add to EX0

before we obtain an inference class I such that there exists S ∈ I with S not
small. We answer this completely:

1. If c > d
2
then every S ∈ [c, d]EX∗

0 is small.

2. If c ≤ d
2
then there exists S ∈ [c, d]EX0 which is not small. (This is

easy since EX1 ⊆ [c, d]EX0 in this case.)

In summary, for this notion of size, the step from 0 mindchanges to 1 mind-
change is critical. This still holds even if we enhance the EX0 machine in
various ways.

Theorem 5.1 If S ∈ EX0 then µP (S) = 0.

Proof: Let S ∈ EX0 via M . We define a partial recursive martingale m
as follows for σ ∈ Σ∗ and i ∈ Σ:

• Let m(λ) = 1.

• If M(σ) = 0 then m(σb) = 1 for b = 0, 1. (No bet is placed.)

• If M(σ) outputs a value larger than 0 and φM(σ)(|σ|) = b then let
m(σb) = 2m(σ) and m(σ(1−b)) = 0. (All the money is bet on b.)

We show that, for all f ∈ S, m wins on f . Let σ ⊏ f be the shortest
initial segment of f such that M(σ) > 0. Since S ∈ EX0 via M we have
φM(σ) = f . Hence all bets placed after σ is observed will win. Hence m wins
on f .
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Terwijn [Ter95] noted that S0∪S1 is an example of a class S with µP (S) ̸= 0
and such that S is the union of two (partial recursive) measure zero classes.

We now show that there exists a set S ∈ EX1 such that µP (S) = 0. We
need the following technical lemma. This lemma will enable us to extend a
string σ by “not too many ones” such that for the resulting τ ⊒ σ the value
of m(τ) is ”not too large.” The lemma will also be used in Section 6.

Lemma 5.2 Let m be a partial recursive martingale. Given σ ∈ {0, 1}∗ and
c ∈ Q such that

a. m is defined on all strings in {ση : |η| ≤ m(σ)
c−m(σ)

+ 1}, and

b. m(σ) < c,

one can recursively determine a τ such that the following hold.

1. τ extends σ.

2. |τ | ≤ m(σ)
c−m(σ)

+ |σ|.

3. (∀η)[σ ⊑ η ⊑ τ → m(η) ↓≤ c]. (m(η) ↓ is guaranteed by a and 2.)

4. m(τ0) ↓≤ c and m(τ1) ↓≤ c. (convergence is guaranteed by a and 2.)

5. There exists k ≤ m(σ)
c−m(σ)

such that m(σ1k0) ↓≤ c. Hence if c = m(σ)+ 1
2s

then k ≤ 2sm(σ). (This is the only part we will be using now.)

Proof: Let η0 = σ and let

ηi+1 =


ηi0 if m(ηi1) ↓> c;
ηi1 if m(ηi0) ↓> c;
ηi otherwise.

We will show that there exists i ≤ m(σ)
c−m(σ)

such that ηi+1 = ηi, hence by a the
least such i can be found recursively.

Since m is a martingale m(ηi) =
m(ηi0)+m(ηi1)

2
. Using this one can show

(by induction) that (∀i)[m(ηi) ≤ m(σ)]. We use this later.

We show that there exists i ≤ m(σ)
c−m(σ)

such that ηi+1 = ηi. Since m maps

to positive numbers it suffices to show that if ηi+1 ̸= ηi then m(ηi+1) <
m(ηi)− (c−m(σ)).
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If ηi+1 = ηib (b ∈ {0, 1}) then, by the definition of a martingale,

m(ηi+1) = m(ηib) = 2m(ηi)−m(ηi(1− b)).

By the definition of ηi+1, m(ηi(1− b)) > c. Hence

m(ηi+1) < 2m(ηi)− c = m(ηi)− c+m(ηi) ≤ m(ηi)− (c−m(σ)).

(this last inequality came from m(ηi) ≤ m(σ)).
Let i be the least number such that ηi = ηi+1. Let τ = ηi. Items 1 and

2 clearly hold. Since (∀i)[m(ηi) ≤ m(σ) < c] item 3 holds. Since m(τ0) ≤ c
and m(τ1) ≤ c item 4 holds.

Let k be the maximal number such that σ1k ⊑ τ . Clearly k ≤ i ≤
m(σ)

c−m(σ)
.If τ = σ1k then, by item 4, m(σ1k0) ≤ c. If σ1k0 ⊑ τ then by item 3

m(σ1k0) ≤ c. Hence, in any case, m(σ1k0) ≤ c. Thus item 5 holds.

Theorem 5.3 There exists S ∈ EX1 such that µP (S) ̸= 0.

Proof: A string σ = 1e01a101a20 · · · 01an is said to have few ones if 0 ≤
ai ≤ 2i+2 for i = 1, 2, . . . , n. A function has few ones iff each of its initial
segments has few ones. Let S be

{φe : φe is total,1
e0 ⊑ φe and φe has few ones} ∪

{f : f = σ1ω and σ has few ones}.

S is EX1-inferable via the following inference algorithm. On input σ do the
following. If σ ⊒ 1e0 has few ones, then guess φe. Otherwise let τ ⊏ σ denote
the longest initial segment of σ with few ones and guess τ1ω.

Assume, by way of contradiction, that µP (S) = 0 via partial recursive
martingale m; without loss of generality assume that m(1e0) = 1 for all e.
We construct, by an initial segment argument, a function f ∈ S such that
m loses on f . At the end of stage s we will have σs. The final f will be
lims→∞ σs.

BEGIN CONSTRUCTION

Stage 0: σ0 = 1e0 where e is the index of the function we are constructing
(we use the recursion theorem implicitly).

Stage s+1: Inductively assume that
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1. σs = 1e01a10 · · · 1as0,

2. σs has few ones, and

3. for all η ⊑ σ, m(η) ≤ ∑s
i=0 2

−i.

Let c = m(σs) + 2−s−1, σ = σs, and i = m(σ)
c−m(σ)

= m(σ)2s+1 < 2s+2. For

η ∈ {0, 1}≤i+1 the string ση has few ones so ση1ω ∈ S; hence m(ση) is
defined. We can thus apply Lemma 5.2.5 to σ to obtain k ≤ 2s+2 such that
m(σ1k0) ≤ m(σ) + 2−s−1. Let σs+1 = σs1

k0. It is easy to show that items
1,2, and 3 still hold.

END OF CONSTRUCTION

Clearly, the function constructed is in S. Since m(η) ≤ ∑n
i=0 2

−i on all initial
segments of f the martingale is bounded on f by 2. Hence the martingale m
loses on f . This is a contradiction.

Theorem 5.4 Let c, d be such that c > d
2
. If S ∈ [c, d]EX∗

0 then µP (S) = 0.

Proof: Assume S ∈ [c, d]EX∗
0 via IIM’s M1, . . . ,Md. We describe a

partial recursive martingalem for S intuitively; we formalize it later. Assume
that if σb (σ ∈ {0, 1}∗, b ∈ {0, 1}) is input then σ is an initial segment of a
fixed 0-1 valued function f ∈ S. We define m(σ0) and m(σ1) simultaneously.
They are how much we are betting that f(|σ|) = 0 and f(|σ|) = 1. Since we
can compute m(τ) for all τ ⊑ σ recursively we assume that we have access
to all prior bets and outcomes.

If |{i : Mi(σ) ̸= 0}| < c then we bet on 0 and 1 equally. Once we have
σ such that |{i : Mi(σ) ̸= 0}| ≥ c we set up the following parameters.

1. ei is the guess that the Mi makes as to the index of f . Initially it is
Mi(σ) if it exists, and undefined otherwise. It may be undefined now
but become defined later.

2. k is our current guess for the least number such that φei =k f (see
Definition 2.19). Initially k = 0. This parameter increases when its
current guess looks infeasible.

3. Ei is the number of errors φei has made. Initially Ei = 0.
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4. POSS is the set of all i such that we currently think φei =k f is
possible. POSS will always be {i : Ei ≤ k}. This set may (1) grow
when more ei’s are defined, (2) shrink when a φe is seen to be wrong
more than k+1 times, and (3) grow when k is increased. This set will
always have at least c elements.

5. CANCEL is the set of all i such that φei has been seen to make k+1
errors. It will always be {i : Ei ≥ k + 1}. Indices that have been
cancelled may be resurrected if k increases.

On input σ we do the following. Look for (x, i, b) ∈ IN×POSS×{0, 1} such
that x ≥ |σ| and φei(x) ↓= b. (Since c > d

2
and |POSS| ≥ c there exists

i ∈ POSS such that φei =
∗ f , hence an (x, i, b) will be found.) We will now

plan to (1) bet even money on τ0 and τ1 for all τ such that |σ| ≤ |τ | ≤ x−1,
and (2) bet 3

4
that f(x) = b and 1

4
that f(x) = 1 − b. If we later find out

that this prediction is wrong then we will set Ei = Ei + 1. If |Ei| ≥ k + 1
then we cancel ei and remove i from POSS. If |POSS| < c then the value
of k was too low so we set k := k + 1, POSS := POSS ∪ CANCEL, and
CANCEL := ∅.

We now present this algorithm formally. Since we will be calling it recur-
sively we make each execution of the algorithm yield several parameters as
well as the answer. The parameters are those listed above (e.g. POSS and
CANCEL) and also a tuple (x, i, b). For some inputs the output will not
yield these parameters. In this case we say the parameters are undefined.
We will be able to tell that this is the case recursively.

BEGIN ALGORITHM

1. Input(σ0, σ1).

2. If σ = λ or |{i : Mi(σ) ̸= 0}| < c then set m(σ0) = m(σ1) = 1. All
other parameters remain undefined.

3. If |{i : Mi(σ) ̸= 0}| ≥ c and no proper prefix of σ has this property
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then we initialize parameters.

ei :=
{
Mi(σ) if Mi(σ) ̸= 0
undefined otherwise

k := 0

Ei :=
{
0 if ei is defined
undefined otherwise

POSS := {i : Ei ≤ k}
CANCEL := ∅

4. (We can assume |{i : Mi(σ) ̸= 0}| ≥ c and all parameters have
been initialized.) Compute m(σ). From this computation we extract
two parameters: POSS and (x, i, b) (which might be undefined, but
determining this is recursive). If (x, i, b) is defined then x is a number
such that we would like to bet that f(x) = b, since φei(x) = b.

5. If (x, i, b) is undefined then find (by dovetailing) a triple (x, i, b) ∈
IN× POSS × {0, 1} such that x ≥ |σ| and φei(x) ↓= b. Define (x, i, b)
to be the first such triple found. This value will be used in the next
three steps.

6. If x > |σ| then set m(σ0) = m(σ1) = m(σ). All parameters retain
their values. (We are not betting. We are waiting to bet on x later.)

7. If x = |σ| then we bet on x: set m(σb) = 3
2
m(σ) and m(σ(1 − b)) =

1
2
m(σ). All parameters retain their values. (In the next stage we will

see if this bet was correct and take appropriate action.)

8. If x = |σ| − 1 then do the following.

(a) If b is not the last bit of σ then set Ei := Ei + 1.

(b) IfEi > k then POSS := POSS−{i} and CANCEL := CANCEL
∪ {i}.

(c) If |POSS| < c then k := k + 1, POSS := POSS ∪ CANCEL,
and CANCEL := ∅.

(d) Declare (x, i, b) undefined.

(e) If (∃j)[(j /∈ CANCEL ∪ POSS) ∧ (Mj(σ) ̸= 0)] then for all such
j set ej := Mj(σ), Ej = 0, and POSS := POSS ∪ {j}.
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END OF ALGORITHM

We show this martingale wins on every f ∈ S. Let f ∈ S. Let σ ⊑ f and let
k′, k′′ ∈ IN be such that the following hold.

1. Let ei = Mi(σ) if it exists, and undefined otherwise. Let CORR =
{i : φei =

k′ f}. We require |CORR| ≥ c.

2. For all i ∈ CORR if φei(x) ̸= f(x) then x < |σ|.

3. When m(σ) is defined the value of k is k′′.

We look at how the martingale behaves on inputs τ ⊑ f such that |τ | > |σ|.
If the (x, i, b) picked is such that i ∈ CORR then the martingale will win.
The number of times an i /∈ CORR can be picked such that the martingale
loses is at most (d − c)max{k′, k′′}. Hence eventually the martingale will
always win.

6 Complements of Inference Classes are Large

We have been looking at the size (defined in various ways) of sets S ∈ I for
various inference classes I. Another way to judge the size of S is to look at
the size of REC0,1 − S. In this section we show that if S ∈ EX (or most of
the other inference classes considered in this paper) then REC0,1 − S is not
small. We begin with some definitions. The only new one is the definition
below of reasonable.

Definition 6.1 Two strings are incompatible iff neither is a prefix of the
other.

Definition 6.2 An infinite binary tree is a mapping T from {0, 1}∗ to
{0, 1}∗ such that (1) σ ⊏ τ implies T (σ) ⊏ T (τ), and (2) T (σ0) and
T (σ1) are incompatible with respect to ⊑. Let d0d1 · · · ∈ {0, 1}ω. Let
A = limn→∞ T (d0 · · · dn). A is a branch of T . A recursive binary tree is a
tree computed by a recursive function.
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Definition 6.3 Let T be a recursive binary tree and let S ⊆ REC0,1. We
would like to define the set of branches of T that are ‘guided’ by functions
in S. Formally let

RECB(T , S) = {f : (∃ϕ ∈ S)[f = lim
n→∞

T (ϕ(0)ϕ(1) · · ·ϕ(n)]}.

Definition 6.4 An inference class I is reasonable if, for all recursive trees
T and sets S ⊆ REC0,1,

S ∈ I iff RECB(T , S) ∈ I.

Most inference classes are reasonable. In particular [a, b]Idc , is reasonable
for I ∈ {EX,BC, PEX} and any choice of a, b ∈ IN with a ≤ b and
c, d ∈ IN ∪ {∗}. The inference classes dealt with in the study of learning
via queries [GS92], are not reasonable. (See Appendix.)

Definition 6.5 A set S ⊆ {0, 1}ω is dense if for all σ ∈ {0, 1}∗ there exists
f ∈ S such that σ ⊑ f .

Lemma 6.6 Let S be a dense subset of REC0,1 such that µP (S) = 0 or such
that S is effectively meager. Then there exists a recursive binary tree T such
that no branch of T is in S.

Proof: There are two cases:

Case 1: µP (S) = 0. Let m be a partial recursive martingale for S. Since S
is dense, m is total recursive.

We define T as follows. Let T (λ) = λ. Assume T (σ) is already defined.
Let c = m(T (σ)) + 2−|σ|. By Lemma 5.2 there exists a τ ⊒ T (σ) such that

(∀η)[T (σ) ⊑ η ⊑ τ → m(η) ≤ c]

and
m(τ0) ≤ c and m(τ1) ≤ c.

We can find such a τ by searching. Let T (σ0) = τ0 and T (σ1) = τ1.
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We show that no branch of T is in S. Let d1d2d3 · · · ∈ {0, 1}ω. By
induction we have

[σ ⊑ T (d1d2 · · · dn)] →
[
m(σ) ≤ m(T (λ)) +

n∑
i=0

2−i

]
.

Hence if A = b1b2 · · · is any branch of T then

lim
n→∞

m(b1 · · · bn) ≤ m(T (λ)) +
∞∑
i=0

2−i ≤ m(T (λ)) + 2.

Since m is a martingale that wins on S we have A /∈ S.

Case 2: S is effectively meager. Let {hk}k∈ω be the associated uniformly
recursive functions (see Definition 2.8). Let T (λ) = λ and for, b ∈ {0, 1} let
T (σb) = h|σ|(T (σ)b). Clearly no branch of T is in S.

Theorem 6.7 Let I be a reasonable inference class. If there exists S ∈ I
such that REC0,1 − S is effectively meager or µP (REC0,1 − S) = 0 then
REC0,1 ∈ I.

Proof: Let S ′ = REC0,1 − S. There are two cases.

Case 1: S ′ is not dense. Hence (∃σ)(∀f ∈ REC0,1)[σ ⊑ f → f ∈ S]. Hence
σ ·REC0,1 ⊆ S, so σ ·REC0,1 ∈ I. Since I is reasonable REC0,1 ∈ I.

Case 2: S ′ is dense. By Lemma 6.6 there exists a recursive tree T such that
no branch of T is in S ′. Hence every recursive branch of T is in S, or in our
notation RECB(T , REC0,1) ⊆ S. Therefore RECB(T , REC0,1) ∈ I. Since
I is reasonable REC0,1 ∈ I.

Corollary 6.8 Let I ∈ {PEX,EX,BC}, a, b ∈ IN with a ≤ b, and c, d ∈
IN ∪ {∗}. Assume that d ̸= ∗ or I ≠ BC. If S ∈ [a, b]Id

c then REC0,1 − S is
not effectively meager and µP (REC0,1 − S) ̸= 0.

Proof: This follows from Theorem 6.7 and Lemma 2.23.
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7 Conclusions and Open Problems

We have shown that there are sets in EX0 that are not effectively meager,
hence, even very limited learning algorithms must have very large hypothesis
spaces to search through. For recursive measure, the learnable sets become
large at the same place in the hierarchy of learnable classes. For partial
recursive measure the point is at EX1.

The complements of the learnable sets are all large with respect to both
measure and category. This indicates that unless a technique is guaranteed
to learn all the recursive functions, then it will fail to learn a large set of
them.

It is an open problem to extend this work to other types of learning.
In particular one can ask such questions about PAC-learning using a more
restricted notion of measure and category.

Acknowledgement: We would like to thank Marcus Schäfer for proofread-
ing and Sebastian Terwijn [Ter95] for some helpful comments.

8 Appendix

The reader is assumed to know the definitions QiEX[L] from [GS92].

Theorem 8.1 The class QEX[Suc] is not reasonable. (using Definition 6.4).

Proof: Assume, by way of contradiction, that QEX[Suc] is reasonable.
We describe a set S and a tree T such that that the following occurs.

1. S ∈ QEX[Suc].

2. S = RECB(T , REC0,1).

Since REC0,1 /∈ QEX[Suc] this will be a contradiction. Let

S = {B(0)01a00B(1)01a10B(2)01a20 · · · : B ∈ REC0,1}

where a0, a1, a2, . . . is a recursive enumeration of K. S ∈ Q1EX[S] since
queries about A ∈ S can be used to ask queries to K; from which one can
easily EX infer S. To ask “n ∈ K” (for n > 1) you can ask

(∃x)[x /∈ A ∧ x+ 1 ∈ A ∧ · · · ∧ x+ n ∈ A ∧ x+ n+ 1 /∈ A].
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S is the set of all recursive branches of the binary tree given by T (λ)=λ and
T (σb) = T (σ)b01a|σ|0. Now S = RECB(T , REC0,1) can be inferred under
the criterion QEX[Suc] while the criterion fails to infer REC0,1, so it is not
reasonable.

Indeed Theorem 8.1 uses only queries with one existential quantifier. Also
+ instead of S might be used. Furthermore the proof works for Q2EX[<].
The case Q1EX[<] needs a special proof.

Lemma 8.2 If S ∈ Q1EX[<] then S ⊆ S ′ ∪ S0 ∪ S ′
0 for some S ′ ∈ EX

where S0 denotes the class of finite and S ′
0 the class of cofinite sets.

Proof: Let S ′ be the set of all f ∈ S such that (∃∞x)[f(x) = 0] and
(∃∞x)[f(x) = 1]. We show that S ′ ∈ EX. This easily implies the lemma.

Since S ′ ⊆ S we have S ′ ∈ Q1EX[<]. We show that any query made in
the S ′ ∈ Q1EX[<] inference, when asked of a function in S ′, is equivalent to
a query with no quantifiers. This easily implies S ′ ∈ EX.

By standard techniques any existential query in the langaugue [<] is the
disjunction of queries of the form

(∃x1, .., xn)[cm+1 < x1 < x2 < .. < xn < cm+2∧f(x1) = a1∧· · ·∧f(xn) = an∧f(c1) = b1∧· · ·∧f(cm) = bm]

where ai, bi ∈ {0, 1}, c1, . . . , cm+1 ∈ N and cm+1 ∈ N ∪ {∞}. If cm+2 ̸= ∞
then there is an upper bound on the xi, hence the query can be rewritten
without any quantifiers. If cm+2 = ∞ then, since for f ∈ S ′ (∃∞x)[f(x) = 0]
and (∃∞x)[f(x) = 1], we know that

(∃x1, .., xn)[cm+1 < x1 < x2 < .. < xn < cm+2∧f(x1) = a1∧· · ·∧f(xn) = an]

is true. Hence for f ∈ S ′ the query is equivalent to the quantifier-free query
f(c1) = b1 ∧ · · · ∧ f(cm) = bm.

Lemma 8.3 Q1EX[<] is not reasonable.
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Proof: Let S ∈ Q1EX[<]. By Lemma 8.2 S ⊆ S ′ ∪ S0 ∪ S ′
0 for some

S ′ ∈ EX where S0 denotes the class of finite and S ′
0 the class of cofinite

sets. It is well-known that S0 ∪ S1 /∈ EX for S1 the self describing functions
(see Definition 2.15). Now the tree given by T (λ) = λ and T (σb) = T (σ)01b
maps S0 ∪ S1 to a family S2 of sets which are never finite nor cofinite. Since
EX is reasonable,

S0 ∪ S1 /∈ EX ⇒ S2 /∈ EX ⇒ S2 /∈ Q1EX[<]

and Q1EX[<] is not reasonable.

Corollary 8.4 None of the classes QiEX[Suc], QiEX[<], QiEX[+], QEX[Suc],
QEX[<] and QEX[+] with i ≥ 1 is reasonable.

It is open to determine if there is a query inference class with a nontrivial
measure zero or meager complement.
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