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Abstract

Let x1, . . . , xk be n-bit numbers and T ∈ N. Assume that P1, . . . , Pk are players such that
Pi knows all of the numbers except xi. The players want to determine if

∑k
j=1 xj = T by

broadcasting as few bits as possible. Chandra, Furst, and Lipton obtained an upper bound of
O(
√

n) bits for the k = 3 case, and a lower bound of ω(1) for k ≥ 3 when T = Θ(2n). We obtain
(1) for general k ≥ 3 an upper bound of k + O(n1/(k−1)), (2) for k = 3, T = Θ(2n), a lower
bound of Ω(log log n), (3) a generalization of the protocol to abelian groups, (4) lower bounds
on the multiparty communication complexity of some regular languages, (5) lower bounds on
branching programs, and (6) empirical results for the k = 3 case.

1 Introduction

Multiparty communication complexity was first defined by Chandra, Furst, and Lipton [8] and used
to obtain lower bounds on branching programs. Since then it has been used to get additional lower
bounds and tradeoffs for branching programs [1, 5], lower bounds on problems in data structures [5],
time-space tradeoffs for restricted Turing machines [1], and unconditional pseudorandom generators
for logspace [1].

Def 1.1 Let f : {{0, 1}n}k → {0, 1}. Assume, for 1 ≤ i ≤ k, Pi has all of the inputs except xi.
Let d(f) be the total number of bits broadcast in the optimal deterministic protocol for f . This is
called the multiparty communication complexity of f . The scenario is called the forehead model.

Note 1.2 Note that there is always the n+1-bit protocol of (1) P1 broadcasts x2, (2) P2 computes
and broadcasts f(x1, . . . , xk). The cases of interest are when d(f) � n.

The multiparty communication complexity of the following function was used by Chandra,
Furst, and Lipton to obtain superlinear lower bounds on constant width branching programs (since
improved by [2, 4, 18]).
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Def 1.3 Let k, n, T ∈ N. (T stands for Target.) We interpret elements of {0, 1}n as numbers. Let
fk,T : {{0, 1}n}k → {0, 1} be defined as

fk,T (x1, . . . , xk) =

{
1 if

∑k
j=1 xj = T ;

0 otherwise.
(1)

We refer to fk,T as the Exact-T problem.

Chandra, Furst, and Lipton [8] (see also [14]) show that determining d(fk,T ) is equivalent to a
problem in combinatorics. From this they obtained the following:

1. If T = Θ(2n) then d(f3,T ) = O(
√

n).

2. For all k, for T = Θ(2n), d(fk,T ) is not constant in n. The nonconstant function they obtained
grew very slowly and had no name (e.g., it was not “inverse Ackerman”).

This paper contains the following.

1. For k ≥ 4 we generalize the upper bound to, when T = Θ(2n), d(fk,T ) ≤ k + O(n1/(k−1)).

2. For k = 3, for T = Θ(2n), we improve the lower bound to d(f3,T ) ≥ Ω(log log n). The proof
uses an interesting Ramsey-theoretic combinatorial lemma (Lemma 5.2).

3. We introduce a group-theoretic version of the Exact-T problem. This version is cleaner than
the Exact-T problem and lower bounds on it yield lower bounds on Exact-T . We denote this
problem fGk,T where G is a group. We show that

(a) For all finite abelian groups G of size g, d(fG3,T ) ≥ Ω(log log log g).

(b) For almost all finite abelian groups G there is a nontrivial protocol for fGk,T .

(c) d(fZm
k,T ) ≤ k + O((log m)1/(k−1)). (Zm is {0, . . . ,m− 1} under mod arithmetic.)

4. We use the lower bound for d(fG3 ) (d(fGk )) to obtain lower bounds of Ω(log log n) (ω(1)) on
multiparty communication complexity of several regular languages.

5. We use our results to obtain alternate proofs of known lower bounds on branching programs.
Our results are weaker than what is known; however, the technique may be interesting.

6. We have some empirical results about 3-free sets that lead to concrete upper bounds on
d(f3,T ) for T = 2n.

Notation 1.4 If T ∈ N then [T ] denotes the set {1, . . . , T}.

We will need the following notion of reduction.

Def 1.5 Let f :
⋃∞

n=1{{0, 1}n}k → {0, 1} and g :
⋃∞

n=1{{0, 1}n}k → {0, 1}.

1. We say f ≤O(1)
cc g if there exists a protocol for f that has the following properties.
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(a) The protocol may invoke a protocol for g once on an input of length O(n).

(b) Before and after the invocation, the players may broadcast O(1) bits.

(c) f ≡O(1)
cc g if f ≤O(1)

cc g and g ≤O(1)
cc f .

The following lemma is obvious.

Lemma 1.6

1. ≤O(1)
cc is transitive.

2. If f ≤O(1)
cc g then d(f) ≤ d(g) + O(1).

Note 1.7 The definition ≤O(1)
cc is not commonly used. The standard definition of a reduction in

communication complexity allows polylog(n) instead of O(1) extra bits. Usually in Communication
Complexity n is big and log n is small. For our work, even log n is big. So we take O(1) to be small.

2 Connections Between Multiparty Communication Complexity
and Combinatorics

In this section we review the connections between the multiparty communication complexity of f3,T

and combinatorics that was first established in [8]. We also review the upper and lower bounds
that they obtained. We state a more detailed upper bound than they did which is useful for our
empirical work in Section 10.

Def 2.1 Let c, k, T ∈ N with k ≥ 3.

1. A proper c-coloring of [T ]k−1 is a function C : [T ]k−1 → [c] such that there do not exist
x1, . . . , xk−1 ∈ [T ] and λ[T ] with

• For all i, xi + λ ∈ [T ],

• C(x1, x2, x3, . . . , xk−1) = C(x1 + λ, x2, x3, . . . , xk−1) = · · · = C(x1, x2, x3, . . . , xk−1 + λ)
(Consider the case of k = 3, so we are coloring the plane. In a proper coloring there
cannot be three vertices that (a) are the same color, and (b) are the corners of a right
isosceles triangle with legs parallel to the axes and hypotenuse parallel to the line y =
−x.)

2. Let χk(T ) be the least c such that there is a proper c-coloring of [T ]k−1.

Theorem 2.2 [8]

1. d(fk,T ) ≤ k − 1 + dlg(χk(T ) + 1)e = k + lg(χk(T )) + O(1).

2. If x1, . . . , xk ∈ {0, . . . , T} then d(fk,T ) ≥ lg(χk(
⌊

T
k

⌋
)) + Ω(1).

Chandra, Furst, and Lipton related their bounds to concepts in extremal combinatorics.
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Def 2.3

1. A k-AP is an arithmetic progression of length k.

2. Let ζT
k be the minimum number of colors needed to color {1, . . . , T} such that there are no

monochromatic k-AP ’s.

3. A set A ⊆ [T ] is k-free if there do not exist any k-AP’s in A.

4. Let rk(T ) be the size of the largest k-free subset of [T ].

The next theorem states combinatorial facts that are needed for the upper and lower bounds,
and then the bounds themselves.

Theorem 2.4 [8]

1. χk(T ) ≤ ζkT
k +1.

2. ζT
k ≤ 2T ln(T )

rk(T ) .

3. χk(T ) ≤ 2kT ln(kT )
rk(kT ) + 1 = O

(kT log(kT )
rk(kT )

)
.

4. d(fk,T ) ≤ k − 1 + lg(χk(T )) ≤ k − 1 +
⌈
lg

(2kT ln(kT )
rk(kT )

)
+ 1

⌉
= k + O

(
log

(kT log(kT )
rk(kT )

))
5. For all k, χk(2n) is an increasing function of n.

6. If T = Θ(2n) then d(fk,T ) = ω(1).

Chandra, Furst, and Lipton used the fact that there are 3-free sets of [T ] of size T2−O(log T )1/2
.

(Due to [6], but see [16] for a constructive version and [10] for an exposition) to obtain the following.

Corollary 2.5 d(f3,T ) ≤ O(
√

log T ). When T = Θ(2n), d(f3,T ) = O(
√

log T ) = O(
√

n).

3 New Upper Bounds

The following lemma yields large k-free sets. We will use these sets to obtain new explicit upper
bounds for χk(T ) when k ≥ 4, which will in turn yield new explicit upper bounds on d(fk,T ). This
lemma was first proven in [19] but see also [15].

Lemma 3.1 rk(T ) ≥ T2−O((log T )1/(k−1)).

Theorem 3.2

1. χk(T ) = 2O((log(kT ))1/(k−1)).

2. d(fk,T ) ≤ k + O((log kT )1/(k−1)).

3. If T = Θ(2n) then d(fk,T ) = k + O(n1/(k−1)).

Proof:
1) Follows directly from Theorem 2.4.3 and Lemma 3.1.
2) Follows from Theorem 2.2 and part 1 of this theorem.
3) Follows from part 2 of this theorem.
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4 Group Theoretic Version

We define a group-theoretic version of the Exact-T problem. This version is cleaner than the
Exact-T problem and lower bounds on it yield lower bounds on Exact-T . We obtain lower bounds
in Section 5 which yield our main result: if T = Θ(2n) then d(f3,T ) = Ω(log log n).

We define the problem on a group.

Def 4.1 Let G = (G,�) be a group. Let T ∈ G. Let fGk,T : Gk → {0, 1} be defined by

fGk,T (x1, . . . , xk) =

{
1 if

⊙k
j=1 xj = T ;

0 otherwise.
(2)

Def 4.2 Let G = (G,�) be a group. Let ID denote the identity element. Let T ∈ G. Let c, k ∈ N.

1. An G-proper c-coloring of Gk−1 is a function C : Gk−1 → [c] such that there does not exist
x1, . . . , xk−1 ∈ G and λ ∈ G− {ID} with

C(x1, . . . , xk−1) = C(x1 � λ, x2, x3, . . . , xk−1) = · · · = C(x1, x2, x3, . . . , xk−1 � λ).

2. If M is a finite group then let χ∗k(G) be the least c such that there is an G-proper c-coloring
of Gk−1.

Theorem 4.3 Let G = (G,�) be a group. Let T1, T2 ∈ G. Then fGk,T1
≡O(1)

cc fGk,T2
. Hence

d(fGk,T1
) = d(fGk,T2

).

Proof: We show fGk,T2
≤O(1)

cc fGk,T1
. Given (x1, . . . , xk) we map it to

(x1, . . . , xk−1, xk � T−1
2 � T1).

Note that x1 � · · · � xk = T2 iff x1 � · · ·xk−1 � xk � T−1
2 � T1 = T1.

Since d(fGk,T ) = d(fGk,ID) we only study the case T = ID.

Def 4.4 Let G = (G,�) be a group. fGk is fGk,ID where ID is the identity element of G.

The proof of the following theorem is a modification of a proof from [8].

Theorem 4.5 Let G = (G,�) be a finite abelian group.

1. d(fGk ) ≤ k − 1 + dlg(χ∗k(G))e = k + lg(χ∗k(G)) + O(1).

2. d(fGk ) ≥ lg(χ∗k(G)) + Ω(1).

Proof: 1) Let ID be the identity element of G. Let C be a G-proper c-coloring of Gk−1 where c =
χ∗k(G). We represent elements of [c] by bit strings. Hence we need dlg(χ∗k(G))e bits. P1, P2, . . . , Pk

will all know C ahead of time. The following protocol shows d(fGk ) ≤ k − 1 + dlg(χ∗k(G))e.
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1. For 1 ≤ i ≤ k Pi has all xj except xi.

2. For 1 ≤ i ≤ k − 1 Pi calculates x′i = (x1 � · · · � xi−1 � xi+1 � · · · � xk)−1. Note that since G
is a an abelian group x′i exists and is the unique string such that

x1 � · · · � xi−1 � x′i � xi+1 � · · · � xk = ID.

For 1 ≤ i ≤ k−1 let σi = C(x1, x2, . . . , xi−1, x
′
i, xi+1, . . . , xk−1). Let σk = C(x1, x2, . . . , xk−1).

Note that, for 1 ≤ i ≤ k, Pi knows σi.

3. Pk broadcasts σk.

4. For i = 1 to k − 1: If σk = σi then Pi broadcasts 1, else Pi broadcasts 0. (Note that this
takes k − 1 bits total.)

5. If P1, . . . , Pk−1 all broadcast a 1 then fGk (x1, . . . , xk) = 1, otherwise fGk (x1, . . . , xk) = 0.

Claim 1: If fGk (x1, . . . , xk) = 1 then P1, . . . , Pk−1 will all broadcast 1.

Proof: If fGk (x1, . . . , xk) = 1 then, for all i, x′i = xi. (We are using that x′i is unique and hence we
are using that G is a group.) Hence (∀i, j)[σi = σj ]. Therefore P1, . . . , Pk−1 all broadcast 1.
End of proof of Claim 1.

Claim 2: If P1, . . . , Pk−1 all broadcast 1 then fGk (x1, . . . , xk) = 1.

Proof: Assume that P1, . . . , Pk−1 all broadcast 1. Then

C(x1, x2, . . . , xk−1) = C(x′1, x2, x3, . . . , xk−1) = · · · = C(x1, x2, . . . , x
′
k−1).

where

x′i = (x1 � · · · � xi−1 � xi+1 � · · · � xk)−1.

Let λ =
⊙k

i=1 x−1
i . Note that x′i = xi � λ. (We are using that G is abelian.) Hence

C(x1, x2, . . . , xk−1) = C(x1 � λ, x2, x3, . . . , xk−1) = · · · = C(x1, x2, . . . , xk−1 � λ).

Since the coloring is proper we must have λ = ID so
⊙k

i=1 x−1
i = ID. Since G is abelian we

have
⊙k

i=1 xi = ID. Hence fGk (x1, . . . , xk) = 1.
End of proof of Claim 2.

2) Let P be a protocol for fGk . We use this protocol to create a G-proper coloring of Gk−1.

We define C(x1, . . . , xk−1) as follows. First find x such that (
⊙k−1

i=1 xi)�x = ID. Then run the
protocol on (x1, . . . , xk−1, x). The color is the transcript produced.

Claim 3: C is a G-proper coloring.
Proof: Assume there exists λ 6= ID such that
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C(x1, x2, . . . , xk−1) = C(x1 � λ, x2, x3, . . . , xk−1) = C(x1, x2, . . . , xk−1 � λ).

We denote this value TRAN (for Transcript).
Let x be such that (

⊙k−1
i=1 xi) � x = ID. Let y be such that λ � (

⊙k−1
i=1 xi) � y = ID. By the

definition of C (and using that G is abelian) the following inputs produce the transcript TRAN .

• (x1, . . . , xk−1, x),

• (x1 � λ, . . . , xk−1, y),

• (x1, x2 � λ, . . . , xk−1, y),

•
...

• (x1, x2, . . . , xk−1 � λ, y).

By a standard result in communication complexity, this implies that (x1, . . . , xk−1, y) also produces
TRAN . But fGk (x1, . . . , xk−1, x) = 1 and fGk (x1, x2, . . . , xk−1, y) = 0. This is a contradiction.
End of Proof of Claim 3

Note 4.6 In the group case we just obtained d(fGk ) ≥ lg(χ∗k(G)) + Ω(1). In the original case
Chandra, Furst, and Lipton obtained d(fk,T ) ≥ lg(χk(

⌊
T
k

⌋
)) + Ω(1). The reason they had a factor

of 1
k and we do not comes from the fact that, in the group case, for any x1, . . . , xk−1 ∈ G there is

an x ∈ G such that fGk (x1, . . . , xk−1, x) = 1; by contrast, there are x1, . . . , xk−1 ∈ [T ] such that, for
all x ∈ [T ], fk,T (x1, . . . , xk−1, x) = 0.

The next lemma shows a relation between d(fGk ) and d(fk,T ) that we will use to obtain bounds
on one from bounds on the other.

Def 4.7 ZT is the group with set {0, 1 . . . , T − 1} under modular addition.

Lemma 4.8 Let T ∈ N and k ≥ 3. Then the following hold.

1. For all a, b ∈ N, a ≤ b, d(fk,aT ) ≤ d(fk,bT ) (easy proof omitted).

2. χk(T ) ≤ χ∗k(ZT ).

3. d(fk,T ) ≤ k + d(fZT
k ) + O(1).

4. d(fZT
k ) ≤ kd(fk,kT ) + O(1).

Proof:
2) Let C be a proper ZT -coloring of Zk−1

T . It is easy to see that C is also a proper coloring of [T ]k−1.
Hence χk(T ) ≤ χ∗k(ZT ).

3) By Theorem 2.2.1, part 2 of this lemma, and Theorem 4.5.2 we obtain
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d(fk,T ) ≤ k + lg(χk(T )) + O(1) ≤ k + lg(χ∗k(ZT )) + O(1) ≤ k + d(fZT
k ) + O(1).

4) It is easy to see that

fZT
k (x1, . . . , xk) = 1 iff (

k∨
i=1

fk,iT (x1, . . . , xk) = 1) ∨ (∀i)[xi = 0].

Hence

d(fGk ) ≤ (
k∑

i=1

d(fk,iT )) + O(1) ≤ kd(fk,kT ) + O(1).

(We use part (1) for second inequality.)

5 Lower Bounds

5.1 An ω(1) Lower Bound for d(fZT
k )

Theorem 5.1 Let T = Θ(2n). d(fZT
k ) ≥ ω(1) (d(fZT

k ) is nonconstant in T ).

Proof: By Lemma 4.8.3 d(fZT
k ) ≥ d(fk,T ) − k. By Theorem 2.4, d(fk,T ) ≥ ω(1). Hence

d(fZT
k ) ≥ ω(1).

5.2 An Ω(log log log g) Lower Bound for d(fZT
3 ) and d(f3,T )

The following combinatorial lemma will allow us to prove a lower bound on d(fG3 ) for a variety of
G. This lemma is a reworking of a theorem of Graham and Solymosi [12].

Lemma 5.2 There exist absolute constants g0, d0 such that the following is true. Let G = (G,�)
be any finite abelian group and let g = |G|. If g ≥ g0 and c ≤ d0 log log g then there are no G-proper
c-colorings of G×G. Hence χ∗3(G) ≥ Ω(log log g).

Proof: Assume that C is a G-proper c-coloring of G × G. We will find sets X1, Y1 ⊆ G such
that C restricted to X1 × Y1 uses c − 1 colors. We will iterate this process to obtain Xc, Yc such
that C restricted to Xc × Yc uses 0 colors. Hence |Xc| = 0 which will yield c = Ω(log log g).

Let X0 = G, Y0 = G, h0 = |X0| = |Y0| = g, COL0 = [c]. At stage s the subset will be Xs × Ys,
the size of Xs will be hs = |Xs| = |Ys|, and COLs will be the colors used by Xs × Ys.

Assume Xs, Ys, hs are defined and inductively COLs = [c−s] (we will be renumbering to achieve
this). Partition Xs × Ys into sets Pa indexed by a ∈ G defined by

Pa = {(x, y) ∈ Xs × Ys | x� y = a}.

(Think of Pa as the ath anti-diagonal.) There exists an a such that |Pa| ≥
⌈
h2

s/g
⌉
. There exists a

color, which we will take to be c− s by renumbering, such that at least
⌈⌈

h2
s/g

⌉
/c

⌉
of the elements

of Pa are colored c − s. (We could use c − s in the denominator but we do not need to.) Let
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m =
⌈⌈

h2
s/g

⌉
/c

⌉
. Let {(x1, y1), . . . , (xm, ym)} be m elements of Pa such that, for 1 ≤ i ≤ m,

C(xi, yi) = c− s.

Claim 1: For all i 6= j, xi 6= xj and yi 6= yj .

Proof: If xi = xj then

xj � yj = a = xi � yi = xj � yi.

Hence yj = yi. Therefore (xi, yi) = (xj , yj). This contradicts Pa having m distinct points.
The proof that yi 6= yj is similar.

End of Proof of Claim 1

Claim 2: For all i 6= j, C(xi, yj) 6= c− s.

Proof: Assume, by way of contradiction, that C(xi, yj) = c− s. Note that

C(xi, yj) = C(xi, yi) = C(xj , yj) = c− s.

We want a λ 6= ID such that yi = yj � λ and xj = xi � λ. Using that xi � yi = xj � yj = a we
can take λ = (a−1 � xj � yi). The element λ 6= ID: if λ = ID then one can show yi = yj , which
contradicts Claim 1.

We now have
C(xi, yj) = C(xi � λ, yj) = C(xi, yj � λ).

This violates C being a proper coloring.

End of Proof of Claim 2
Let

hs+1 = m′ = dm/3e
Xs+1 = {x1, x2, . . . , xm′}
Ys+1 = {ym+1−m′ , . . . , ym}

COLs+1 = [c− (s + 1)]

Note that, by Claim 2 above

{C(x, y) | x ∈ Xs+1, y ∈ Ys+1} ⊆ COLs+1.

We iterate the process c times to obtain Xc, Yc with |Xc| = |Yc| = hc such that COL restricted
to Xc × Yc uses 0 colors. The only way this is possible is if hc = 0. This will yield c = Ω(log log g).

We have h0 = g and

hs+1 =
⌈⌈⌈

h2
s

g

⌉
/c

⌉
/3

⌉
≥ h2

s

3cg
.

We show that for s ∈ N, hs ≥ g
(3c)2s−1 .

Claim 3: (∀s)[hs ≥ g
(3c)2s−1 ].

Base Case: h0 = g ≥ g
(3c)0

= g.

Induction Step: Assume hs ≥ g
(3c)2s−1 . Since hs+1 ≥ (hs)2/3cg we have, by the induction hypothesis
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hs+1 ≥ (hs)2/3cg ≥
g2

(3c)2s+1−2

3cg
≥ g

(3c)2s+1−1
.

End of proof of Claim 3
Taking s = c we obtain hc ≥ g

(3c)2c−1 . Hence there is a set of h2
c points that are 0-colored.

Therefore hc < 1. This yields c = Ω(log log g).

The following is a variant of a statement that Solymosi claims “Analysts believe”[22].
BILL- MOVE CONJ TO OPEN PROBLEM SECTION. DELETE ALL THOSE ‘IF CONJ

HOLDS...’ RESULTS.

Conjecture 5.3 There is a function c : N → N such that, for all k ≥ 3, χ∗k(G) ≥ Ω(c(k) log log g).

Theorem 5.4 Let G be any finite abelian group. Let |G| = g.

1. d(fG3 ) ≥ Ω(log log log g). Note that log g is the length of all the players inputs, so this should
be considered an Ω(log log n) bound.

2. Assume Conjecture 5.3 holds. There exists c : N → N such that, for all k, d(fGk ) ≥
Ω(c(k) log log log g).

Proof:
1) By Lemma 5.2 χ∗3(G) ≥ Ω(log log g). By Theorem 4.5, d(fG3 ) ≥ lg(χ∗3(G)) ≥ Ω(log log log g).

2) If Conjecture 5.3 is true then there exists c : N → N such that χ∗k(G) ≥ Ω(c(k) log log g). By
Theorem 4.5, d(fGk ) ≥ lg(χ∗k(G)) ≥ Ω(c(k) log log log g).

Theorem 5.5 Let T ∈ N.

1. d(f3,T ) ≥ Ω(log log log T ). If T = Θ(2n) then d(f3,T ) ≥ Ω(log log n).

2. Assume Conjecture 5.3 holds. There exists c′ : N → N such that, for all k, d(fk,T ) ≥
Ω(c′(k) log log log T ). If T = Θ(2n) then d(fk,T ) ≥ Ω(c′(k) log log n).

Proof:
1) We assume 3 divides T . The general case is similar. Let T = 3T ′. By Lemma 4.8.3 d(f3,3T ′) ≥
Ω(d(fZT ′

3 )). By Theorem 5.4 d(fZT ′
3 ) ≥ Ω(log log log T ′) = Ω(log log log T ).

2) We assume k divides T . The general case is similar. Let T = kT ′. By Lemma 4.8.3 d(fk,kT ′) ≥
Ω(d(fZT ′

k )/k). Assuming the conjecture, by Theorem 5.5, there exists a function c(k) such that

d(fZT ′
k ) ≥ Ω(c(k) log log log T/k). Hence there is another function which we call c′(k) such that

d(fZT ′
k ) ≥ Ω(c′(k) log log log T ).
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5.3 An ω(1) Lower Bound for General G and k

Def 5.6 Fix k. The phrase d(fGk ) = ω(1) means that, for all constants d, there exists g0, such that
for all finite abelian groups G of size g ≥ g0, d(fGk ) ≥ d.

Def 5.7 PARTm,k : {{0, 1}m}k → {0, 1} is the following function. Interpret the input as k subsets
of {1, . . . ,m}. Output 1 if these sets form a partition of {1, . . . ,m}, and 0 otherwise.

Tesson [23, 24] proved the following. He used the Hales-Jewitt Theorem (see [11]) which is why
the bound is ω(1) instead of something more concrete. We use this lemma to obtain d(fGk ) = ω(1).

Lemma 5.8 For all k, d(PARTm,k) ≥ ω(1).

Lemma 5.9 Let k ≥ 3. Let h1, . . . , hm ≥ 2. Let G = Zh1 × · · · × Zhm For all k, d(PARTm,k) ≤
d(fGk ) + O(1).

Proof: We show that PARTm,k ≤
O(1)
cc fGk and then use Lemma 1.6.

1. Input (x1, . . . , xk). Think of each xi as a subset of {1, . . . ,m} which we denote by Xi.

2. Player k broadcasts 0 if

(∃i1, i2 ∈ {1, . . . , k − 1})(∃j ∈ {1, . . . ,m})[j ∈ Xi1 ∩Xi2 ].

and a 1 otherwise. If he broadcasts a 0 then the protocol stops because everyone knows the
answer is 0.

3. Player k − 1 broadcasts 0 if

(∃i1, i2 ∈ {1, . . . , k − 2, k})(∃j ∈ {1, . . . ,m})[j ∈ Xi1 ∩Xi2 ].

and a 1 otherwise. If he broadcasts a 0 then the protocol stops because everyone knows the
answer is 0.

4. Player k − 2 broadcasts 0 if

(∃i1, i2 ∈ {1, . . . , k − 3, k − 1, k})(∃j ∈ {1, . . . ,m})[j ∈ Xi1 ∩Xi2 ].

and a 1 otherwise. If he broadcasts a 0 then the protocol stops because everyone knows the
answer is 0.

5. The players now view the input (X1, . . . , Xk) as being k elements of Zh1 × · · · × Zhm where
all of the coordinates are 0 or 1. If the protocol got to this point then, for every j ∈
{1, . . . ,m} there is at most one i such that the jth coordinate of the ith input is 1. The
original Xi form a partition iff these elements add up to (1, . . . , 1) (there are n 1’s). Hence
PARTm,k(x1, . . . , xk) = fGk,1n(x1, . . . , xk) (Recall from Definition 4.1 that fGk,1n(x1, . . . , xk)
asks if x1 � · · · � xk = 1n.) By Theorem 4.3 fGk,1n can be transformed to an instance of fGk
with no increase in communication. The players do the transformation and then run the
protocol for fGk .

11



Lemma 5.10 If G1 and G2 are groups, k ≥ 3, d(fG1
k ) ≤ d(fG1×G2

k ).

Proof: Let ID1 be the identity in G1 and ID2 be the identity in G2. Note that if x1, . . . , xk ∈ G1

then∏k
i=1 xi = ID1 iff

∏k
i=1(xi, ID2) = (ID1, ID2), where the first product is in G1 and the second

product is in G2.
Hence fG1

k ≤O(1)
cc fG1×G2

k .

Theorem 5.11 For all d, k there exists g0 such that for all finite abelian groups G, |G| ≥ g0,
d(fGk ) ≥ d. In short, the bigger the group, the larger d(fGk ), without bound.

Proof: Fix d, k. We define g0 such that, for all finite abelian groups G such that |G| ≥ g0,
d(fGk ) ≥ d. We define m0 first and then g0. The theorem demands a value of g0, the proof demands
a value of m0.

• Let m0 be such that, for all m ≥ m0, PARTm,k > d + d′ where d′ will be named later. Such
an m0 exists by Lemma 5.8.

• Let g0 be such that, for all g ≥ g0, if G = Zg1/m0 then d(fGk ) ≥ d. Such a g0 exists by
Theorem 5.1.

Let G be a finite abelian group of size g ≥ g0. By the classification of finite abelian groups
G = Zh1 × · · · × Zhm for some factorization g =

∏m
i=1 hi.

There are two cases. They depend on m.

Case 1: m ≥ m0. By the definition of m0,

d(PARTm,k) > d + d′.

By Lemma 5.9
d(fGk ) + O(1) ≥ d(PARTm,k).

Hence
d(fGk ) ≥ d + d′ − Ω(1).

Let d′ be such that d′ is greater than the constant in the Ω(1). Hence d(fGk ) ≥ d.

Case 2: m ≤ m0. By Lemma 5.10 d(fGk ) ≥ max1≤i≤m d(fGi
k ) where Gi = Zhi

. Since
∏m

i=1 hi = g

and m ≤ m0, there exists hi such that hi ≥ g1/m ≥ g1/m0 . Hence, by Lemma 5.10, d(fGk ) ≥ d(fGi
k )

where Gi = Zhi
. By the choice of g0 we have d(fGk ) ≥ d(fGi

k ) ≥ d.

12



5.4 Lack of Lower Bounds on Monoids

Our lower bounds on d(fGk ) used that G is a group. One can define fMk for M a monoid. The next
theorem shows that the lower bound in Theorems 4.5.2 and 5.11 would not hold.

Theorem 5.12 Let M = ({0, 1}n,∧) where ∧ is bitwise AND. Let T = 1n. Then d(fGk,T ) = 2.

Proof: The protocol is as follows

1. Player P1 broadcasts 1 if x2 = x3 = · · · = xk = 1n and 0 otherwise.

2. Player P2 broadcasts 1 if x1 = 1n.

3. The answer is 1 iff both P1 and P2 broadcast 1.

6 Applications to the Multiparty Communication Complexity of
Regular Languages

In this section we use Theorems 5.4 and Theorem 5.11 to obtain lower bounds on the multiparty
communication complexity of many regular languages.

The 2-party communication complexity of regular languages has been defined and solved com-
pletely [20, 26, 25]. The multiparty communication complexity of regular languages (defined initially
in [20]) still has many open problems. The standard problem in this field is as follows.

Def 6.1 Let L be a regular language and k be the number of players. Rk,L is the following problem.

1. Let x = a1a2 · · · akn be a string such that (∀i)[ai ∈ Σ ∪ {ε}].

2. Player Pi gets all aj such that j 6≡ i (mod k).

3. The players want to determine if a1a2 · · · akn ∈ L.

Notation 6.2 The multiparty communication complexity of Rk,L is denoted d(Rk,L).

Notation 6.3 Let σ ∈ Σ, m ∈ N, and r ∈ N such that 0 ≤ r ≤ m− 1.

1. #σ(w) is the number of occurences of σ in w.

2. Lσ,r,m = {w | #σ(w) ≡ r mod m}.

Lemma 6.4 Let k, r,m ∈ N such that 0 ≤ r ≤ m − 1. Let |Σ| ≥ 2 and σ ∈ Σ and L = Lσ,r,m.
Then fZm

k ≤O(1)
cc Rk,L.

13



Proof: We show fZm
k,r ≤O(1)

cc Rk,L. By Theorem 4.3 fZm
k ≡O(1)

cc fZm
k , hence we will have

fZm
k ≤O(1)

cc Rk,L.
We map (q1, . . . , qk) to a string w of length km such that fZm

k,r (q1, . . . , qk) = 1 iff #σ(w) ≡ r
mod m.

For each i, 1 ≤ i ≤ k, there are m positions in w that are ≡ i (mod k). Set qi of those positions
to σ, and the rest of them to a letter that is not σ.

If w is the resulting word then #σ(w) =
∑k

i=1 qi. Hence q1 + · · · + qk ≡ r (mod m) iff w ∈ L.

Theorem 6.5 Let k, r,m ∈ N such that 0 ≤ r ≤ m− 1. Let |Σ| ≥ 2 and σ ∈ Σ. Let L = Lσ,r,m.

1. d(R3,L) ≥ Ω(log log log m).

2. For all k ≥ 4, d(Rk,L) = ω(1).

3. Assume Conjecture 5.3 is true. Then there exists a function c such that, for all k ≥ 4,
d(Rk,L) ≥ Ω(c(k) log log log m).

4. d(Rk,L) ≤ O(log m).

Proof: By Lemma 6.4 d(fGk ) ≤ d(Rk,L).
1) By Theorem 5.4 d(fG3 ) = ω(log log log m). Hence d(R3,L) = ω(log log log m).
2) By Theorem 5.11 d(fG3 ) = ω(1). Hence d(Rk,L) = ω(1).
3) If Conjecture 5.3 holds then, by Theorem 5.4, there exists a function c such that d(fGk ) ≥
Ω(c(k) log log m) = Ω(c(k) log log log m). Hence d(Rk,L) = Ω(c(k) log log log m).
4) The following protocol establishes the upper bound: Player k broadcasts the number of σ’s he
sees, mod m. Player k − 1 broadcasts the number of σ’s on Player k’s forehead, mod m. Now
everyone knows the number of σ mod m.

7 Applications to Lower Bounds on Branching Programs

7.1 Lower Bounds for MAJm and MODm

Branching programs are a model of computation that are like decision trees except that nodes can be
gotten to by several paths; hence they are ‘skinny decision trees’. If a function h : {0, 1}m → {0, 1}
is computed by a branching program the key questions to ask are (1) what is its length? and
(2) what is its width? It is somewhat surprising that all sets in NC1 can be decided with poly-
length, width 5, branching programs [3]. See [3, 27] or a paper on Branching Programs for a formal
definition.

The function MAJm defined below has been of particular interest.

Def 7.1 Let MAJm : {0, 1}m → {0, 1} be the function

MAJm(x1, . . . , xm) =

{
1 if

∑m
i=1 xi ≥ m/2;

0 otherwise.
(3)

14



We will also look at the function MODm.

Def 7.2 Let MODm : {0, 1}m → {0, 1} be the function

MODm(x1, . . . , xm) =

{
1 if

∑m
i=1 xi ≡ 0 (mod m);

0 otherwise.
(4)

The following Theorem is from [2, 18].
BILL- CHECK THIS, IT LOOKS WRONG.

Theorem 7.3 Any branching program for MAJm must have length at least Ω(m log m/(log log m)).
Note that this is independent of the width.

Their proof uses a difficult reduction to the 2-player communication complexity of MAJαm,
which had an easy-to-prove lower bound. We obtain alternative proofs of weaker results. Our
lower bound on MAJm uses an easy-to-prove reduction to the 3-player communication complexity
of MAJαm, which has a difficult lower bound (this paper’s Theorem 5.4).

We state the known upper bounds for comparison.

Theorem 7.4

1. For every m there is a branching program for MAJm of length

O(m(log m)3/((log log m)(log log log m)))

and width O(log m).

2. There is a function w such that, for every δ > 0, there is a BP for MAJm of width w(δ) and
length O(n4.95+δ). Note that there is a constant width BP for MAJm of length O(n5).

Proof:
1) This is from [21].
2) By [17] there is a bounded fan-in circuit for MAJm that has O(n) size and depth 4.95 log n+O(1).
By [9] any circuit of bounded fan-in, poly size, and depth d log n can be simulated by a Branching
Program of constant width, and length nd(1+ε). The larger w is the smaller ε is. Hence there is a
Branching Program for MAJm with constant width, and length n4.95+δ.

The following (easy) lemma can be proven by techniques similar to those of Lemma 5.1 and
Theorem 5.2 from [8].

Lemma 7.5 Let m ∈ N, α < 1, and k ≥ 3. Let g(x1, . . . , xm) : {0, 1}m → {0, 1}. Assume g can be
computed by a branching program of length L and width w. Let k = bL/(αm)c, n = d(0.5) lg me,
and T = d(

√
m)/2)e.

• If g = MAJm then d(fk,T ) ≤ O(k log w).

• If g = MODm then d(fZm
k ) ≤ O(k log w).
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Theorem 7.6 Let ε > 0.

1. If there is a length (3− ε)m, width w BP for MAJm (MODm) then w ≥ log log m.

2. Assume Conjecture 5.3 is true. Then there exists a function d : N → N such that if there is a
length am, width w BP for MAJm (MODm) then w ≥ Ω(d(a) log log m).

Proof: We assume throughout that m is a power of 2 and a square (the proof in the general
case is similar). We proof the theorem for MAJm. The proof for MODm is similar.
1) Assume there is a length L = (3−ε)m, width w BP for MAJm. By Lemma 7.5 with α = 3−ε

3 < 1,
we obtain d(f3,T ) ≤ O(log w) (with n = (0.5) log m and T = (

√
m)/2). By Theorem 5.5.1

d(f3,T ) ≥ Ω(log log log T ) = Ω(log log log m).

Hence log log log m ≤ O(log w), so w ≥ Ω(log log m).

2) Assume there is a length L = am, width w, BP for MAJm. By Lemma 7.5 with α = a
a−1 < 1

we obtain d(fk,T ) ≤ O(k log w) where k = a − 1, n = (0.5) lg m, and T = (
√

m)/2. By Theo-
rem 5.5.2, assuming the conjecture, d(fk,T ) ≥ Ω(c(k) log log log T ) = Ω(c(k) log log log m). Hence
c(k) log log log m ≤ O(log w), so w ≥ Ω((log log m)/c(k)). Let d(a) = 1/c(k − 1) = 1/c(a− 2).

7.2 Lower Bounds for f ∗

Babai, Nisan and Szegedy [1] have proven a theorem that enables one to go from lower bounds
for d(f) to lower bounds for oblivious branching programs for f∗ where f∗ is related to f (see
definition below). An oblivious branching program is one where the questions asked do not depend
on previous answers.

Def 7.7 Let f : ({0, 1}n)k → {0, 1}. Let c ∈ N be any natural number (it may depend on n or k).
Then f∗c is defined as follows

• Input: k strings over the ternary alphabet {00, 11, 01} of length 2n3m (so there are 2n3m

symbols, each one is 2 bits long). Note that the total input size is 4nk3m bits. We denote
these strings by X1, . . . , Xk.

• Output: For 1 ≤ i ≤ k let xi ∈ {0, 1}∗ be obtained by removing the letters 01 from Xi, and
then replacing the letters 00 with 0 and the letters 11 with 1. If any of the xi are not in
{0, 1}n, then output 0. If all of the xi are in {0, 1}n then output f(x1, . . . , xk).

Theorem 7.8 [1] Let f : ({0, 1}n)k → {0, 1}. Let c ∈ N be a parameter. If there is an oblivous
branching program for f∗c with length L = O(kn3c) then it has width W ≥ 2d(f)/kc. (Recall that
d(f) is the multiparty communication complexity of f .)

Corollary 7.9 Let f = f3,T where T = Θ(2n) or f = fZ2n

k . Let c ∈ N. If there is a branching
program for f∗c of length L = O(3cn) then it must have width W = (log n)Ω(1/c).

Proof: This follows from Theorem 7.8, 5.4 and 5.5.
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8 Upper Bounds

8.1 Upper Bounds for G = Zm

The proofs in this section are a reworking of those in [8].

Notation 8.1 If M = (M,�) is a monoid and d ∈ M , k ∈ N, then dk means d � · · · � d where
there are k d’s.

Def 8.2 Let M = (M,�) be a monoid. Let T = |M |.

1. A k-APM is a multiset of the form {a, a� d, a� d2, . . . , a� dk−1} where a, d ∈ M .

2. Let ζMk be the minimum number of colors needed to color M such that there are no monochro-
matic k-APM’s.

3. A set A ⊆ M is k-free if there do not exist any k-APM’s in A.

4. Let rk(M) be the size of the largest k-free subset of M .

The following lemma is proven for all finite commutative monoids. We will only be using it for
finite abelian groups; however, this generalization is no harder to prove and may be useful at some
later time.

Lemma 8.3 Let M = (M,�) be a finite commutative monoid. Let T = |M |.

1. χ∗k(M) ≤ ζMk .

2. ζMk ≤ O
(T log T

rk(T )

)
.

3. χ∗k(M) ≤ O
(T log(T )

rk(M)

)
. (This follows from 1 and 2.)

Proof:
1) Let c = ζMk . Let C ′ be an c-coloring of M with no monochromatic k-APM’s. Let C be the
following c-coloring of Mk−1.

C(x1, . . . , xk−1) = C ′(x1 � x2
2 � x3

3 � · · · � xk−1
k−1).

Assume, by way of contradiction, that C is not an M-proper coloring. Hence there exist
x1, . . . , xk−1 ∈ M and λ ∈ M − {ID} such that

C(x1, . . . , xk−1) = C(x1 � λ, x2, x3, . . . , xk−1) = · · · = C(x1, x2, x3, . . . , xk−1 � λ).
By the definition of C and the fact that M is commutative we have that the following are equal.

• C ′(x1 � x2
2 � x3

3 � · · · � xk−1
k−1)

• C ′(x1 � λ� x2
2 � x3

3 � · · · � xk−1
k−1)

• C ′(x1 � (x2 � λ)2 � x3
3 � · · · � xk−1

k−1)
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• C ′(x1 � x2
2 � (x3 � λ)3 � · · · � xk−1

k−1)

•
...

• C ′(x1 � x2
2 � x3

3 · · · � (xk−1 � λ)k−1)

This is a monochromatic k-APM in C ′, which yields a contradiction.

2) Let A ⊆ M be a set of size rk(M) with no k-APM’s. We use A to obtain a coloring of M . The
main idea is that we use randomly chosen translations of A to cover all of M .

Let x ∈ M . Pick a translation of A by picking t ∈ M . The probability that x ∈ A � t is |A|
T .

Hence the probability that x /∈ A� t is 1− |A|
T . If we pick s translations t1, . . . , ts at random (s to

be determined later) then the expected number of x that are not covered by any A + ti is

T

(
1− |A|

T

)s

≤ Te−s
|A|
T .

We need to pick s such that this quantity is < 1 We take s = 2T ln T
|A| which yields

Te−s
|A|
T = Te−2 ln T = 1/T < 1.

We color M by coloring each of the s translates a different color. If a number is in two translates
then we color it by one of them arbitrarily. Clearly this coloring has no monochromatic k-APs.
Note that it uses T ln T

|A| = O(T log T
rk(M) ) colors.

Lemma 8.4 Let T ∈ N. χ∗k(ZT ) ≤ 2O((log T )1/(k−1)).

Proof: By Lemma 3.1 rk(T ) ≤ T2−O((log T )1/(k−1)), so rk(T/2) ≤ T2−O((log T )1/(k−1)). Let A be
the k-free subset of [T/2] of this size. View it as a subset of {1, . . . , T}. This set has no k-APG ’s in it.
Hence rk(G) ≤ T2−O((log T )1/(k−1)). The bound on χ∗k(G) follows from this bound and Lemma 8.3.3.

Theorem 8.5 Let T ∈ N. d(fZT
k ) ≤ k + O((log T )1/(k−1)). Since the length of the input is log T

this really an upper bound of k + n1/(k−1).

Proof: By Theorem 4.5
d(fZT

k ) ≤ k + lg(χ∗k(ZT )) + O(1).

By Lemma 8.4

χ∗k(ZT ) ≤ 2O((log T )1/(k−1))

so
d(fGk ) ≤ k + lg(χ∗k(ZT )) ≤ k + O((log T )1/(k−1)).
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8.2 Upper Bounds for General Groups

If G is a group of low characteristic then it does not have large k-free sets, so the technique of
Lemma 8.3 does not improve upon a trivial upper bound. Hence other techniques must be used
to obtain nontrivial upper bounds. We show that, for all groups G, for almost all k, there is a
nontrivial protocol for fGk .

Lemma 8.6 Let G1 = (G1,�1) and G2 = (G2,�2) be any two finite groups. Let n1, n2 be such
that, for i = 1, 2, 2ni−1 < |Gi| ≤ 2ni. Assume n1 ≤ n2. We represent elements of Gi by a subset of
{0, 1}n2. Let G = G1 × G2.

1. χ∗3(G) ≤ 2n2 = Θ(|G2|).

2. d(fG3 ) ≤ 2 + n2 = Θ(log(|G2|)).

Proof:
1) Let ⊕ : {0, 1}n2 × {0, 1}n2 → {0, 1}n2 be the bitwise XOR function. For i = 1, 2 Let IDi be the
identify in Gi.

The following coloring shows that χ∗3(G) ≤ 2n2 . Let (a1, a2), (b1, b2) ∈ G1 ×G2. Let

C((a1, a2), (b1, b2)) = a1 ⊕ b2 ∈ {0, 1}n2 .

Note that C uses ≤ 2n2 colors.

C((a1, a2), (b1, b2)) = C((a1 �1 c1, a2 �2 c2), (b1, b2)) = C((a1, a2), (b1 �1 c1, b2 �2 c2)).

By the definition of C we have

a1 ⊕ b2 = (a1 �1 c1)⊕ b2.

Hence, by the nature of ⊕, a1 = a1 �1 c1. Therefore, since G1 is a group, c1 = ID1.
By the definition of C we have

a1 ⊕ b2 = a1 ⊕ (b2 �2 c2).

Hence, by the nature of ⊕, b2 = b2 �2 c2. Therefore, since G2 is a group, c2 = ID2.
Hence (c1, c2) is the identity in G.

2) Since χ∗3(G) ≤ 2n2 we have, from Theorem 4.5, d(fG3 ) ≤ 2 + n2.

Lemma 8.7 If G = G1 × · · · × Ga then χ∗k(G) ≤
∏a

i=1 χ∗k(Gi).

Proof: Let Ci be a proper χ∗k(Gi)-coloring of Gk−1
i . Let C be the coloring of the product of the

Gk−1
i ’s obtained by taking the product of the colorings. Formally C is the

∏a
i=1 χ∗k(Gi)-coloring of

Gk−1

C((z1
1 , . . . , z

1
a), . . . , (zk−1

1 , . . . , zk−1
a )) = C1(z1

1 , . . . , z
k−1
1 ) · · ·Ca(z1

a, . . . , zk−1
a ).

It is routine to check that this is a G-proper coloring.
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Lemma 8.8 If G = (G,�) is any finite abelian group and k ≥ 3 then d(fGk ) ≤ d(fGk−1).

Proof: We show a protocol for fGk that uses d(fGk−1) bits.

1. For 1 ≤ i ≤ k, Player i has (x1, . . . , xi−1, xi+1, . . . , xk).

2. Players 1, . . . , k − 1 replace x1 with x1 � xk. Note that this takes no communication.

3. Players 1, . . . , k − 1 execute a protocol for k − 1 players on their new inputs. This takes
d(fGk−1) bits.

Theorem 8.9 For all k ≥ 3 there exists α < 1 such that for all finite abelian groups G d(fGk ) <
k + α lg(|G|) + O(1). (Hence there is a nontrivial protocol for fGk .)

Proof: Fix k. Let G be a finite abelian group of size g. By the classification of finite abelian
groups G = Zh1 × · · · × Zhb

for some factorization g =
∏b

i=1 hi. We assume h1 ≤ · · · ≤ hb. By
Lemma 8.4, for all i, χ∗k(Zhi

) ≤ 2O((lg hi)
1/(k−1)).

There are two cases. They depend on a constant β to be picked later.
Case 1: b ≤ β lg g.

By Lemma 8.7

χ∗k(G) = χ∗k(Zh1) · · ·χ∗k(Zhb
) ≤

b∏
i=1

2O((lg hi)
1/(k−1)).

So

lg(χ∗k(G)) ≤
b∑

i=1

O((lg hi)1/(k−1)) ≤ O(
b∑

i=1

((lg hi)1/(k−1)).

The quantity
∑b

i=1(lg hi)1/(k−1), where
∏b

i=1 hi = g, is maximized when h1 = · · · = hb = g1/b.
Hence

b∑
i=1

(lg hi)1/(k−1) ≤
b∑

i=1

(lg g1/b)1/(k−1) ≤ b(1/b)1/(k−1)(lg g)1/(k−1) ≤ b(k−2)/(k−1)(lg g)1/(k−1).

Since b ≤ β lg g we have

b(k−2)/(k−1)(lg g)1/(k−1) ≤ (β lg g)(k−2)/(k−1)(lg g)1/(k−1) ≤ β(k−2)/(k−1)(lg g)(k−2)/(k−1)(lg g)1/(k−1)

≤ β(k−2)/(k−1)(lg g).

Hence there exists a constant c such that lg(χ∗k(G)) ≤ cβ(k−2)/(k−1)(lg g). Note that

d(fGk ) ≤ k + lg(χ∗k(G)) + O(1) ≤ k + cβ(k−2)/(k−1)(lg g).

Pick β < 1 such that α = cβ(k−2)/(k−1) < 0.9.
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Case 2: b ≥ β lg g.
Since all hi ≥ 2 we have

b/2∏
i=1

hi ≥ 2b/2 ≥ 2β lg g/2 = gβ/2.

So
b∏

i=b/2+1

hi ≤ g1−(β/2).

Let G1 = Zh1 × · · · × Zhb/2
and G2 = Zhb/2+1

× · · · × Zhb
Note that G = G1 × G2 and that

|G2| ≥ |G1|. By Lemmas 8.8 and 8.6

d(fGk ) ≤ d(fG3 ) lg(|G2|) + O(1) ≤ lg(g1−β/2) + O(1) ≤ (1− β/2) lg g + O(1).

Since 0 < β < 1 we have (1− (β/2)) < 1.
Take α to be the max of

• 0.9.

• 1− (β/2)

9 Open Problems

1. If T = Θ(2n) then
Ω(log log n) ≤ d(f3,T ) ≤

√
n.

It is open to improve this. Speculations:

(a) One way to improve the upper bounds is to find larger 3-free sets. It is known [7] (see

also [13]) that if A ⊆ [T ] and |A| ≥ Ω
(

T
√

log log T
log T

)
then A has a 3-AP. If 3-free sets of

this size exist then d(f3,T ) ≤ O(log log T ), so if T = Θ(2n) then d(f3,T ) ≤ O(log n).

(b) If proper colorings that do not induce 3-free sets exist then this may improve the upper
bounds. By contrast, if proper colorings must induce 3-free sets then this may improve
the lower bounds.

2. If T = Θ(2n) and k ≥ 4 then

ω(1) ≤ d(fk,T ) ≤ k + O((n log k)1/(k−1)).

It is open to improve either side. Speculations:

(a) If proper colorings that do not induce k-free sets exist this may improve the upper
bounds. By contrast, if proper colorings must induce k-free sets this may improve the
lower bounds.
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(b) If Conjecture 5.3 is true then this would improve the lower bound to c(k) log log log T
for some c(k).

3. Theorem 4.5 gives upper and lower bounds for d(fGk ) that differ by k + O(1); however, the
bounds are in terms of χ∗k(G). For a variety of abelian groups G find upper and lower bounds
on χ∗k(G) so that we can obtain upper and lower bounds on d(fGk ).

4. Let p be a prime. Theorem 4.5 holds if G is Zp under modular multiplication. Hence the
complexity of fG3 and fGk is very close to a function in combinatorics. This function should
be studied.

5. Let k, T ∈ N. Let gk,T : {{0, 1}n}k → {0, 1} be defined by g(x1, . . . , xm) = 1 iff
∏k

i=1 xi = T .
The multiparty communication complexity of g can probably be studied with the tools we
have devised.

6. The premise of Theorem 4.5 is that G is a finite abelian group. What if G is a nonabelian
group? A Monoid? Infinite? Theorem 5.12 illustrates that there are large monoids M with
d(fMk ) ≤ 2, so there may be a wide range of possibilities.

7. Empirical studies could be done to see if there are colorings that use substantially fewer than
the number of colors induced by 3-free sets.

10 Appendix: Empirical Results

Gasarch and Glenn [10] survey several constructions of 3-free sets and use them to produce actual
3-free sets. The table below Appendix was produced using their software. The table gives n, a
lower bound on r3(3N), n = lg N , and d(f3,T ) = 3 +

⌈
lg

(6N ln(3N)
r3(3N) + 1

)⌉
(from Theorem 2.4.1). We

also give the ratio of d(f3,T ) to
√

n since O(
√

n) is what the analysis gives.

1. The lowest value where we know that the main protocol beats the trivial one is around 104.
This is fairly small.

2. The ratio seems to be around 0.31. This is a small number.
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N r3(3N) df n
⌈√

n
⌉

ratio
10 10 7 4 2 0.286

100 48 9 7 3 0.333
1000 210 10 10 4 0.4

10000 1024 12 14 4 0.333
100000 4096 13 17 5 0.385

106 16384 15 20 5 0.333
107 65536 16 24 5 0.312
108 262144 18 27 6 0.333
109 1.28× 106 19 30 6 0.316

1010 6.32× 106 20 34 6 0.3
1011 3.83× 107 21 37 7 0.333
1012 2.12× 108 22 40 7 0.318
1013 1.31× 109 23 44 7 0.304
1014 8.36× 109 24 47 7 0.292
1015 5.23× 1010 24 50 8 0.333
1016 3.41× 1011 25 54 8 0.32
1017 2.12× 1012 26 57 8 0.308
1018 1.34× 1013 27 60 8 0.296
1019 9.20× 1013 27 64 8 0.296
1020 6.00× 1014 28 67 9 0.321
1021 4.11× 1015 29 70 9 0.31
1022 2.82× 1016 29 74 9 0.31
1023 1.92× 1017 30 77 9 0.3
1024 1.31× 1018 30 80 9 0.3
1025 9.13× 1018 31 84 10 0.323
1026 6.34× 1019 32 87 10 0.312
1027 4.60× 1020 32 90 10 0.312
1028 3.19× 1021 33 94 10 0.303
1029 2.25× 1022 33 97 10 0.303
1030 1.61× 1023 34 100 10 0.294
1031 1.19× 1024 34 103 11 0.324
1032 8.57× 1024 35 107 11 0.314
1033 6.20× 1025 35 110 11 0.314
1034 4.61× 1026 36 113 11 0.306
1035 3.38× 1027 36 117 11 0.306
1036 2.50× 1028 37 120 11 0.297
1037 1.83× 1029 37 123 12 0.324
1038 1.36× 1030 38 127 12 0.316
1039 1.03× 1031 38 130 12 0.316
1040 7.70× 1031 39 133 12 0.308
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N r3(3N) df n
⌈√

n
⌉

ratio
1041 5.81× 1032 39 137 12 0.308
1042 4.36× 1033 39 140 12 0.308
1043 3.33× 1034 40 143 12 0.3
1044 2.54× 1035 40 147 13 0.325
1045 1.94× 1036 41 150 13 0.317
1046 1.48× 1037 41 153 13 0.317
1047 1.13× 1038 42 157 13 0.31
1048 8.70× 1038 42 160 13 0.31
1049 6.74× 1039 42 163 13 0.31
1050 5.22× 1040 43 167 13 0.302
1051 4.04× 1041 43 170 14 0.326
1052 3.13× 1042 44 173 14 0.318
1053 2.43× 1043 44 177 14 0.318
1054 1.91× 1044 44 180 14 0.318
1055 1.50× 1045 45 183 14 0.311
1056 1.18× 1046 45 187 14 0.311
1057 9.24× 1046 45 190 14 0.311
1058 7.24× 1047 46 193 14 0.304
1059 5.72× 1048 46 196 14 0.304
1060 4.54× 1049 47 200 15 0.319
1061 3.61× 1050 47 203 15 0.319
1062 2.87× 1051 47 206 15 0.319
1063 2.28× 1052 48 210 15 0.312
1064 1.81× 1053 48 213 15 0.312
1065 1.44× 1054 48 216 15 0.312
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