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I. An Abstract View of Learning

To implement a program that somehow “learns” it is neccessary to fix a set of concepts
to be learned and develop a representation for the concepts and examples of the concepts.
In order to investigate general properties of machine learning it is neccesary to work in as
representation independent fashion as possible. In this work, we consider machines that
learn programs for recursive functions. Several authors have argued that such studies are
general enough to include a wide array of learning situations [2,3,22,23,24].

For example, a behavior to be learned can be modeled as a set of stimulus and re-
sponse pairs. Assuming that any behavior associates only one response to each possible
stimulus, behaviors can be viewed as functions from stimuli to responses. Some behaviors,
such as anger, are not easily modeled as functions. Our primary interest, however, con-
cerns the learning of fundamental behaviors such as reading (mapping symbols to sounds),
recognition (mapping patterns to descriptions), arithmetic (mapping formulas to numbers)
and a variety of physical skills. It is possible to encode every string of ascii symbols in the
natural numbers. These strings include arbitrarily long texts and are certainly sufficient
to express both stimuli and responses.

For the purposes of a mathematical treatment of learning, it suffices to consider only
the learning of functions from natural numbers to natural numbers. We will consider a
variety of models of learning recursive functions, each representing some different aspect
of learning. The result of the learning will be a program that computes the function that
the machine is trying to learn. We say that learning has taken place because the machines
we consider must produce the resultant program after having ascertained only finitely
much information about the behavior of the function. The theorems we cite about these
models indicate that, in some ways, machine learning is similar to human learning. To

ease notation, we let the natural numbers (IN) serve as names for programs.

I1. The Gold Model
Gold, in a seminal paper [24], defined the notion called identification in the limit.

This definition concerned learning by algorithmic devices now called inductive inference
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machines (IIMs). An IIM inputs the range of a recursive function, an ordered pair at
a time, and, while doing so, outputs computer programs, (see Figure 1). Since we will
only discuss the inference of (total) recursive functions, we may assume, without loss of
generality, that the input is received by an IIM in its natural domain increasing order, f(0),
f(1), ---. An IIM, on input from a function f will output a potentially infinite sequence
of programs pg, p1, ---. The IIM converges if either the sequence is finite, say of length
n + 1, or there is program p such that for all but finitely many :, p; = p. In the former
case we say the IIM converges to p,, and in the latter case, to p. In general, there is no
effective way to tell when, and if, an IIM has converged. This seems to be analogous with
human learning. Science is full of surprises. The great breakthroughs occur when somone
points out that our thoughts about some phenomenon are not accurate. At various points
in time the scientific community was convinced that the earth was flat, the earth was the
center of the universe, time is absolute, etc.

Following Gold, we say that an IIM identifies a function f, if, when the IIM is given the
range of f as input, it converges to a program p that computes f. If an IIM identifies some
function f, then some form of learning must have taken place, since, by the properties of
convergence, only finitely much of the range of f was known by the IIM at the (unknown)
point of convergence. The terms infer and learn will be used as synonyms for identify. Each
IIM will learn of some (undecidable) set of recursive functions. The collection of all such
sets, over the universe of effective algorithms serving as IIMs, serves as a characterization
of the learning power inherent in the Gold model. Mathematically, this collection is set-
theoretically compared with the collections that arise from the other models we discuss

below.

f(0)7f(1)7f(2) B IIM — Po,P1,P2,---

Figure 1 The Gold Model
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Gold was interested primarily on language learning. A fundamental difference between
learning languages and functions is that for language learning, negative information helps
while it is of no use what so ever in trying to learn a function f if you know that f(3) # 6.

However, Gold did show the following:

THEOREM 1. (Gold [24]) No inductive inference machine can learn all the recursive func-

tions.

By anthropomorphising the IIMs and applying the theorem to humans no surprises
result. We can say, for example, that not only does no one know it all, no one can learn it
all. This, perhaps, suggests the specialization that scientists have tended toward in order
to learn about the universe we live in.

Since no IIM can learn everything, there is the neccesary mathematical lee way to
compare various notions of learning. Some of the other notions envolve variations on the
definition of what it takes for an IIM to learn, see [2,3]. The approach taken here is to
examine fundamentally different models of learning, with each model geared to focus on a

particular aspect of learning.

ITI. Team Learning

Given that no one IIM can learn all the recursive functions, it is mathematically
natural to ask if two, three, or any number of IIMs can. There is also a philosophical
motivation for considering teams of [IMs. The first analytical treatise of learning by
example can be found in the musings of the philosphers of science [0,6,5,11,12,13,15]. The
Gold model can be viewed as an abstraction of the scientific method where the input data
represents encodings of experimental results and the output programs represent encodings
of explanations of the phenomenon under investigation. Correct explantation can be used
to predict the results of, as of yet unperformed, experiments. Scientists rarely work in
isolation. Often, there will be several scientists performing experiments in an attempt

to understand some given phenomenon. Each scientist will have available, in due time,
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the results of all the experiments conducted by all the scientists investigating the same
phenomenon. even though they all have the same data, they may each draw different
conclusions from them. Typically, there is more than one competing theory. Even generally
accepted theories have critics who dispute the truth fo conventional wisdom.

A team of IIMs learns a recursive function f iff one of the team members infers f in the
sense of the Gold model. Each member of the team sees the same input data and outputs
its own sequence of conjectured programs (see Figure 2). As with teams of scientists, there
is no effective way of determining which, if any, of the scientists is expousing the correct
hypothesis. If one team member learns the input function, the others are not even obliged
to converge. Each team will learn a certain set of recursive functions. For each n € IN,
the sets of recursive functions learnable by as team of exactly n IIMs will be collected for

mathematical scrutiny.

fQ0), f(1), f(2)... — 1M, — po, Pl Py, - -
£0), f(1), f(2)... — IIM, — p2,p2.p3, ...
F0), f(1), f(2)... — IIM,, — pg, Py, Py, ...

Figure 2 Team Learning

The first result about team inference was the following.
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THEOREM 2. (L. Blum and M. Blum [22]) Teams of two IIMs can learn everything single

IIMs can learn, and more.
Considering and arbitary size team leads to the following.

THEOREM 3. (Smith [17]) For any n € [N, teams of n 4+ 1 IIMs can learn everything teams

of n IIMs can, and more.
As an immediate consequence of the above result we have the following.

COROLLARY 4. (Smith [17]) No finite collections of IIMs can learn all the recursive func-

tions.

Suppose My, My, ..., M, is a team of n IIMs. Let M be an IIM with an n-sided coin.
To start its operation, M flips its coin to choose a number i (1 <i<n). M proceeds to
simulate M; on the data it inputs. In this fashion, M probabilistically learns every recursive
function that the team could. Pitt [18] formalized the notion of probabilistic inference and
found the deep relationship between team learning and probabilistic learning embodied in

the following.

THEOREM 5. (Pitt [18]) For any n € IN with n > 0, for any probability p with 1/(n+1) <
p < 1/n, aset S of recursive functions is learnable by a team of n IIMs if and only if S is

probabilstically learnable with probability p.

So we see that, in some sense, probabilistic learning is the same as team inference. By
anthropomorphising the IIMs as teams of scientists, we see that the “concensus” theory
is only correct with some probability. This differs from the human situation only in that
it is possible to determine the probability analytically. Questions concerning teams of

probabilistic IIMs were raised and answered in [0].
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IV. Learning Sequences of Phenomena

The approaches of the previous sections could be termed tabla rasta in that the IIMs
always start from the same state. Once an IIM has learned (or given up on) some function,
no experience gained in the learning effort is carried over to the next learning task. When
actual learning programs are implemented, the intention is for them to attempt several
learning tasks. People do not start over again every time they want to learn something
new. We all accumulate knowledge. The existence of “prerequisites” in college course
offering structures is indicative of a concensus that there is a prefered order to learning
some sets of phenomena. Work on the Soar project [10] evidenced the fact that find some
learning tasks easier when some other concept is mastered in advance.

A technique for embuing ITMs with knowledge gained from prior learning efforts was
formalized in [19]. We now describe the operation of a Sequence Inference Machine (SIM)
M. For M to learn the sequence of functions f', f2, ..., f* is must perform n separate
executions. First, M infers f! just as an IIM would in the Gold model. Suppose e; is a
program for f!'. The second run of M takes e; as an input and then receives the function
f? and learns it in the usual manner. The " run of M starts with a preamble of ey,
€z, ..., e;_1 of programs for f', f%, ..., fi=1, respectively, and then infers f' as in the
Gold model, see Figure 3. For M to succeed at learning the sequence, it must learn each
function in the sequence, in the standard way, except that it is given the answers for all
prior functions in the sequence. The idea is that some “trainer” tells the SIM when it has
finished learning each function in the sequence so that the SIM can start on the next one.
The assumption is that, without a noncomputable intervention, the SIM must be getting

the preamble of answers from its own prior learning experiences.

€1,€2,...€6,1 ——
SIM — Po,P1,P2,---
F10), fH(), f1(2)... —

Figure 3 Learning Sequences of Functions

7



The main result presented below is that, sometimes, prerequisites are absolutely es-
sential. That is, some concepts are sufficiently difficult, that one must first learn something
else. For example, the notion of “function” must be mastered before calculus can be at-
tempted. Even more fundamental, the concept of “sitting” must be understood before the

idea of chair makes any sense.

THEOREM 6. (Angluin, Gasarch, Smith [19]) For each n, there are sets of length n sequences

of functions that can be learned, but only in the designated order.

V. Learning Several Phenomena at the Same Time

Few people have the concentration to focus on learning a single phenomenon exclu-
sively. For example, the process of learning a spoken language continues throughout a
person’s childhood, and often longer. Intersperses with language learning is the learning
of several other concepts, both academic and cultural. Many college curricula feature
corequisites as well as prerequisites.

Our next model, the parallel inference machine (PIM) was also defined in [19]. M a
PIM behaves just like an IIM except that it simultaneously inputs data from n different
functions and instead of outputting a single sequence of conjectured programs, it outputs
n such sequences, one for each input function, see Figure 4. A PIM M learns an n-tuple
of recursive functions (f', f2,..., f") if, for each 1 < i < n, M outputs a sequence of

programs that converge to e! where program e computes f i.

£, f1(1), F1(2). .. Pl

F20), £2(1), £2(2). ..

—
- PIM Piipy, -
f0), f7(1), f*(2)... — Pypy, -

Figure 4 Learning Functions in Parallel
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For a given n and an PIM M, M will learn a set of n-tuples of recursive functions.
It turns out that everything that can be learned in proper sequence order, can also be
learned in parallel and that there are some things that can be learned in parellel that can’t

be learned by sequence learners.

THEOREM 7. (Angluin, Gasarch, Smith [19]) For every SIM M there is a PIM M' such

that if M learns the sequence f', f2, ..., f™ then M' learns the n-tuple (f', f%,..., f").

THEOREM 8. (Angluin, Gasarch, Smith [19]) For every n > 0, there is a set of n-tuples of
recursive functions that can be learned in parallel by a PIM such that no SIM can learn

all the n-tuples taken as length n sequences.

The above results imply that there are (sets of) pairs of functions f! and f? that can
be learned together, but not individually. Is it the case that ther are (sets of) triples of
functions f', f? and f3 that are collectively learnable but any pair of them is not? The
answer 1s yes, but to state the general result we must have a way of comparing sets of n
tuples of functions with sets of m tuples of functions for m # n. Suppose n > m > 0.and
An m-projection of the tuple (f, f2,..., f") is some selection of exactly m functions. For
example, perhaps the first m functions, or the last m, or the first m — 1 and the last one,
etc. Suppose S is a set of n tuples of recursive functions. An m-projections of S is a

collection of m tuples formed by taking the same m-projection of every n-tuple in S.

THEOREM 9. (Angluin, Gasarch, Smith [19]) For any n > m > 0 there is a set of n-tuples

of recursive functions S, learnable by a PIM, such that no m-projection of S is.

VI. Learning by Asking Questions
Inquisitiveness is the driving force behind all of science. Formal learning situations

most always have opportunities for the learner(s) to ask questions. Yet, all of the models
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of learning discussed above are passive in the sense that they require the learning device
to wait and receive data. We proceed to define mechanisms that learn by asking questions.
These machines will not input any data except the answers to specific questions. This will
not be overly restrictive since the value of f(z), for any z, can be discovered by asking “Is
flz)=07" “Is f(z) =17" “Is f(x) =27" ... until a YES answer is recieved.

A query inference machine (QIM) is an algorithmic device that asks a teacher questions
about some unknown function, and while doing so, outputs programs. In this way, the QIM
learns about some phenomenon, encoded by a recursive function, by asking finitely many
questions. We assume that the teacher always returns the correct answer to any question
asked by a QIM. The questions are formulated in some query language L. Formally, a
QIM is a total algorithmic device which, if the input is a string of bits g, corresponding to
the answers to previous queries, outputs an ordered pair consisting of a guess, a program
e, (possibly null) and a question v (See Figure 5). A QIM M learns a recursive function
f if, when the teacher answers M’s questions about f truthfully, the sequence of output

programs converges to a program that computes f.

— tp1,%2,... (questions formulated in L)
QIM — by, b, ... (answers)
L —  P1,P2,... (guesses)

Figure 5 Learning via Queries

A variety of different query languages are considered. The languages that we con-
sider have different expressive power. The more expressive the query language, the more
questions the QIM can ask. In a sense, giving a QIM a more expressive query language
to use makes the QIM more articulate. Every language allows the use of A, -, =, V, 4,
symbols for the natural numbers (members of [N), variables that range over IN, and a single
function symbol F which will be used to represent the function being learned. Inclusion

of these symbols in every language will be implicit. The base language contains only these
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symbols. Restricting the applications of quantifiers is a technique that we will use to regu-
late the expressive power of a language. By convention, all questions are assumed to be in
prenex normal form (quantifiers followed by a quantifier-free formula, called the matrix of
the formula) and questions containing quantifiers are assumed to begin with an existential

quantifier. This convention entails no loss of generality.

THEOREM 10. (Gasarch, Smith [20]) Let L be the base language without quantifiers aug-
mented with any effectively computable operators. Then a set S of recursive functions can

be learned by a QIM using L as a query language if and only if S can be learned by an
IIM (Gold model).

THEOREM 11. (Gasarch, Smith [20]) Let L be the base language with operators for addition
and multiplication. There is a QIM using L as a query language that can learn all the

recursive functions.

THEOREM 12. (Gasarch, Smith [20]) Let L be the base language with operators for suc-
cessor and less than. No QIM using L as a query language that can learn all the recursive

functions.

Let L be the base language with operators for addition and less than. This language
L io0s the focus of the last three results of this section. Let Ly be L without quantifiers.
Similarly, let Ly be L restricted to existential quantifiers only. Finally, let Ly denote L
restricted to questions involving a single alternation of quantifiers. Clearly, QIM’s using
L, as a query language can learn all that QIM’s using L can. Similarly, QIM’s using L,

as a query language can learn all that QIM’s using L can

THEOREM 13. (Gasarch, Smith [20]) QIM’s using L as a query language can learn strictly

more that QIM’s using Ly can.
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THEOREM 14. (Gasarch, Kinber, Pleszkoch, Smith, Zeugmann [0]) QIM’s using L, as a

query language can learn strictly more that QIM’s using L can.

THEOREM 15. (Gasarch, Pleszkoch, Solovay [8]) No QIM using L as a query langauge can

learn all the recursive functions.

VII. Procrastnation and Learning

A phrase we have all heard at least once in our lives is “let me sleep on it.” While
the body sleeps, the mind sorts through the events of the day. The source of the common
expression is perhaps some subconscience, or perhaps conscience, desire to procrastinate
about making a decision. Procrastination is common in academia as witnessed by the
length of time some papers spend with editors and referees. One view is that procras-
tination is a natural by product of the contemplative academic life style. Another view
puts procrastination as the cause. We all display a tendency to delay (or sometimes avoid)
performing unpleasant tasks. While procrastination is generally regarded as a undesir-
able quality, the results presented below point out a potential advantage to some uses of
procrastination.

For practical applications, one cannot wait “until the limit” for an answer. Hence,
ITMs constraint to change their output conjecture a predetermined number of times were
investigated in [23]. For example. referring to Figure 1, if an IIM outputs py then p; # po
and then pg again, it has changed its conjecture twice. For each n € IN there is a collection
of sets, each one of which can be learned by some IIM constrained to produce at most n
changes of conjecture. Allowing more trials (changes of conjecture) enlarges the collection

of sets of functions that become learnable.
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THEOREM 16. (Case, Smith [23]) For each n € IN, the collection of sets of recrusive
functions that are learnable by IIMs constrained to produce at most n changes of conjecture
is strictly included in the corresponding collection for n 4+ 1. Furhtermore, each of these
constrained collections is strictly included in the collections of sets learnable via the Gold

model.

Now we consider inference devices that procrastinate about how many trials they can
make. The idea is to let the device announce that it will succeed (stop) after, say 5,
changes of conjecture. At the point of the 5" change of conjecture, the device has the
option of declaring that another, say 7, trials are needed. The recursive (constructive)
ordinals [0,14] are used to denote various procrastination stratgies.

We now proceed to define the operation of an ordinal inductive inference machine
(OIM). An OIM is given a recursive ordinal « to specify the maximum number of mind
changes. For the sake of example, let @ = w®. Associated with the ordinal is a counter, ¢,
initialized to 0. Like an ordinary IIM, the OIM reads input data and makes conjectures.
In addition the OIM, from time to time, reduces the ordinal o and increases the counter
Ca, see Figure 6. For each recursive ordinal there is a collection of sets such that each set
in the collection is learnable by some OIM using the selected ordinal. The OIM will, by

assumption, reduce the ordinal sufficiently often so as to diminish its value to 0.

F0), f(1), £(2) .. — OIM — DOy D1 P2,

Figure 6 Learning with Procrastination

The OIM reduces its ordinal, and updates the associated counter, by requesting a mod-
ification operation. The modification algorithm is relatively complex. Form the standpoint
of the OIM, it looks like a simple command. The modification operation has three cases.

These are described briefly before returning to our particular example.
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Case 1. The ordinal is 0. No modifications are done, the counter and ordinal

remain the same.

Case 2. The ordinal is a limit ordinal. Then the rightmost, outermost w term of

the ordinal is replaced by a (finite) member of w and the associated counter is

incremented by 1. The choice of the member of w is made deterministically by

the OIM.

Case 3. The ordinal is a successor ordinal. The ordinal is reduced by one, e.g.

replace the successor ordinal by the ordinal which it follows, and the counter is

incremented by 1.

Returning to our example, @ = w* is a limit ordinal, so Case 2 applies to the first
modification. To keep the notation simple, suppose that the OIM chooses 2 € w. After the

? = w-w. Since, « is still a limit ordinal, Case 2 applies

first modification, ¢, = 1 and a = w
to the next modification. Suppose this time the OIM chooses 3 € w. Then ¢, becomes 2
and « becomes w - 3 = w + w + w. Again, the modified « is still a limit ordinal, so Case 2
applies for the next modification. If the OIM chooses 4, then ¢, = 3 and @ = w + w + 4.
At this point, « is now a successor ordinal, so Case 3 applies for the first time in this
example. In fact, Case 3 will apply four times in a row. The modifications performed are

given in the table below where moving from one line to line immediately beneath represents

a single modification.

a=w+w+4 Ca =3
w+w+3 4
w4 w42
w4w+1 6
w4+w+0 7

Since w+w 4+ 0 = w + w, « 1s once again a limit ordinal, so Case 2 applies once again.
Suppose 5 is chosen by the OIM making & = w + 5 and ¢, = 8. Five more consecutive

modifications according to Case 3 yields @ = w and ¢, = 13.
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For the last time in this example, « i1s a limit ordinal. Suppose the final choice by
the OIM i1s 6. Then « becomes 6 and ¢, becomes 14. Six more modifications via Case 3
results in & = 0 and ¢, = 20. All further requests for modification by the OIM will be

handled by Case 1 and the values of a and ¢, will not change.

THEOREM 17. (Frevalds, Smith [21]) For any recursive ordinals o > [, The collections of
sets of recursive functions that are learnable by OIMs using « to determine how many

mind changes to make includes and is strictly larger than the analogous class derived from

3.

COROLLARY 18. (Frevalds, Smith [21])

No OIM can learn all the recursive functions.

THEOREM 19. (Frevalds, Smith [21]) The collection of learnable sets, over all OIMs and
over all recursive ordinals is strictly smaller than the collection of sets learnable via the

Gold model
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