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Abstract
Let A(x) be the characteristic function of A. Consider the function

FA
k (x1, . . . , xk) = A(x1) · · ·A(xk). We show that if FA

k can be computed with
fewer than k queries to some set X then A ∈ P/poly. A generalization of this
result has applications to bounded query classes, circuits, and enumerability.
In particular we obtain the following. (1) Assuming Σp

3 6= Πp
3, there are func-

tions computable using f(n) + 1 queries to SAT that are not computable using
f(n) queries to SAT, for f(n) = O(log n). (2) If FA

k , restricted to length n
inputs, can be computed by an unbounded fanin oracle circuit of size s(n) and
depth d(n), with k−1 queries to some set X, then A can be computed with an
unbounded fanin (non-oracle) circuit of size nO(k)s(n) and depth d(n) + O(1).
(3) Assuming that PH 6= Σp

4 ∩Πp
4, and ε < 1, #SAT is not 2nε

-enumerable.

1. Introduction

The standard complexity classes (e.g. P,NP) were defined to classify sets. To classify
functions several researchers [32, 54] have defined complexity classes based on the
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number of queries that a polynomial-time algorithm has to make to a particular set.
For example, Krentel [54] has shown that to compute the chromatic number of a
graph, Θ(log n) queries to SAT are necessary and sufficient (assuming P 6= NP).
Krentel [54] and Gasarch [32] have classified many functions in terms of queries to
SAT. (See [33] for a survey of such results.) The notion of bounded queries has also
been studied in computability theory. See [10, 15, 34].

More generally, we have defined a complexity measure by the number of queries
made by a polynomial-time algorithm to a set A [5, 11]. The corresponding com-
plexity classes are called “bounded query classes.” While the results obtained in this
framework do not depend on special properties of the oracle set, they often yield corol-
laries about computations with a bounded number of queries to an NP oracle [12, 14];
in addition they yield answers to questions ostensibly unrelated to counting oracle
queries [13].

A natural function to look at in this context is the following:

Definition 1.1. If A ⊆ {0, 1}∗ and k ∈ N then FA
k : ({0, 1}∗)k → {0, 1}k is defined

by
FA

k (x1, . . . , xk) = A(x1) · · ·A(xk),

where A(x) is the characteristic function of A: 1 if x ∈ A, 0 otherwise.

The function FA
k is easily seen to be computable with k parallel queries to A.

When can it be computed with k − 1 queries to A? to some other set X?
In Sections 3 and 4 we show that if FA

k can be computed with k − 1 queries to
some X then A is easy in some sense. In particular, we show the following.

• If (∃k)(∃X) such that FA
2k can be computed with k queries to X then A ∈

P/poly. In addition, A ∈ EL2, the second level of the extended low hierarchy
(defined in [8] and in Definition 3.1 of this paper). (Corollary 3.9)

• If (∃k)(∃X) such that FA
k can be computed with k − 1 queries to X then A ∈

P/poly. (Theorem 4.2)

In Sections 5, 6 and 7 we use these theorems, and the techniques used to obtain
them, to extend (though not generalize) previously known theorems about bounded
query classes, circuits, and enumerability. We state the previously known theorems
and our extensions (for readability we do not state the strongest form of either the
previous results or of ours):

• Krentel [54] showed that if P 6= NP then, for any increasing f ∈ PF, f(n) ≤
(1− ε) log n, f(n) queries to SAT are more powerful than f(n)− 1. 1

We show that if Σp
3 6= Πp

3 then for any f(n) = O(log n), f(n) queries to SAT
are more powerful than f(n)− 1 (Corollary 5.2).

1Krentel actually showed this just for f(n) ≤ 1
2 log n, but his proof can be modified to f(n) ≤

(1− ε) log n. See [12].
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• If A is (weakly) p-selective then A ∈ P/poly and A ∈ EL2. (A slightly stronger
theorem was already known [51].) If A is NPMV-selective then A ∈ NP/poly.
If A is NPSV-selective then A ∈ NP/poly∩ co-NP/poly∩EL3 (Corollary 3.15).
See Definitions 3.1 and 3.14 for relevant defintions.

• Cai [25] showed that if a constant depth oracle circuit computes k length-n

instances of PARITY, with only k−1 queries, it must have size 2nΩ(1)
. We show

that if there are a circuits of size s(n) and depth d(n) that compute FA=n

k(n) while
making only k(n)− 1 queries to some set X then there are (non-oracle) circuits
of size nO(k(n))s(n) and depth d(n) + O(1) that compute A=n. By applying
the lower bound on parity ([23, 39, 40, 41, 84]) we easily obtain Cai’s result
(Corollary 6.4).

• Cai and Hemachandra [29] proved that if P 6= P#P then, for all k, #SAT is not
nk-enumerable, i.e., there is no polynomial algorithm that, with formula ψ as in-
put, produces nk numbers one of which is #SAT(ψ). We extend their definition
of enumerability to superpolynomial functions and prove the following.

(∀ε < 1)[#SAT 2nε

-enumerable ⇒ #SAT ∈ PFΣp
4∩Πp

4 ]

(Corollary 7.31). In addition we obtain the above-mentioned result of Cai and
Hemachandra by an entirely different method (Corollary 7.32). 2

In Section 8 we examine the classes of sets A that have properties based on how
easy it is to compute FA

k . In particular we study closure properties, p-genericity, and
the structure of the degrees of such sets. The introduction to Section 8 gives a more
complete description of this material.

2. Definitions and Useful Facts

Section 2.1 reviews some standard definitions from complexity theory. Section 2.2
reviews some definitions and facts relevant to bounded query classes.

2.1. Definitions from the Literature

Notation 2.1. Throughout this paper Σ is a fixed alphabet and % /∈ Σ. We use
〈x1, . . . , xn〉 be mean x1%x2 · · ·xn−1%xn.

Definition 2.2. PF is the class of functions that can be computed in polynomial
time.

i. If A ⊆ Σ∗ then PFA (PA) is the class of functions (sets) that can be computed
in polynomial time using oracle A. The number of steps it takes to ask “y ∈ A”
is |y|.

2Cai and Hemachandra obtained the result independent of ourselves, at roughly the same time.
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ii. If f : Σ∗ → Σ∗ then PFf (Pf ) is the class of functions (sets) that can be
computed in polynomial time using oracle f . The number of steps it takes to
ask “what is f(y)” is |y|+ |f(y)|.

iii. If C is a class of sets or a class of functions then PFC (PC) is the class of functions
(sets) that can be computed in polynomial time using an oracle from C.

Definition 2.3. A set A is polynomial truth table reducible to B, denoted A ≤p
tt B,

if there exists f ∈ PF such that (i) for all x, f(x) = 〈y1, . . . , ym, ϕ〉 where yi ∈ Σ∗
and ϕ is an m-place Boolean formula, and (ii) x ∈ A iff ϕ(b1, . . . , bm) is true, where
bi is the truth value of “yi ∈ B.” The number m is the norm of f(x). Two sets A
and B are polynomial truth table equivalent if A ≤p

tt B and B ≤p
tt A. This is denoted

by A ≡tt B. Note that m and |φ| are bounded by a polynomial in |x|.

Definition 2.4. Let k be a constant. A ≤p
k-tt B if A ≤p

tt B via a function f such
that, for all x, f(x) has norm ≤ k. A ≤p

btt B if there exists a constant k such that
A ≤p

k-tt B.

Definition 2.5. If C is a class of sets then A is ≤p
tt-hard for C if for every B ∈ C,

B ≤p
tt A. The notions of ≤p

btt-hard and ≤p
k-tt-hard are defined similarly.

Notation 2.6. If A and B are sets then A⊕B is the set {1x : x ∈ A}∪{0x : x ∈ B}.

Pippenger [65] showed that the class of languages recognized by polynomial-size
circuits is P/poly (though it was not quite defined yet). This inspired Karp and
Lipton [48] to define general advice classes.

Definition 2.7. A function h has polynomial-size output if there exists a polynomial
p such that (∀x)[|h(x)| ≤ p(|x|)]. Note that there are no constraints on how difficult
it is to compute h.

Definition 2.8. Let C be a class of functions. A function f is in C/poly if there
exists g ∈ C and a function h with polynomial size output such that (∀n)(∀x)[|x| =
n ⇒ f(x) = g(x, h(0n))]. The function h is called the advice function and h(0n) is
called the advice for strings of length n. We use the phrase w serves as advice for f
on strings of length ≤ n if h(0n) = w.

Cai and Hemachandra [28] defined b(n)-enumerability as follows.

Definition 2.9. Let b(n) be a function with range N. A function f is b(n)-enumerable
if there exists e ∈ PF, e : Σ∗ → (Σ ∪ {%})∗, such that, for all x, e(x) is a list of at
most b(|x|) elements of Σ∗, separated by %, at least one of which is f(x).
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This definition only makes sense if b(|x|) is bounded by a polynomial. We define
a more general notion of enumerability that allows superpolynomial b.

Definition 2.10. Let b(n) be a function with range N. A function f is b(n)-
enumerable if there exists e ∈ PF, e : Σ∗ × N → Σ∗, such that, for all x, there
exists an i < b(|x|) such that e(x, i) = f(x). (We need to have i < b(|x|) instead of
i ≤ b(|x|) since the natural numbers N include 0.) We assume the second input to e
is written in binary.

Definition 2.11. The quantifier
∞
∀x means “for all but a finite number of x.” The

domain of x will usually be Σ∗.

Definition 2.12. Let i ≥ 1. QBFi is the set of true quantified Boolean formulas that
have an ∃ as the leftmost quantifier and make at most i−1 alternations of quantifiers.
Note that QBF1 = SAT. It is well known that QBFi is complete for Σp

i [76, 83]. Let
QBF =

⋃∞
i=1 QBFi. It is well known that QBF is complete for PSPACE [77].

Definition 2.13. A G-circuit on n variables is a directed acyclic graph with n input
nodes of in-degree 1 and one output node of out-degree 1. The nodes that are neither
inputs or outputs are called gates and are labelled with Boolean functions from the
set G. A G-circuit computes a Boolean function in the usual way. Its size is the
number of gates in it. Its depth is the length of the longest path from an input to the
output. Throughout this paper we assume that the gate set G includes a NOT-gate
as well as AND-gates and OR-gates of every (i.e., unbounded) fanin. Sometimes it
will not matter what other elements G contains; then by convention we will abuse
notation and call a G-circuit simply a circuit.

Definition 2.14. A G-circuit family is a collection {Cn}∞n=1 of G-circuits where Cn is
a G-circuit on n inputs. A G-circuit family where each Cn has size ≤ s(n) and depth
≤ d(n) is called an (s(n), d(n)) G-circuit family. We will continue the tradition of
abusing notation by calling a G-circuit family just a G-circuit.

2.2. Bounded Query Classes

Bounded query classes were defined in [5, 14] as follows.

Definition 2.15.

• If A is an oracle and j(n) is a function from N to N then PFA
j(n)-T is the class

of functions that can be computed by a polynomial time oracle Turing machine
that makes, on inputs of length n, at most j(n) queries to oracle A. (We call
such queries serial. Book and Ko [22] call them adaptive.)
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• If A is an oracle and j(n) is a function from N to N then PFA
j(n)-tt is the class

of functions that can be computed by a polynomial time oracle Turing machine
that, on inputs of length n, prepares a list of the j(n) queries it is going to make
to A before actually making any of them. (We call such queries parallel. Book
and Ko [22] call them nonadaptive.)

• PA
j(n)-T is the class of languages whose characteristic function belongs to

PFA
j(n)-T.

• PA
j(n)-tt is the class of languages whose characteristic function belongs to

PFA
j(n)-tt.

Note: The oracle A in the definition above will usually be a set, but the definitions
also hold when the oracle is a function.

If f is computable by making j(n) oracle queries, then there are only 2j(n) possible
values for the result of f . The informal notion of possibility is made precise by using
the notion of enumerability as defined in Section 2.1.

The connection between bounded queries and enumerability is formalized by the
following two facts from [11, Lemma 3.2]. We include a proof sketch for completeness.

Fact 2.16. Let f be any function. Let j(n) ∈ PF. The following are equivalent:

i. There exists X such that f ∈ PFX
j(n)-T.

ii. f is 2j(n)-enumerable.

iii. There exists Y such that f ∈ PFY
j(n)-tt. (If 2j(n) is bounded by a polynomial then

Y ∈ Pf
1-tt.)

Proof sketch:
(i) ⇒ (ii): If f ∈ PFX

j(n)-T via MX then let e(x, i) be defined as follows. If

i ≥ 2j(|x|) then output 0, else run M ()(x) using the bth bit of the (i + 1)st element of
{0, 1}j(|x|) to answer the bth query. For all x, some sequence of j(|x|) bits provides the
correct query answers for the MX(x) computation, hence there is an i < 2j(|x|) such
that e(x, i) = MX(x) = f(x).

(ii) ⇒ (iii): If f is 2j(n)-enumerable then let e be the function such that, for all
x, there exists i < 2j(|x|) such that e(x, i) = f(x). Let Y be the set of all tuples 〈x, a〉
such that the following is true: if i is the least number such that f(x) = e(x, i) then
the ath bit of i is 1. On input x, asking the queries “〈x, 1〉 ∈ Y ?”, “〈x, 2〉 ∈ Y ?”,. . .,
“〈x, j(|x|)〉 ∈ Y ?” allows you to find the appropriate i such that e(x, i) = f(x).

(iii) ⇒ (i) is obvious.

By plugging in FA
k for f and j(n) = j (a constant) into Fact 2.16 we obtain the

following.

Fact 2.17. Let j, k ∈ N. The following are equivalent:
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i. There exists X such that FA
k ∈ PFX

j-T.

ii. FA
k is 2j-enumerable.

iii. There exists B ∈ PA
k-tt such that FA

k ∈ PFB
j-tt.

We are interested in finding out when the function FA
k requires k queries to A (or

any oracle X). On the other hand, we are also interested in determining when the
function FA

k can be computed with far fewer than k queries. The following definitions
reflect these two extreme notions.

Definition 2.18.

i. A set A is p-terse if, for all k, FA
k /∈ PFA

(k−1)-T.

ii. A set A is p-superterse if, for all sets X, for all k, FA
k /∈ PFX

(k−1)-T.

iii. Let k be a constant. A set A is k-cheatable if there exists a set X such that
FA

2k ∈ PFX
k-T.

iv. A is cheatable if A is k-cheatable for some constant k. Note that by Fact 2.17
a set is k-cheatable iff FA

2k is 2k-enumerable.

We state some (known) useful consequences of a set being k-cheatable. We include
proof sketches for completeness. We need a (known) combinatorial fact that we will
use both here and later.

Fact 2.19 ([14, 20, 62]). Let C be a collection of m sets. There exists a set X such
that

• (∀S, S ′ ∈ C)[S 6= S ′ ⇒ S ∩X 6= S ′ ∩X].

• |X| ≤ m− 1.

Fact 2.20. Let k ∈ N and A ⊆ Σ∗.

i. If A is k-cheatable then (∀m)[FA
m ∈ PFA

(2k−1)-tt via a machine that, on input
{x1, . . . , xm}, queries a subset of {x1, . . . , xm}]. This reduction is uniform in
m. (Theorem 5.4.i of [14].)

ii. If A is k-cheatable then (∃X)(∀m)[FA
m ∈ PFX

k-T]. (Theorem 5.4.ii of [14].)

iii. A is k-cheatable iff (∀m)[FA
m is 2k-enumerable].
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Proof sketch: We show that (i) holds. We first show this for m = 2k. By
Fact 2.17, FA

2k is 2k-enumerable. Hence on input (x1, . . . , x2k) we can generate 2k pos-
sibilities for FA

2k(x1, . . . , x2k). Associate to each possibility the subset of {x1, . . . , x2k}
that the possibility thinks is in A. There are 2k sets. By Fact 2.19 we can find a
subset X of {x1, . . . , x2k} of size 2k − 1 such that the status of those elements in A
completely determines which possibility is actually FA

2k(x1, . . . , x2k). Hence we have
established the m = 2k case. For general m we use induction and the result for
m = 2k.

We show that (ii) holds. Since A is k-cheatable there exists an X such that
FA

2k ∈ PFX
k-T. This is the X we seek. For any value of m we may compute FA

m with k
queries to X as follows: by (i) the computation reduces to finding out the membership
of some 2k − 1 elements in A. Since FA

2k ∈ PFX
k-T, this can be done with k queries to

X.
Item (iii) holds by using (ii) and Fact 2.17.

The following fact about p-superterse sets will point the way to a generalization
of p-terseness that is used in Theorem 4.4.

Fact 2.21. If A is not p-superterse then there exists a k ∈ N and w ∈ PF, w :
(Σ∗)k → {0, 1}k, such that for all x1, . . . , xk, FA

k (x1, . . . , xk) 6= w(x1, . . . , xk).

Proof: Let k be such that there exists X, FA
k ∈ PFX

(k−1)-T. By Fact 2.17 FA
k is

2k−1-enumerable. We compute w as follows: on input (x1, . . . , xk) we compute all 2k−1

possibilities for Fk
A(x1, . . . , xk) and output the least element (using lexicographical

ordering) of {0, 1}k that is not one of them.

The converse of Fact 2.21 is also known, i.e., if such a w exists then A is not
p-superterse (see [11]).

3. Cheatable Sets

If a set is cheatable then it should be easy in some sense. In this chapter we pin
down that intuition. In Section 3.1 we prove a powerful lemma (Lemma 3.7) about
computations with bounded queries. From it we obtain that if A is cheatable then
A ∈ P/poly and A ∈ EL2 (see Definition 3.1). Sets in P/poly are easy in that they
reduce to sparse sets. Sets in EL2 are easy since, if A is in EL2, then Σp,A

2 ⊆ NPA⊕SAT,
so A does not add much to the strength of Σp

2.
In Section 3.3 we show that if A is cheatable and self-reducible then A ∈ P. As a

corollary we obtain that NP-hard sets are not cheatable (unless P = NP).

3.1. Circuits and Lowness

Schöning [68] defined the low and high hierarchies to classify NP sets. Balcázar, Book,
and Schöning [8] defined the extended low and extended high hierarchies to classify
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sets in general. (All these notions are analogous to similar concepts in computability
theory. See [57].)

Definition 3.1. Let k ≥ 1 and A be a set. The set A is in ELk, the kth level of the
extended low hierarchy, if Σp,A

k ⊆ Σp,A⊕SAT
k−1 . The set A is in EHk, the kth level of the

extended high hierarchy, if Σp,A⊕SAT
k ⊆ Σp,A

k .

The following facts from [68, 69] will aid the intuition that sets in ELk are easy
and sets in EHk are hard.

Fact 3.2.

i. P ⊆ EL1 ⊆ EL2 · · ·.

ii. · · ·EH3 ⊆ EH2 ⊆ EH1.

iii. If (∃k)[SAT ∈ ELk] then PH collapses.

iv. If (∃k)[∅ ∈ EHk] then PH collapses.

v. NP ∩ co-NP ⊆ EL1.

vi. P/poly ⊆ EL3.

The classification of sets into these classes gives a sense of how hard those sets
are. In this paper we will show that cheatable sets are in P/poly, and hence in EL3.
We will then show that more can be said: cheatable sets are actually in EL2.

We need the following lemma. The techniques to prove it are standard but it does
not seem to be in the literature.

Notation 3.3. Let R(x, y) be a relation. The expression B = {x : (∃py)[R(x, y)]}
means that there exists a polynomial q such that

B = {x : (∃y)[|y| ≤ q(|x|) ∧R(x, y)]}.

The expression C = {x : (∀py)[R(x, y)]} means that there exists a polynomial q such
that

C = {x : (∀y)[|y| ≤ q(|x|) ⇒ R(x, y)]}.
This notation can be extended to more variables.

It is well known that if B ∈ Σp,A
i then there exists a relation RA ∈ PA such that

B = {x : (∃py1)(∀py2) · · · (Qpyi)[R
A(x, y1, . . . , yi)]}.

(Qp is ∃p if i is odd, and is ∀p if i is even.)

Lemma 3.4. Let A ∈ P/poly. Let p(n) be the length of the advice. We assume that
p is 1-1. Let C be a set of strings that satisfy the following properties:

9



i. If w ∈ C then (∃n)[|w| = p(n)] and w could serve as advice for the P/poly
algorithm for An.

ii. For all n there exists w ∈ C such that |w| = p(n).

If C ∈ PA⊕SAT then A ∈ EL2.

Proof: We show Σp,A
2 ⊆ Σp,A⊕SAT

1 . Let B ∈ Σp,A
2 . There exists a relation RA ∈ PA

such that B = {x : (∃py)(∀pz)[RA(x, y, z)]}.
Let R′(w, x, y, z) denote the result of trying to compute RA(x, y, z) by assuming

that w is advice for A, hence answering all queries to A by using the P/poly algorithm
for A and advice w.

Note that

B = {x : (∃pw)(∃py)[w ∈ C ∧ (∀pz)[R′(w, x, y, z)]]}.

Since C ∈ PA⊕SAT and R′ ∈ P, B ∈ Σp,A⊕SAT
1 .

Definition 3.5. Let X and Y be two disjoint sets. If Z is such that X ⊆ Z and
Y ⊆ Z then Z separates X from Y .

Notation 3.6. If A is a set and k ∈ N then Ak is A× · · · × A where the number of
A’s is k. (The “×” denotes cartesian product.)

Lemma 3.7. Let A be a set. Assume there exist k and Z such that the following
hold.

i. Z ⊆
(
Σ∗

)k

ii. Z separates Ak from {(x1, . . . , xk) : (∀i 6= j)[xi 6= xj]∧ |A ∩ {x1, . . . , xk}| =
k − 1}.

iii. Z ∈ PA
(k−1)-T via an algorithm A that queries only components of the input.

Then A ∈ P/poly. If, in addition, A satisfies the same condition then A ∈ EL2.

The proof of membership in P/poly is largely inspired by Ko [51].

Proof: Algorithm A takes as input a k-tuple (x1, . . . , xk) and makes ≤ k − 1
queries to A, which are all in {x1, . . . , xk}. Without loss of generality, we assume
that (1) if x1, . . . , xk are input and are distinct then algorithm A makes exactly k− 1
distinct queries to A, and (2) the queries made are independent of the order of the
inputs (e.g., if on input (x1, x2, x3) the queries are x1 and x2 then on input (x3, x2, x1)
the queries are x1 and x2). If A does not have these properties then we can modify it
as follows: on input (x1, . . . , xk) first sort them lexicographically and then run A on
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this sorted list. Let g({x1, . . . , xk}) be the set of oracle queries asked by A on input
(x1, . . . , xk). Note that g({x1, . . . , xk}) is a (k − 1)-element subset of {x1, . . . , xk}.

For any set S ⊆ A ∩ Σn we will show how to find a (k − 1)-element set X ⊆ S
such that knowing X allows us to verify that a constant fraction of the elements of
S are in A. By iterating this procedure O(log |S|) times we will generate polynomial
advice that allows us to verify that each element of S is in A. We will generate such
advice for S = A ∩ Σn; then we can test strings in Σn for membership in A because
all the strings that cannot be verified as being in A will be in A.

If x1, . . . , xk−1 ∈ A then, for all x,

A(x1, . . . , xk−1, x) = 1 ⇒ x ∈ A,
A(x1, . . . , xk−1, x) = 0 ⇒ x /∈ A.

If x1, . . . , xk−1 are fixed and the value of FA
k−1(x1, . . . , xk−1) is known, then perhaps we

can useA in an algorithm for A. Unfortunately the queries made byA(x1, . . . , xk−1, x)
might include x itself. We seek x1, . . . , xk−1 such that, for many x, A(x1, . . . , xk−1, x)
does not query x.

In general let [S]k denote the set of all k-element subsets of S, and let s denote
|S|. For S ⊆ A and X = {x1, . . . , xk−1} ∈ [S]k−1, we define the set of strings for
which (x1, . . . , xk−1) is useful advice:

advisees(X) = {x ∈ S −X : g(X ∪ {x}) = X}.

Note that if we know (x1, . . . , xk−1) then we can use algorithm A to verify x ∈ A for
every element x ∈ advisees(X) since A(x1, . . . , xk−1, x) does not query x.

In the following calculation we use the fact that every Y ∈ [S]k can be partitioned
into X ∈ [S]k−1 and x ∈ advisees(X) via g(Y ) = X and x ∈ Y −X.∑

X∈[S]k−1

|advisees(X)| =
∑

X∈[S]k−1

∑
x∈advisees(X)

1

=
∑

X∪{x}∈[S]k

1

= |[S]k|.

Therefore, there exists X ∈ [S]k−1 such that

|advisees(X)| ≥ |[S]k|
|[S]k−1|

=

(
s
k

)
(

s
k−1

) =
s− k + 1

k
.

For this choice of X = {x1, . . . , xk−1}, the tuple (x1, . . . , xk−1) is useful advice for
(s − k + 1)/k strings in addition to the members of X; hence it is useful advice for
(s− k + 1)/k + k − 1 = (s+ k2 − 2k + 1)/k ≥ s/k strings.

In particular, let S0 = A ∩ Σn. As shown in the preceding paragraph, there
is a (k − 1)-tuple X1 that is useful advice for at least |S0|/k strings in S0. Let
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S1 = S0 − (advisees(X1) ∪ X1). Then |S1| ≤ |S0|/c, where c = k
k−1

. Repeat the
argument using S1 in place of S0 to obtain X2 and S2. Repeat for p iterations,
stopping when |Sp| < k. Then p ≤ logc (|Σ|n) = O(n). Let d be such that p ≤ dn.
Note that d is independent of n and of what is happening at this stage. Note that

X1 ∪ · · · ∪Xp ∪ Sp ⊆ A∪Σn ⊆ X1 ∪ · · · ∪Xp ∪ Sp ∪ advisees(X1)∪ · · · ∪ advisees(Xp).

Our advice for strings of length n consists of the sets X1, . . . , Xp and Sp. This advice
contains at most (p + 1)(k − 1)(n) bits, which is O(n2) because k is a constant and
p = O(n).

If y is a string of length n, then we determine if y ∈ A as follows.

Step 1: If y ∈ X1 ∪ · · · ∪Xp ∪ Sp then output(YES) and halt.

Step 2: For i = 1 to p

(a) Let zi be the k-tuple containing the elements of Xi ∪ {y} in lexicographic
order.

(b) We simulate A on input zi using the answer “yes” for each query. If
A queries only elements of Xi and outputs b, then output(b) and halt.
(Note that if A queries only elements of Xi then the queries are answered
correctly above, so the simulation correctly distinguishes between whether
all k components of zi or only k−1 of them are in A. Since Xi is a (k−1)-
element subset of A, this tells us whether y ∈ A.) If A queries y then go
to the next value of i. (If x ∈ A then, by construction, one of the i will
work.)

Step 3: Output(NO). (By the construction, every element of A will be recognized in the
previous step. Hence if no such i exists then y /∈ A.)

We now assume that A satisfies the condition of the theorem as well. Let the
analogous algorithm be A. We will conclude that A ∈ EL2. First, build ad-
vice Y1, . . . , Yp′ , Tp′ ⊆ A similar to the procedure above. We now use the sets
X1, . . . , Xp, Sp, Y1, . . . , Yp′ , Tp′ to show A ∈ P/poly via an algorithm that satisfies
the property of Lemma 3.4; therefore, A ∈ EL2.

If y is a string of length n, then we determine if y ∈ A as follows.

Step 1: If y ∈ X1 ∪ · · · ∪Xp ∪ Sp then output(YES) and halt. If y ∈ Y1 ∪ · · · ∪ Yp ∪ Tp

then output(NO) and halt.

Step 2: For i = 1 to p

(a) Let zi be the k-tuple containing the elements of Xi ∪ {y} in lexicographic
order.

12



(b) We simulate A on input zi using the answer “yes” for each query. If
A queries only elements of Xi and outputs b, then output(b) and halt.
(Note that if A queries only elements of Xi then the queries are answered
correctly above, so the simulation correctly distinguishes between whether
all k components of zi or only k−1 of them are in A. Since Xi is a (k−1)-
element subset of A, this tells us whether y ∈ A.) If A queries y then go
to the next value of i. (By construction, if y ∈ A, then one of the i will
work.)

Step 3: For i = 1 to p

(a) Let zi be the k-tuple containing the elements of Yi ∪ {y} in lexicographic
order.

(b) We simulate A on input zi using the answer “yes” for each query. (Note
that these are queries to A.) If A queries only elements of Yi and outputs
b, then output(b) and halt. (Note that if A queries only elements of Yi

then the queries are answered correctly above, so the simulation correctly
distinguishes between whether all k components of zi or only k−1 of them
are in A. Since Yi is a (k − 1)-element subset of A, this tells us whether
y ∈ A.) If A queries y then go to the next value of i. (By construction, if
y ∈ A, one of the i will work.)

The algorithm is more complicated than is needed to recognize A, but the point
is that the set of strings that can serve as advice will be relatively simple.

Let ADVn be the set of all strings that can serve as advice for strings of length n
using this algorithm. We give a PA⊕SAT algorithm to decide a subset of

⋃∞
n=0ADVn

that has, for each n, at least one string of length n. By Lemma 3.4 this shows
A ∈ EL2.

A string that claims to be advice is of the form X1, . . . , Xp, Sp, Y1, Y2, . . . , Yp′ , Tp′

where Sp ∪
⋃p

i=1Xi ⊆ A and Tp′ ∪
⋃p′

i=1 Yi ⊆ A. These inclusions can easily be verified
with queries to A. It suffices to verify that for every y ∈ Σn either (1) y belongs to
the set

⋃p
i=1Xi ∪

⋃p
i=1 Yi ∪ Sp ∪ Tp, (2) there exists an i such that g(Xi ∪ {y}) = Xi

(we can test this since Xi ⊆ A), or (3) there exists an i such that g(Yi ∪ {y}) = Yi

(we can test this since Yi ⊆ A). This is a co-NP predicate and hence can be answered
with a query to SAT.

Theorem 3.8. If there exists k ∈ N such that FA
k ∈ PFA

(k−1)-tt via an algorithm A
that queries only components of the input, then A ∈ P/poly and A ∈ EL2.

Proof: Lemma 3.7 is satisfied with the values A, Z = Ak, and k. Hence A ∈
P/poly.

Lemma 3.7 is also satisfied with the values A, Z = A
k
, and k. Hence A ∈ EL2.

13



Corollary 3.9. If A is cheatable then A ∈ P/poly and A ∈ EL2.

Proof: By Fact 2.20 if A is k-cheatable then FA
2k ∈ PFA

(2k−1)-tt via an algorithm
that queries only components of the input. Therefore Theorem 3.8 applies.

In the proof of Lemma 3.7 we only used the fact that Z was computable in
polynomial time in step 2b of the first algorithm. If Z is in a class C then perhaps
we can obtain A ∈ C/poly. This train of thought leads to a powerful theorem from
which we can prove some known theorems about p-selective sets.

We need to define computation over classes other than P with a bounded number of
queries. It is obvious how to count the number of queries when the base computation
is deterministic. However, when the base computation is not deterministic we may
consider either the maximum number of queries per path or the total number of
queries over all paths.

Definition 3.10. A language Z is in NPA
k-T if there exists a nondeterministic poly-

nomial time oracle Turing machine M () such that MA recognizes Z and on each
computation path makes at most k queries.

Definition 3.11. Let C ∈ {Σp
1,Π

p
1,Σ

p
2,Π

p
2, . . .} ∪ {QP : Q ∈ P}. (See Example 7.7

for the definition of QP). A language Z is in CA
ctree[k] if Z ∈ CA via an algorithm

A such that, for all x, there are at most k queries on the entire computation tree
of A(x). Note that we may assume that A makes all of its queries before executing
any nondeterministic steps. This notation was first used by Wagner [81] for the case
C = NP. In this case the term “ctree” meant “computation tree”.

Lemma 3.12. Let A ⊆ Σ∗. Assume there exist k ∈ N and Z ⊆
(
Σ∗

)k
such that Z

separates Ak from {(x1, . . . , xk) : (∀i 6= j)[xi 6= xj]∧ |A ∩ {x1, . . . , xk}| = k − 1}. If

i. Z ∈ CA
(k−1)-T where C is NP or any deterministic time or space class that con-

tains P and has C = PC
O(n)-T (e.g., PSPACE or EXPTIME), or

ii. Z ∈ CA
ctree[k − 1] where C is Σp

i or Πp
i for some i or C is a complexity class in⋃{QP : Q ∈ P} that is closed under union, via an algorithm A that queries

only components of the input, then A ∈ C/poly.

Proof: First we obtain advice exactly as in the proof of Lemma 3.7. Let the advice
be X1, . . . , Xp, Sp.

Case 1: C is a deterministic complexity class that contains P. Proceed exactly as in
the proof of Lemma 3.7.
Case 2: C = NP. Then Z ∈ NPA

k−T via nondeterministic algorithm A.
Let A(y,Xi, d) be the result of simulating A on nondeterministic path d with

input the tuple consisting of the elements of Xi
⋃{y} in lexicographic order, with the

following provisos:
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• If y is queried then we reject.

• All queries (to strings in Xi) are answered yes.

From the nature of the advice we have

y ∈ A iff (y ∈ Sp or (∃i)(∃d)[y ∈ Xi ∨ A(y,Xi, d) = Y ES]) .

Hence A ∈ NP/poly.

Case 3: C is Σp
i , Πp

i or QP. Recall that we can assume that all the queries that A
makes are made before any nondeterministic step is executed. Let A(y,Xi) be the
result of simulating A with input the tuple consisting of the elements of Xi

⋃{y} in
lexicographic order, with the following provisos:

• If y is among the queries then make the entire computation reject. This is
possible because P ⊆ C and we have not yet made any nondeterministic choices.

• All queries (to strings in Xi) are answered yes.

From the algorithm we obtain

y ∈ A iff (y ∈ Sp or
p∨

i=1

[A(y,Xi) = YES].)

Since C is closed under union, A ∈ C/poly.

Note:

i. The classes PP, C=P, and MODkP are closed under union and can be expressed
as QP for various Q. Hence Lemma 3.12 applies to them. See [18] for PP, [80]
for C=P, and [44] for MODkP. Also see [16] for an overview.

ii. Note also that part i gives a stronger result for NP (Turing reductions) than
part ii gives (ctree reductions).

3.2. Applications to Selective Sets

Inspired by the concept of a semi-computable set from computability theory [46]
(called “semi-recursive” in the reference). Selman [71] defined p-selective sets to dis-
tinguish several types of polynomial reducibilities. Hemaspaandra et al. generalized
this concept to NPMV-selective ([42, 43]) and NPSV-selective ([42]).

Convention: Let M be a nondeterministic polynomial time Turing machine. We will
think of M as computing a multivalued partial function by having its branches write
strings. By convention all paths halt, though some will output ⊥, which stands for
not contributing to the answer.
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Definition 3.13. [21] A partial multivalued function f : Σ∗ → 2Σ∗
is in NPMV

(nondeterministic polynomial time multi-valued) if there exists a nondeterministic
polynomial time Turing machine M such that y ∈ f(x) iff one of the branches in the
computation of M(x) outputs y. Note that if f(x) = ∅ then all branches will output
⊥. A partial function f : Σ∗ → Σ∗ is in NPSV (nondeterministic polynomial time
single valued) if it is in NPMV. All of these definitions can easily be extended to the
case where the domain is Σ∗ × · · · × Σ∗ instead of Σ∗.

Definition 3.14. Let A be a language. An A-selector is a partial multivalued func-
tion f such that A ∩ {x, y} 6= ∅ ⇒ ∅ ⊂ f(x, y) ⊆ A ∩ {x, y}. An A-selector is
single-valued if A ∩ {x, y} 6= ∅ ⇒ |f(x, y)| = 1.

i. A is p-selective if there is a single-valued A-selector f ∈ PF.

ii. A is NPMV-selective if there is an A-selector f ∈ NPMV.

iii. A is NPSV-selective if there is a single-valued A-selector f ∈ NPSV.

It is known that if A is weakly p-selective then A is in P/poly [51] (Ko constructs
a small set of witnesses for membership in A) and in L2 (i.e., Σp,A

2 ⊆ Σp
2, see [52]).

We can obtain a slightly weaker version of his theorem from our machinery.

Corollary 3.15. If A is (weakly) p-selective then A ∈ P/poly and A ∈ EL2.

Proof: We show this result for p-selective sets. The proof for weakly p-selective
sets (defined in [51]) is similar.

We show that if A is p-selective then both A and A satisfy the hypothesis of
Lemma 3.7. Let f be a polynomial-time computable A-selector. Then (x, y) ∈ A×A
iff f(x, y) ∈ A, so A satisfies the hypothesis of Lemma 3.7. Since the class of p-
selective sets is closed under complementation, A satisfies that hypothesis as well.

We now apply Lemma 3.12 to NPMV-selective sets and NPSV-selective sets. The
following result was originally proved by Hemaspaandra et al. [42, 43]).

Corollary 3.16. If A is NPMV-selective then A ∈ NP/poly. If A is NPSV-selective
then A ∈ NP/poly ∩ co-NP/poly ∩ EL3.

Proof: We show that if A is NPMV-selective via f then A satisfies the condition
of Lemma 3.12 with C = NP and k = 2. We define Z by the following NPA[1]

algorithm: On input (x, y) run the NP algorithm for f . On each branch do the
following. If the output of f is ⊥ then output NO. If the output of f is x then make
the query “y ∈ A?” Output the answer to this query. Note that A × A ⊆ Z and
{(x, y) : x 6= y ∧ |A ∩ {x, y}| = 1} ⊆ Z. Also note that each path asked at most one
question, though there may have been two questions asked overall.
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If A is NPSV-selective via f then A is NPMV-selective hence A ∈ NP/poly. We
show that A satisfies the condition of Lemma 3.12 with C = co-NP and k = 2. We
define Z by the following co-NPA[1] algorithm. On input (x, y) run the NP algorithm
for f . On each branch do the following. If the output of f is ⊥ then output YES. If
the output of f is x then make the query “y ∈ A?” Output the answer to this query.
Note that A × A ⊆ Z and {(x, y) : x 6= y ∧ |A ∩ {x, y}| = 1} ⊆ Z. Also note that
since f is in NPSV the total number of different queries asked overall is at most 1.

By [42] any set in NP/poly ∩ co-NP/poly is in EL3.

3.3. Self-Reduction and NP-hardness

In this section we show that if a set is self-reducible and cheatable then it is in P
(This result was first stated (without proof) in [10], crediting the current authors.
We subsequently learned that [37] obtained the result independently.) We use this
to show that, under a suitable hypothesis, certain sets A are not cheatable. We then
prove a lemma that extends this to any set B such that A ≤p

T B.
Intuitively, a set A is self-reducible if the question “x ∈ A?” can be reduced

to questions of the form “y ∈ A?” where |y| < |x|. Many natural sets, e.g., most
NP-complete sets in [31], are self-reducible. Schnorr [67] was the first to define the
concept. We use an alternative definition which is more general and is implicit in the
literature. It was first introduced by [59].

Definition 3.17. Let p be a function and ≺ be an ordering on Σ∗. The ordering ≺
has p-bounded chains if whenever xm ≺ xm−1 ≺ · · · ≺ x1, we have m ≤ p(|x1|) and
(∀i)[|xi| ≤ p(|x1|)]. The ordering ≺ has polynomially-bounded chains if there exists a
polynomial p such that ≺ has p-bounded chains.

Definition 3.18. A set A is polynomial Turing self-reducible (henceforth self-
reducible) if there exists a polynomial-time computable partial order ≺ such that

i. ≺ has polynomially bounded chains; and

ii. there exists a polynomial-time bounded oracle Turing machine M () such that

(a) all strings queried by M () precede the input string in the ordering ≺, and

(b) the language accepted by MA is A.

The definition of polynomial truth-table self-reducible (henceforth tt-self-reducible) is
similar, just replace the polynomial Turing reduction with a polynomial tt-reduction.

We state a theorem that appeared in [14]. Theorems 3.23 and 3.34 are general-
izations of it.

Proposition 3.19. A is tt-self-reducible and cheatable iff A is in P.
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In order to improve Proposition 3.19 from tt-self-reducible to self-reducible we
need the following lemma.

Definition 3.20. A tree is a finite subset of {0, 1}∗ that is closed under prefix. A
Σ∗-labeled tree is a tree where every node is mapped to an element of Σ∗.

Definition 3.21. Let f ≤p
T B via an oracle Turing machine M () that runs in time

bounded by p(n) for all oracles. Let x ∈ Σ∗. We view an answer of YES as 1, and an
answer of NO as 0. The oracle query tree for M ()(x) is the labeled tree such that the
node b1b2 · · · bm−1 (bi ∈ {0, 1}) is mapped to the mth question that would be asked
if the first m− 1 questions are answered b1, b2, . . . , bm−1. Note that the depth of the
tree is at most p(|x|).

Lemma 3.22. If B is k-cheatable and f ≤p
T B then f ≤p

(2k−1)-tt B using queries that

belong to the oracle query tree in the f ≤p
T B Turing reduction.

Proof: Let f ≤p
T B via an oracle Turing machine M () that runs in time bounded

by p(n) for all oracles. Since B is k-cheatable we have, by Fact 2.20.iii, that FB
2k+2 is

2k-enumerable. We use this later.
Given x, we show how to compute f(x) with 2k − 1 parallel queries to B where

those queries are on the oracle query tree. Assume |x| = n. We generate the oracle
query tree for M ()(x) and prune it so that it remains small. Let Ti be the pruned
tree through level i (note that T0 is the one-node tree that labels that one node with
the first query). Let a(i) be the number of nodes in Ti and b(i) be the number of
leaves in Ti. We describe the pruning process and derive the bounds a(i) ≤ 2k+1 and
b(i) ≤ 2k. Note that a(0) = b(0) = 1 trivially.

Inductively assume that we have constructed Ti with a(i) ≤ 2k+1 and b(i) ≤ 2k.
Find the queries asked on both a YES and NO answer to the leaf queries in Ti.
The total number of queries is now ≤ a(i) + 2b(i) ≤ 2k+2. Assume, without loss of
generality, that there are exactly 2k+2 queries (we can repeat queries to pad). Let the
queries be x1, . . . , x2k+2 . Since FB

2k+2 is 2k-enumerable we can generate 2k possibilities
for FB

2k+2(x1, . . . , x2k+2). Each possibility generated can be mapped to the leaf that
those answers would lead to (and also to an answer to the leaf node query, which we
ignore). Prune the leaves that do not correspond to any possibility. The number of
leaves left is b(i+ 1) ≤ 2k. This bound on the number of leaves implies that the total
number of nodes is a(i+ 1) ≤ 2k+1.

The tree Tp(n) can be found in polynomial time and has at most 2k+1 queries. Let
x1, . . . , x2k+1 be those queries. Note that all of the xi are on the oracle query tree of
the f ≤p

T B Turing reduction. By Fact 2.20.i FB
2k+1(x1, . . . , x2k+1) can be determined

by querying 2k − 1 of the elements of {x1, . . . , x2k+1}. Once this is done f(x) can
easily be computed. So f ≤p

(2k−1)-tt B and all the queries came from the oracle query

tree of the f ≤p
T B Turing reduction.
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Theorem 3.23. A is self-reducible and cheatable iff A is in P.

Proof: Assume A is self-reducible and cheatable. By Proposition 3.19 we need
only prove that A is tt-self-reducible. Let M () be such that A is self-reducible via
MA. Note that for all x, for all queries y made in the oracle query tree of M ()(x),
y ≺ x. Let k be such that A is k-cheatable. Apply Lemma 3.22 to the set A and the
characteristic function χA to obtain that χA ∈ PFA

(2k−1)-tt using queries that belong to

the oracle query tree of M ()(x). Since all such queries are ≺ x, A is tt-self-reducible.
The converse is trivial.

Corollary 3.24.

i. If P 6= NP then SAT is not cheatable.

ii. If P 6= Σp
i then QBFi is not cheatable.

iii. If P 6= PSPACE then QBF is not cheatable.

(See Definition 2.12 for a definition of QBFi and QBF.)

Proof: It is well known that SAT (QBFi, QBF) is self reducible and complete for
NP (Σp

i , PSPACE). Hence the corollary follows from Theorem 3.23.

Corollary 3.24.i can be restated as follows: if P 6= NP and A is NP-hard under
polynomial m-reductions then A is not cheatable. (The other parts can be restated in
similar ways.) We want to extend this to sets A that are NP-hard under polynomial
T -reductions. For this we need the following lemma.

Lemma 3.25. If B is k-cheatable and A ≤p
T B then A is k-cheatable.

Proof: Since A ≤p
T B, FA

2k ≤p
T B. By Lemma 3.22 FA

2k ∈ PFB
(2k−1)-tt. Since B

is k-cheatable, the 2k − 1 ≤ 2k parallel queries can be answered by using k queries
to some set X. Hence FA

2k can be computed with k queries to that set X, so A is
k-cheatable.

Corollary 3.26.

i. If P 6= NP then all ≤p
T-hard sets for NP are not cheatable.

ii. If P 6= Σp
i then all ≤p

T-hard sets for Σp
i are not cheatable.

iii. If P 6= PSPACE then all ≤p
T-hard sets for PSPACE are not cheatable.

iv. All ≤p
T-hard sets for EXPTIME are not cheatable.

19



Proof: Parts i,ii, and iii follow from Corollary 3.24 and Lemma 3.25. We prove
iv. Assume, by way of contradiction, that A is a cheatable set that is ≤p

T-hard for
EXPTIME. By an easy diagonalization there exists a p-superterse B ∈ EXPTIME.
Clearly B ≤p

T A. By Lemma 3.25 B is cheatable. But no set can be both cheatable
and superterse.

Corollary 3.24.i (though not Corollary 3.26) has been superseded by [17, 60] who
have shown that if P 6= NP then any set that is btt-hard for NP is p-superterse. In
a different direction [72] has shown the following. Assume that there is a procedure
that will, given c log n formulas (φ1, . . . , φc log n) where (∀i)[|φi| ≤ n], eliminate one
possiblity for FSAT

c log n(φ1, . . . , φc log n). Then the promise problem UniqueSAT is in P,
and hence by [12], NP = R.

3.4. Non-constant number of queries

The results of the last section can be extended to a variation on k-cheatability where
k is a function instead of a constant.

These results will be used in Section 7.4 to show that, under a suitable hypothesis,
certain functions are not nε-enumerable.

In order to generalize k-cheatability we need a generalization of FA
k . The next

definition provides such.

Definition 3.27. Let A be a set and let q be a function. The function FA
q is defined

only on the domain
⋃∞

m=0(Σ
≤m)q(m) as follows

(∀m)(∀x1, . . . , xq(m) ∈ Σ≤m)[FA
q (x1, . . . , xq(m)) = A(x1) · · ·A(xq(m))].

Notation 3.28. When we write FA
q (x1, . . . , xq(m)) we assume (∀i)[|xi| ≤ m].

In this section we avoid using the bounded query classes notation and the enu-
merability notation since the parameter of interest will be m, which is not the length
of the input.

Definition 3.29. Let A be a set. Let k(m) = O(logm). Let q(m) = 2k(m). A is
k(m)-cheatable if there exists a set X and a polynomial time oracle Turing machine
M () such that MX computes FA

q (x1, . . . , xq(m)) with at most k(m) queries to X.

The following two facts closely parallel Fact 2.17 and Fact 2.20.

Fact 3.30. Let A be a set. Let k(m) = O(logm) and q(m) = 2k(m). The following
are equivalent:

i. A is k(m)-cheatable.

ii. There exists a function e ∈ PF, e :
⋃∞

m=0(Σ
≤m)q(m) → {0, 1,%}∗ such that

(∀m)(∀x1, . . . , xq(m) ∈ Σ≤m)
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(a) e(x1, . . . , xq(m)) is a list of at most q(m) elements of {0, 1}∗, and

(b) one of the elements on the list is FA
q (x1, . . . , xq(m)).

Proof: Similar to the proof of Fact 2.17.

Fact 3.31. Let A be a set. Let k(m) = O(logm) and q(m) = 2k(m).

i. If A is k(m)-cheatable then for any polynomial r(m), FA
r (x1, . . . , xr(m)) can be

computed in polynomial time by querying a subset of at most q(m)− 1 elements
of {x1, . . . , xr(m)}.

ii. If A is k(m)-cheatable then there exists an X such that for all polynomials r,
FA

r (x1, . . . , xr(m)) can be computed with k(m) queries to X.

iii. A is k(m)-cheatable iff the following holds. For every polynomial r there exists
a function e ∈ PF, e :

⋃∞
m=0(Σ

≤m)r(m) → {0, 1,%}∗, such that e(x1, . . . , xr(m))
is a list of at most q(m) elements of {0, 1}∗, one of which is FA

r (x1, . . . , xr(m)).

Proof sketch:
We show that (i) holds. Assume that r(m) > q(m)−1 otherwise this is trivial. We

compute FA
r (x1, . . . , xr(m)) as follows. Find q(m) possibilities for FA

q (x1, . . . , xq(m)) by
Fact 3.30. By Fact 2.19 we can find a subset X of {x1, . . . , xq(m)} of size q(m)−1 such
that the membership of those elements in A completely determines which possibility
is actually FA

q(m)(x1, . . . , xq(m)). Say that the query eliminated is xi. Iterate this

process with FA
q (x1, . . . , xi−1, xi+1, . . . , xq(m), xq(m)+1). After r(m)−q(m) steps we are

left with just q(m)− 1 queries.
The proofs of (ii) and (iii) are analogous to the proofs of (ii) and (iii) of Fact 2.20.

The following two lemmas closely parallel Proposition 3.19 and Lemma 3.22.

Lemma 3.32. Let k(m) = O(logm) and q(m) = 2q(m). A is tt-self-reducible and
k(m)-cheatable iff A ∈ P.

Proof: Let ≺ be the ordering on A used in the tt-self-reduction and let p1 be
the polynomial such that ≺ has p1-bounded chains. Let p2 be a polynomial that
bounds the running time of the tt-reduction. Let p be a polynomial such that p(n) ≥
max{p1(n), p2(n)}. Let r be a polynomial such that, for all m, q(p(m)) ≤ r(p(m)) and
r(m)p(m) ≤ r(p(m)). Let r′ be the polynomial such that, for all m, r′(m) = r(p(m)).
By Fact 3.31 we have the following facts which we will use later.

(1) If (∀i)[|yi| ≤ p(m)] then FA
r (y1, . . . , yr(p(m))) can be computed by querying a

subset of {y1, . . . , yr(p(m))} of size ≤ q(p(m))− 1; and

(2) if (∀i)[|zi| ≤ p(m)] then FA
r′(z1, . . . , zr′(p(m))) can be computed by querying a

subset of {z1, . . . , zr′(p(m))} of size ≤ q(p(m))− 1.
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We show that FA
r is computable in polynomial time. Let the input be (x1, . . . , xr(m))

(assume (∀i)[|xi| ≤ m]). We intend to use the tt-self-reduction algorithm on each
individual xi, and then on the queries that come out from that, etc. Note that by the
definition of self-reduction, for any query y encountered at any step of this process,
|y| ≤ p(m).

Initially we tt-reduce every xi to ≤ p(m) queries which are all ≺ xi and of length
≤ p(m). By doing this for all i we have at most r(m)p(m) ≤ r(p(m)) strings. Assume,
without loss of generality, that we have exactly r(p(m)) strings (use 0’s for padding).
Call them y1, . . . , yr(p(m)). Note that 〈y1, . . . , yr(p(m))〉 is in the domain of FA

r . Hence
from FA

r (y1, . . . , yr(p(m))) we can easily find FA
r (x1, . . . , xr(m)).

We need to find FA
r (y1, . . . , yr(p(m))). We will reduce this to the problem of finding

FA
r (z1, . . . , zr(p(m))) where

(∀i)[|zi| ≤ p(m) and (∃j)[zi ≺ yj]].

This procedure will be iterative so that it can be applied again to further reduce the
problem. By the definition of p this procedure will be iterated at most p(m) times.

The reduction proceeds as follows. We tt-reduce every yi to ≤ p(m) queries which
are all ≺ yi and of length ≤ p(m) (this is because we initially noted that any query
encountered will be of length ≤ p(m)). By doing this for all i we have at most
r(p(m))p(m) ≤ r(p(p(m))) = r′(p(m)) strings. Assume, without loss of generality,
that we have exactly r′(p(m)) strings (use 0’s for padding). Call them z1, . . . , zr′(p(m)).

Note that (z1, . . . , zr′(p(m)) is in the domain of FA
r′ . Hence from FA

r′(z1, . . . , zr′(p(m)))
we can easily find FA

r (y1, . . . , yr(p(m))).
By Fact 3.31.i applied to r′ the value of FA

r′(z1, . . . , zr′(p(m))) can be determined
by querying a subset of q(p(m)) − 1 ≤ r(p(m)) of the elements {z1, . . . zr′(p(m))}.
Renumber so that those queries are z1, . . . , zr(p(m)).

We have reduced FA
r (y1, . . . , yr(p(m))) to FA

r (z1, . . . , zr(p(m))) where every element of
{z1, . . . , zr(p(m))} is ≺ some element of {y1, . . . , yr(p(m))}. Repeat this procedure until
all the elements are ≺-minimal. By the nature of p, (1) the number of iterations
needed before hitting ≺-minimal elements is bounded by p(m), and (2) the length of
the intermediary queries is bounded by p(m). Since testing membership in A for ≺-
minimal elements is in polynomial time, we can find FA

r (y1, . . . , yr(p(m))) in polynomial
time. With this information we can determine FA

r (x1, . . . , xr(m)) in polynomial time.
The converse is trivial.

In order to improve Lemma 3.32 from tt-self-reducible to self-reducible we need
the following lemma. Its proof is similar to that of Lemma 3.22.

Lemma 3.33. Let k(m) = O(logm). If B is k(m)-cheatable and f ≤p
T B then

f ≤p
tt B using queries that belong to the oracle query tree in the f ≤p

T B Turing
reduction.

Proof: Let q(m) = 2k(m). Let f ≤p
T B via an oracle Turing machine M ()

that runs in time bounded by p(n) for all oracles. Fix a polynomial r such that
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4q(p(n)) ≤ r(p(n)). By Fact 3.30 there exists a function e ∈ PF that, on input
〈x1, . . . , xr(p(n))〉 (where (∀i)[|xi| ≤ p(n)]), lists at most q(p(n)) ≤ r(p(n)) possibilities
for FA

r (x1, . . . , xr(p(n))), one of which is correct. We use this later.
Given x, with |x| = n, we show how to compute f(x) with 2q(p(n)) parallel queries

to B where those queries are on the oracle query tree. We generate the oracle query
tree for M ()(x) and prune it so that it remains small. Let Ti be the pruned tree
through level i (note that T0 is the one-node tree that labels that one node with the
first query). Let a(i) be the number of nodes in Ti and b(i) be the number of leaves
in Ti. We describe the pruning process and derive the bounds a(i) ≤ 2q(p(n)) and
b(i) ≤ q(p(n)). Note that a(0) = b(0) = 1 trivially.

Inductively assume that we have constructed Ti with a(i) ≤ 2q(p(n)) and b(i) ≤
q(p(n)). Find the queries asked on both a YES and NO answer to the leaf queries
in Ti. The total number of queries is now ≤ a(i) + 2b(i) ≤ 4q(p(n)) ≤ r(p(n)).
Assume, without loss of generality, that there are exactly r(p(n)) queries (you can
repeat queries to pad). Let the queries be x1, . . . , xr(p(n)). Note that (∀i)[|xi| ≤ p(n)].
Hence the value of e(〈x1, . . . , xr(p(n))〉) is defined, can be found in time polynomial
in |〈x1, . . . , xr(p(n)〉|, and is a list of ≤ q(p(n)) possibilties for FB

r (x1, . . . , xr(p(n))).
Each possibility generated can be mapped to the leaf that those answers would lead
to (and also to an answer to the leaf node query, which we ignore). Prune the
leaves that do not correspond to any possibility. hence the number of leaves left is
b(i+1) ≤ q(p(n)). This bound on the number of leaves implies that the total number
of nodes is a(i+ 1) ≤ 2q(p(n)).

The tree Tp(n) can be found in polynomial time and has at most 2q(p(n)) queries.
These can be asked in parallel, so f ≤p

tt B and all the queries came from the oracle
query tree of the f ≤p

T B Turing reduction.

Theorem 3.34. A is self-reducible and O(logm)-cheatable iff A is in P.

Proof: The proof of this theorem is similar to that of Theorem 3.23 except that
we use Lemma 3.32 and Lemma 3.33 instead of Proposition 3.19 and Lemma 3.22.

Corollary 3.35.

i. If P 6= NP then SAT is not O(logm)-cheatable.

ii. If P 6= Σp
i then QBFi is not O(logm)-cheatable.

iii. If P 6= PSPACE then QBF is not O(logm)-cheatable.

(See Definition 2.12 for a definition of QBFi and QBF.)

Corollary 3.35.i can be restated as follows: if P 6= NP and A is NP-hard under
polynomial m-reductions then A is not k(m)-cheatable. (The other parts can be
restated in similar ways.) We want to extend this to sets A that are NP-hard under
polynomial T -reductions. For this we need the following lemma.
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Lemma 3.36. If B is O(logm)-cheatable and A ≤p
T B then A is O(logm)-cheatable.

Proof: Let k′(m) and q′(m) = 2k′(m) be functions that we will specify later. We
would like to enumerate ≤ q′(m) possibilities for FA

q′(x1, . . . , xq′(m)), which will show
that A is k′(m)-cheatable (by Fact 3.30).

Clearly FA
q′ ≤

p
tt A ≤p

T B. By Lemma 3.33 FA
q′ ≤

p
tt B by a reduction that asks

queries on the FA
q′ ≤

p
T B query tree. Let t(m) bound the time the reduction of

A ≤p
T B takes on elements of length m. Let p(q′(m)) bound the number of queries

made to B on input x1, . . . , xq′(m) (where (∀i)[|xi| ≤ m]) in the FA
q′ ≤

p
tt B reduction.

Note that in the reduction of FA
q′ to A we query elements of length ≤ m (which

is not the length of the input). Hence in the reduction of FA
q′ to B we ask (in

parallel) ≤ p(q′(m)) queries of length ≤ t(m). Let r(m) be a polynomial such that
p(q′(m)) ≤ r(t(m)).

We now describe how to enumerate ≤ q′(m) possibilities for FA
q′(x1, . . . , xq′(m)),

given x1, . . . , xq′(m) (where (∀i)[|xi| ≤ m]). First prepare the ≤ p(q′(m)) queries to B
of length ≤ t(m) that are needed. Assume (by padding) that the queries to B are
y1, . . . , yr(t(m)). Hence every possibility for FB

r (y1, . . . , yr(t(m))) leads to a possibility
for FA

q′(x1, . . . , xq′(m)).
Since B is k(m)-cheatable, by Fact 3.31 we can enumerate q(t(m)) possibil-

ities for FB
r (y1, . . . , yr(t(m))). Hence we can enumerate q(t(m)) possibilities for

FA
q′(x1, . . . , xq′(m)).

Choose q′ such that q(t(m)) ≤ q′(m).

Corollary 3.37.

i. If P 6= NP then ≤p
T-hard sets for NP are not O(logm)-cheatable.

ii. If P 6= Σp
i then ≤p

T-hard sets for Σp
i are not O(logm)-cheatable.

iii. If P 6= PSPACE then ≤p
T-hard sets for PSPACE are not O(logm)-cheatable.

iv. All ≤p
T-hard sets for EXPTIME are not O(logm)-cheatable.

4. Non P-Superterse Sets

We pursue the question “Which sets A can be non-p-superterse?” In Section 4.1 we
show that if A is not p-superterse then A ∈ P/poly. We then extend the techniques
to obtain a generalization that involves a nonconstant number of queries. This gen-
eralization is applied in Sections 5, 6, and 7 to obtain results about bounded query
classes, circuits, and enumeration.
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4.1. Circuits

We prove that if A is not p-superterse then A is in P/poly. Although the result
resembles Lemma 3.7 the proof is substantially different.

Notation 4.1.

• If t is a k-tuple of bits (b1, . . . , bk) then t[i] denotes bi and t[i : j] denotes
(bi, . . . , bj).

• If x is a string, y is a j-tuple of strings (y1, . . . , yj), and z is a k-tuple
of strings (z1, . . . , zk) then (y, z) denotes (y1, . . . , yj, z1, . . . , zk), (x, y) denotes
(x, y1, . . . , yj) and (y, x) denotes (y1, . . . , yj, x).

Theorem 4.2. If A is not p-superterse then A ∈ P/poly.

Proof: Let A be a non-p-superterse set, that is, (∃X)(∃k)[FA
k ∈ PFX

(k−1)-T]. By

Fact 2.21 there exists w ∈ PF, w : (Σ∗)k → {0, 1}k, such that for all tuples t in
(Σ∗)k, w(t) 6= FA

k (t). Hence we have the weaker statement, denoted by S(k), that
there exists w ∈ PF/poly, w :

⋃∞
n=1(Σ

n)k → {0, 1}k, such that for all t ∈ (Σn)k,
w(t) 6= FA

k (t). We show that for all m ≥ 2, S(m) implies S(m − 1). Since we have
S(k), this implies S(1), which yields A ∈ P/poly. Since we only need the implication
S(m) ⇒ S(m− 1) for m ≤ k we can treat m as a constant.

Assume S(m) is true via w. We show S(m − 1) by constructing w′ ∈ P/poly,
w′ :

⋃∞
n=1(Σ

n)m−1 → {0, 1}m−1, such that w′(t) 6= FA
m−1(t). We show how to construct

the advice for computing w′(t) where t ∈ (Σn)m−1. The construction is an iterative
process that, at each iteration, finds advice for computing w′ for a fraction of its
inputs (this uses the function w). Two things may happen in the construction. If
the construction finds advice for every tuple in (Σn)m−1 then we have advice for w′

on (Σn)m−1. If the construction is unable to find advice then the very reason that it
cannot find advice yields a probabilistic algorithm for A ∩ Σn. More advice removes
the probability. (We will use Theorem 10.6 from the appendix, which is a variation
of Schöning’s proof that BP · C ⊆ C/poly.)

Convention: If z ∈ Σn, t = (t1, . . . , tm−1) ∈ (Σn)m−1 then w(z, t1, . . . , tm−1) will be
denoted by w(z, t).

Definition: Let n,m ∈ N. Assume S(m) is true via w. Let z ∈ Σn. advisees(z) is
the set of all (m− 1)-tuples t ∈ (Σn)m−1 such that w(z, t)[1] = A(z). (Since we know
that w(z, t) 6= FA

m(z, t) we have w(z, t)[2 : m] 6= FA
m−1(t).) We say that a string z is

advice for a set T of (m− 1)-tuples if

|advisees(z) ∩ T | > 1

4
|T |.

CONSTRUCTION OF ADVICE FOR Σn
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Tn := (Σn)m−1

Zn := ∅
While there exists a string z in Σn that is advice for Tn

choose such a z
Tn := Tn − advisees(z)
Zn := Zn ∪ {z}

END OF CONSTRUCTION
Note that after the ith iteration |Tn| ≤ (3

4
)i ∗ |(Σn)m−1|. Hence there are at most

O(log |(Σn)m−1|) = O(n) iterations. Since the number of elements in Zn is bounded
by the number of iterations, |Zn| = O(n).

Let I be the set of all n such that Tn 6= ∅. We show the following.

i. If n /∈ I then there exists w′
1 ∈ P/poly, w′

1 :
⋃

n/∈I(Σ
n)m−1 → {0, 1}m−1, such

that w′
1(t) 6= FA

m−1(t).

ii. If n ∈ I then there exists w′
2 ∈ P/poly, w′

2 :
⋃

n∈I(Σ
n)m−1 → {0, 1}m−1 , such

that w′
2(t) 6= FA

m−1(t).

These two easily yield the desired w′.

i. If n /∈ I then Tn = ∅. Let the advice be the union of {(z, A(z)) : z ∈ Zn} and the
advice needed to compute w on (Σn)m (we use the induction hypothesis here). For
t ∈ ⋃

n/∈I(Σ
n)m−1 we define w′

1(t) by

z = min{y : y ∈ Zn and t ∈ advisees(y)},
w′

1(t) = w(z, t)[2 : m].

(The minimum in the definition of z is with respect to lexicographic ordering.) Thus,

(∀n /∈ I)(∀t ∈ (Σn)m−1)[w′
1(t) 6= FA

m−1(t)].

w′
1 can be computed efficiently using the advice.

ii. If n ∈ I then Tn 6= ∅ and for all z ∈ Σn at least 3/4 of the elements t ∈ Tn satisfy
w(z, t)[1] 6= A(z). Let Bn = {〈x, t〉 : w(x, t)[1] = 0}. Note that for all n ∈ I, for all
x ∈ Σn

x ∈ A ⇒ Pr[〈x, t〉 ∈ Bn : t ∈ Tn] ≥ 3

4
,

x /∈ A ⇒ Pr[〈x, t〉 /∈ Bn : t ∈ Tn] ≥ 3

4
.

We would like to say that we have a probabilistic algorithm for A and hence, by known
techniques, A ∈ P/poly. There are two objections to this: (1) we may have each case
applying infinitely often, so we have a probablistic argument infinitely often, and a
direct argument infinitely often, and (2) we have our string t ranging over Tn, not over
Σn. The first objection is not serious: the case that we are in can be part of the advice.
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The second objection requires a modification of the proof that BPP ⊆ P/poly. Such
a modification appears in the appendix.

Since w ∈ P/poly we have
⋃

n∈I Bn ∈ P/poly. By Theorem 10.6 (with Y =
⋃

n∈I Tn

and B =
⋃

n∈I Bn) A∩⋃
n∈I Σn ∈ (P/poly)/poly = P/poly. Hence the desired w′

2 can
easily be constructed.

Because all sets in P/poly belong to EL3, it follows that all non-p-superterse sets
belong to EL3. Hoene and Nickelsen [45, Theorem 6, Corollary 7] have shown that
this is optimal.

Corollary 4.3.

i. If Σp
2 6= Πp

2 then all ≤p
T-hard sets for NP are p-superterse.

ii. If Σp
2 6= PSPACE then all ≤p

T-hard sets for PSPACE are p-superterse.

iii. If P 6= PSPACE then all ≤p
tt-hard sets for PSPACE are p-superterse.

iv. Every ≤p
tt-hard set for EXPTIME is p-superterse.

Proof:

i. If NP ⊆ P/poly then Σp
2 = Πp

2 [48, 49].

ii. If PSPACE ⊆ P/poly then Σp
2 = PSPACE [48].

iii. Assume that A is ≤p
tt-hard for PSPACE and A is not p-superterse. Then Σp

2 =
PSPACE by (ii). Hence A is also ≤p

tt-hard for ∆p
2. In [11] Beigel showed that

if a non-p-superterse set is ≤p
tt-hard for ∆p

2 then P = NP. By [76] this implies
P = Σp

2, hence we have P = Σp
2 = PSPACE.

iv. Assume that A is ≤p
tt-hard for EXPTIME and that A is not p-superterse. Since

every set in P/poly is tt-reducible to a tally set [22][Theorem 3.6], there exists
a tally set T with A ≤p

tt T . So T is ≤p
tt-hard for EXPTIME; however, that no

tally set can be ≤p
tt-hard for EXPTIME [22, Theorem 6.1].

Corollary 4.3.i has been superseded by [17, 60], who have shown that if P 6= NP
then SAT is p-superterse.

4.2. Non-constant Number of Queries

We extend Theorem 4.2 to a nonconstant number of queries. In the proof of Theo-
rem 4.2 we used Fact 2.21: if A is not p-superterse then there is k ∈ N and w ∈ PF,
w : (Σ∗)k → {0, 1}k, such that for all x1, . . . , xk, FA

k (x1, . . . , xk) 6= w(x1, . . . , xk).
Theorem 4.4 can be seen as an extension of Theorem 4.2 by replacing the function
w with a relation W . (We originally proved Theorem 4.4 for a function w. Pankaj
Rohatgi pointed out to us that the same proof works for relations.)

We will use the results of this section in Sections 5, 6, and 7.
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Theorem 4.4. Let k(n) be polynomial-bounded and let A be a language. Assume
there exists a set W ⊆ ⋃∞

n=0[(Σ
n)k(n) × {0, 1}k(n)] such that for every k(n)-tuple t of

length-n strings

• there exists ~b ∈ {0, 1}k(n) such that (t,~b) ∈ W , and

• for every ~b ∈ {0, 1}k(n), if (t,~b) ∈ W then FA
k(n)(t) 6= ~b.

Then A ∈ NPW/poly ∩ co-NPW/poly.

Proof: We show that A ∈ NPW/poly. We later show how a simple trick also gets
A ∈ co-NPW/poly.

We generate advice for determining membership in A for length-n strings by run-
ning the construction below. The construction generates sets Zn,k(n), Zn,k(n)−1, . . .,
Zn,m0 where m0 ≥ 2. All the sets constructed are sets of length-n strings and have
cardinality bounded by a polynomial in n.

Two things may happen in the construction. If m0 = 2 then the sets
Zn,2, . . . , Zn,k(n) and the value of A(z) for every z ∈ Zn,2 ∪ · · · ∪ Zn,k(n) is advice
for an NPW/poly algorithm for A ∩ Σn. If m0 > 2 then the very reason that the
construction stopped before constructing Zn,2 will yield a probabilistic NPW/poly al-
gorithm for A ∩ Σn using the sets Zn,m0 , . . . , Zn,k(n) for advice. More advice removes
the randomness. (We will use Theorem 10.6 from the appendix which is a variation
of Schöning’s proof that BP · C ⊆ C/poly.)

Definition: Let n,m ∈ N. Assume Zn,k(n), . . . , Zn,m+1 have already been constructed.
Let z ∈ Σn, and t be an (m− 1)-tuple of elements of Σn. The string z is advice for t

if there exists s ∈ Zn,m+1 × · · · × Zn,k(n) and ~b ∈ {0, 1}k(n) such that

((t, z, s),~b) ∈ W and ~b[m : k(n)] = FA
k(n)−m+1(z, s).

Since ((t, z, s),~b) ∈ W we have FA
k(n)(t, z, s) 6= ~b. Hence, since~b[m : k(n)] =FA

k(n)−m+1(z, s),

we have~b[1 : m− 1] 6= FA
k(n)(t, z, s)[1 : m− 1] = FA

m−1(t). Let advisees(z) be the set of
(m−1)-tuples that z is advice for. We say that z is advice for a set T of (m−1)-tuples
iff

|advisees(z) ∩ T | ≥ 1

4
|T |.
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CONSTRUCTION OF ADVICE FOR Σn

BEGIN
m := k(n)
STOP := FALSE
While m ≥ 2 and STOP = FALSE

Tn,m := (Σn)m−1

Zn,m := ∅
While there exists a string z in Σn that is advice for Tn,m

choose such a z
Tn,m := Tn,m − advisees(z)
Zn,m := Zn,m ∪ {z}

If Tn,m = ∅ then m := m− 1 else STOP := TRUE
END

END OF CONSTRUCTION
Note that after the ith iteration |Tn,m| ≤ (3

4
)i ∗|(Σn)m−1|. Hence there are at most

O(log |(Σn)m−1|) = O(mn) iterations. Since the number of elements in Zn,m is the
number of iterations |Zn,m| = O(mn).

Let J be the set of n such that either Tn,2 is never defined or Tn,2 6= ∅. We show
the following.

i.
⋃

n/∈J A ∩ Σn ∈ NPW/poly.

ii.
⋃

n∈J A ∩ Σn ∈ NPW/poly.

These two statements together establish A ∈ NPW/poly.

i. If n /∈ J then Tn,2 = ∅. Hence, for every x ∈ Σn, advice was found. Therefore,
for every x ∈ Σn,

(1) (∃z ∈ Zn,2)(∃s ∈ Zn,3 × · · · × Zn,k(n))(∃~b ∈ {0, 1}k(n))

[((x, z, s),~b) ∈ W and ~b[2 : k(n)] = FA
k(n)−1(z, s)].

Let the advice encode the sets Zn,2, . . . , Zn,k(n) and the value of A(z) for every

z ∈ Zn,2 ∪ · · · ∪ Zn,k(n). If ~b is as in equation (1) then ~b[1] 6= A(x). Note that

for all (t,~b) ∈ W , FA
k(n)(t) 6= ~b. Hence, for all n /∈ J , for all x ∈ Σn,

(2) x ∈ A iff

(∃z ∈ Zn,2)(∃s ∈ Zn,3 × · · · × Zn,k(n))(∃~b ∈ {0, 1}k(n))

[((x, z, s),~b) ∈ W and ~b[2 : k(n)] = FA
k(n)−1(z, s) and ~b[1] = 0].
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Thus we can determine if x ∈ Σn ∩ A nondeterministically with oracle W , in
polynomial time with polynomial advice.

ii. If n ∈ J then let m be such that Tn,m+1 = · · · = Tn,k(n) = ∅ but Tn,m 6= ∅. Note
that Zn,m, Zn,m+1, . . . , Zn,k(n) were all constructed. Fix n ∈ J and x ∈ Σn.

Since Tn,m+1 = ∅ every m-tuple of elements of Σn has advice in Zn,m+1. In
particular the m-tuples of the form (u, x) where u ∈ (Σn)m−1 have advice in
Zn,m+1. Hence

(∃z ∈ Zn,m+1)(∃s ∈ Zn,m+2 × · · · × Zn,k(n))(∃~b ∈ {0, 1}k(n))

[((u, x, z, s),~b) ∈ W and ~b[m+ 1 : k(n)] = FA
k(n)−m(z, s)].

We rewrite this as

(∃s ∈ Zn,m+1 × Zn,m+2 × · · · × Zn,k(n))(∃~b ∈ {0, 1}k(n))

[((u, x, s),~b) ∈ W and ~b[m+ 1 : k(n)] = FA
k(n)−m(s)].

Let s0 and ~b0 satisfy the above equation. Hence

(3) [((u, x, s0),~b0) ∈ W and ~b0[m+ 1 : k(n)] = FA
k(n)−m(s0)].

Since Tn,m 6= ∅ the string x cannot serve as advice for Tn,m. Hence for 3
4
|Tn,m|

elements u ∈ Tn,m

(∀s ∈ Zn,m+1 × · · · × Zn,k(n))(∀~b ∈ {0, 1}k(n))

[((u, x, s),~b) /∈ W or ~b[m : k(n)] 6= FA
k(n)−m+1(s)].

Since this equation holds for all s and for all ~b it holds for s0 and ~b0. Hence for
3
4
|Tn,m| elements u ∈ Tn,m we have

(4) [((u, x, s0),~b0) /∈ W or ~b0[m : k(n)] 6= FA
k(n)−m+1(x, s0)].

Combining equations (3) and (4) we obtain that for 3
4
|Tn,m| elements u ∈ Tn,m

both ~b0[m+ 1 : k(n)] = FA
k(n)−m(s0) and ~b0[m : k(n)] 6= FA

k(n)−m+1(x, s0). Hence

A(x) = 1−~b0[m].

To recap we have

(∀n ∈ J)(∀x ∈ Σn)(∃s0 ∈ Zn,m+1 × · · · × Zn,k(n))(∃~b0 ∈ {0, 1}k(n))

( for 3
4
|Tn,m| of the u ∈ Tn,m)

[equations (3) and (4) hold hence A(x) = 1 . ~b0[m]].

Let Bn be all 〈x, u〉 such that
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(5) (∃s ∈ Zn,m+1 × · · · × Zn,k(n))(∃~b ∈ {0, 1}k(n))

[((u, x, s),~b) ∈ W and ~b[m+ 1 : k(n)] = FA
k(n)−m(s) and ~b[m] = 0].

We have that for all n ∈ J , for all x ∈ Σn,

(6) x ∈ A⇒ Pr[〈x, u〉 ∈ Bn : u ∈ Tn,m] ≥ 3
4
;

(7) x /∈ A⇒ Pr[〈x, u〉 /∈ Bn : u ∈ Tn,m] ≥ 3
4
.

Let B =
⋃

n∈J Bn. Clearly B ∈ NPW/poly by using for advice the sets
Zn,m+1, . . . , Zn,k(n), and the value of A(z) for every z ∈ Zn,m+1 ∪ · · · ∪ Zn,k(n).
Hence by Theorem 10.6, with Y =

⋃
n∈J Tn,m, A ∈ (NPW/poly)/poly =

NPW/poly.

We now show that A ∈ co-NPW/poly. We show that if the premise holds for A

then it holds for A. For ~b ∈ {0, 1}∗ let ~b′ be the complement of ~b (i.e. if the ith place

was 0 it is now 1, and if it was 1 it is now 0). Let W ′ = {(t,~b′) : (t,~b) ∈ W}. Note
that A satisfies the premise with W ′. Hence A ∈ NPW ′

/poly = NPW/poly. Therefore
A ∈ co-(NPW/poly) = co-NPW/poly.

Theorem 4.4 holds for any set W . If we restrict W and examine the proof, we can
obtain stronger results. We need the following special case of a relativized version of a
lemma from Book, Balcázar, and Schöning ([7, Theorem 4.3] or [69, Theorem 4.27]).

Lemma 4.5. If A is self-reducible and A ∈ NPW/poly then Σp,A
2 ⊆ Σp,W

3 , hence
A ∈ Σp,W

3 ∩ Πp,W
3 and PA ⊆ Σp,W

3 ∩ Πp,W
3 .

Corollary 4.6. Let A, k(n) and W be as in Theorem 4.4.

a) If W ∈ DTIME(T (n)) then A ∈ DTIME(nO(k(n))T (n))/poly.

b) If W is accepted by an (s(n), d(n)) G-circuit family (the nth G-circuit operates
on inputs t ∈ (Σn)k(n)×{0, 1}k(n)) then A is accepted by an (nO(k(n))s(n), d(n)+
O(1)) G-circuit family (the nth G-circuit operates on Σn).

c) If A is self-reducible then A ∈ Σp,W
3 ∩ Πp,W

3 and PA ⊆ Σp,W
3 ∩ Πp,W

3 .

Proof: We first prove a useful bound. Recall that (∀n, k)[|Zn,k| = O(kn)]. Let d
be such that (∀n, k)[|Zn,k| ≤ dkn]. Note that

(∀n)[|Zn,m0 × · · · × Zn,k(n) × {0, 1}k(n)| ≤ (
k(n)∏
i=m0

din)2k(n) ≤ (2nd)k(n)(k(n))!].

Using Stirling’s formula and the fact that k(n) is polynomial bounded one can show
k(n)! = nO(k(n)). Hence

(∀n)[|Zn,m0 × · · · × Zn,k(n) × {0, 1}k(n)| ≤ nO(k(n))].
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The proof of Theorem 4.4 exhibited two NPW/poly algorithms. We show that
in both cases we can obtain a DTIME(nO(k(n))T (n))/poly algorithm, and an
(nO(k(n)s(n), d(n) +O(1)) G-circuit . a) Consider the algorithm in the n /∈ J case. In

this algorithm the nondeterministic search is over Zn,2×· · ·×Zn,k(n)×{0, 1}k(n). For
each possibility we make one query to W which takes T (n) steps. Hence the total
time a deterministic algorithm needs to simulate (given the advice) is nO(k(n))T (n).

Consider the algorithm in the n ∈ J case. Note that B ∈ NPW/poly
by an algorithm that nondeterministically searched Zn,k+1 × · · · × Zn,k(n) ×
{0, 1}k(n). For each possibility we make one query to W which takes T (n)
steps. Hence B ∈ DTIME(nO(k(n))T (n))/poly. By Theorem 10.6 A ∈
(DTIME(nO(k(n))T (n))/poly)/poly = DTIME(nO(k(n))T (n))/poly.

b) If n /∈ J then equation 2 tells us exactly when x ∈ A. A G-circuit using this
equation to test if x ∈ A can be built as follows. For every

(z, s,~b) ∈ Zn,2 × (Zn,3 × · · · × Zn,k(n))× {0, 1}k(n)

build a G-circuit that tests if

((x, z, s),~b) ∈ W and ~b[2 : k(n)] = FA
k(n)−1(z, s) and ~b[1] = 0.

(Each of these G-circuits has size s(n) + O(1) and depth d(n) + O(1).) Then take
the results of these G-circuits and OR them all together. The final G-circuit will have
size nO(k(n))s(n) and depth d(n) +O(1).

If n ∈ J then equation 5 defines Bn and equations 6 and 7 tell us (using Bn) when
x ∈ A and when x /∈ A. By reasoning similar to that above Bn can be recognized in
size nO(k(n))s(n) and depth d(n) +O(1).

Using equations (6) and (7) we can obtain a nonstandard probabilistic G-circuit
for A. Usually a probabilistic circuit has the random variables going over {0, 1}m

for some m; by contrast we have that the random variables go over Tn,k. We discuss
such circuits in the appendix (Section 10.2). Ajtai and Ben-Or [1] have shown how
to convert (standard) probabilistic circuits to deterministic ones while increasing the
size and depth very little. We have modified their proofs for our probabilistic circuits.
Using Lemma 10.13 on the probabilistic G-circuit for A obtained above we can deduce
that A can be recognized by a size nO(k(n))s(n), depth d(n) + O(1) deterministic G-
circuit.

A more careful analysis actually yields G-circuits of size (4n6 log2(n))s(n) and
depth d(n) + 4.

c) This follows from Theorem 4.4 and Lemma 4.5.

5. Applications: Bounded Query Classes

We apply Theorem 4.4 to obtain results about bounded query classes. In partic-
ular we show that under complexity-theoretic assumptions (e.g. Σp

3 6= Πp
3) there
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are separations between bounded query classes. We actually prove stronger results
from which separations will be clear. For example, we show that if Σp

3 6= Πp
3 and

f(n) = O(log n) then, for all X, PFNP
f(n)-tt 6⊆ PFX

(f(n)−1)-T; hence, under these hy-

potheses, PFNP
(f(n)−1)-tt ⊂ PFNP

f(n)-tt and PFNP
(f(n)−1)-T ⊂ PFNP

f(n)-T.

Theorem 5.1. Let A be a set. Let f, k ∈ PF be such that the following hold.

i. (
∞
∀m)[f(mk(m)) ≤ k(m)].

ii. (∃X)[PFA
f(n)-tt ⊆ PFX

(f(n)−1)-T].

Then there exists W such that the following occur.

a) W ∈ co-NP ∩DTIME(nO(1)2f(n)).

b) The set W , together with the function k(m), satisfy the premise of Theorem 4.4.

c) A ∈ NPW/poly∩co-NPW/poly ⊆ Σp
2/poly∩Πp

2/poly. If A is self-reducible then
A ∈ Σp

4 ∩ Πp
4.

d) A ∈ DTIME(nO(k(n))2f(n))/poly.

e) If f is O(log n) then W ∈ P so A ∈ NP/poly ∩ co-NP/poly. If, in addition, A
is self-reducible then A ∈ Σp

3 ∩ Πp
3.

Proof: We define W so that a, b hold. Items c, d, e will follow from a, b, Theo-
rem 4.4, and Corollary 4.6.

We define an auxiliary function q as follows. On input z ∈ Σ∗, find m such that
z = x1x2 · · ·xk(m) and, for all i, |xi| = m (if no such m exists then q(z) = 0). Let
q(z) = FA

f(mk(m))(x1, . . . , xf(mk(m))) (this is where we use f(mk(m)) ≤ k(m)). Note
that on input of length mk(m) (any m), q can be computed with ≤ f(mk(m)) parallel
queries to A, and on inputs of any other length no queries are needed. Hence q ∈
PFA

f(n)-tt ⊆ PFX
(f(n)−1)-T. By Fact 2.16 q is 2f(n)−1 enumerable. Let e(z,−) ∈ PF be

the function that enumerates (in the sense of Definition 2.10) at most 2f(|z|)−1 < 2f(|z|)

possibilities for q(z).

We define W to be the union over m of the set of ordered pairs (t,~b) such that
the following hold.

i. t = 〈x1, . . . , xk(m)〉, ~b = b1b2 · · · bk(m) where (∀i)[|xi| = m and bi ∈ {0, 1}].

ii. Let z = x1 · · ·xk(m). (∀i < 2f(mk(m)))[e(z, i) 6= b1b2 · · · bf(mk(m))].

We show that k(m) and W satisfy the premise of Theorem 4.4. Let t =
〈x1, . . . , xk(m)〉 and z = x1 · · ·xk(m). Since e(z,−) enumerates at most 2f(mk(m))−1 <

2f(mk(m)) possibilities, there exists ~b such that (t,~b) ∈ W . Hence the first premise

of Theorem 4.4 is satisfied. If (t,~b) ∈ W then, by the definition of W , the first

f(mk(m)) bits of ~b differ from the first f(mk(m)) bits of FA
k(m). Hence FA

k(m)(t) 6= ~b,
so the second premise of Theorem 4.4 is satisfied.

It is easy to see that W ∈ DTIME(nO(1)2f(n)) and W ∈ co-NP.
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Krentel [54] proved (assuming P 6= NP) that if f ∈ PF, f is nondecreasing, and
f(n) ≤ (1 − ε) log n, then PFNP

f(n)-T 6⊆ PFX
(f(n)−1)-T for any X. (As noted before,

Krentel actually showed this just for f(n) ≤ 1
2
log n, but his proof can be modified to

f(n) ≤ (1− ε) log n. See [12].)
Corollary 5.2.ii extends his result.

Corollary 5.2. Let f ∈ PF, f be nondecreasing, and f(n) = O(log n).

i. If (∃X)[PFA
f(n)-tt ⊆ PFX

(f(n)−1)-T], then A ∈ NP/poly ∩ co-NP/poly and A ∈
DTIME(nO(log n))/poly. If A is self-reducible then A ∈ Σp

3 ∩ Πp
3.

ii. Let i ≥ 1. If Σp
3 6= Πp

3 then (∀X)[PF
Σp

i

f(n)-tt 6⊆ PFX
(f(n)−1)-T]. (In particular

(∀X)[PFNP
f(n)-tt 6⊆ PFX

(f(n)−1)-T].)

iii. If SAT /∈ DTIME(nO(log n))/poly then (∀X)[PFNP
f(n)-tt 6⊆ PFX

(f(n)−1)-T].

iv. If Σp
3 6= PSPACE then (∀X)[PFPSPACE

f(n)-tt 6⊆ PFX
(f(n)−1)-T].

Proof: i. Let k(m) = bd logmc where d is large enough so that f(mk(m)) ≤ k(m)

(such a d exists since k(m) = O(logm)). By Theorem 5.1 A ∈ NP/poly∩co-NP/poly,
A ∈ DTIME(nO(log n))/poly, and if A is self-reducible then A ∈ Σp

3 ∩ Πp
3.

ii. If (∃X)[PF
Σp

i

f(n)-tt ⊆ PFX
(f(n)−1)-T] then, by part i, NP ⊆ co-NP/poly. Hence

(by [85]) Σp
3 = Πp

3.

iii. If (∃X)[PFNP
f(n)-tt ⊆ PFX

(f(n)−1)-T] then, by part i, SAT ∈ DTIME(nO(log n))/poly.

iv. If (∃X)[PFPSPACE
f(n)-tt ⊆ PFX

(f(n)−1)-T] then, by part i, QBF ∈ Σp
3 ∩ Πp

3 hence Σp
3 =

PSPACE.

We are currently unable to extend Corollary 5.2 to f(n) 6= O(log n). However we
can prove a similar result about f(n) = nε queries to a Σp

i -complete oracle (i ≥ 3) or
a PSPACE-complete oracle.

Corollary 5.3. Let ε be a positive real number such that 0 ≤ ε < 1. Let f be a
function such that f ∈ PF, f is nondecreasing, and f(n) ≤ nε.

i. If (∃X)[PFA
f(n)-tt ⊆ PFX

(f(n)−1)-T], then A ∈ Σp
2/poly ∩ Πp

2/poly. If A is self-
reducible then A ∈ Σp

4 ∩ Πp
4.

ii. Let i ≥ 3. If Σp
4 6= Πp

4 then (∀X)[PF
Σp

i

f(n)-tt 6⊆ PFX
(f(n)−1)-T].

iii. If Σp
4 6= PSPACE then (∀X)[PFPSPACE

f(n)-tt 6⊆ PFX
(f(n)−1)-T].
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Proof: i. Let k(m) = m
ε

1−ε . Then f(mk(m)) ≤ k(m). By Theorem 5.1.c A ∈
Σp

2/poly ∩ Πp
2/poly and if A is self-reducible then A ∈ Σp

4 ∩ Πp
4.

ii. If (∃X)[PF
Σp

i

f(n)-tt ⊆ PFX
(f(n)−1)-T] then, by part i, Σp

i ∈ Σp
2/poly ∩ Πp

2/poly. By

Lemma 4.5 we obtain Σ
p,Σp

3
2 ⊆ Σp

4, hence Σp
4 = Πp

4.

iii. If (∃X)[PFPSPACE
f(n)-tt ⊆ PFX

(f(n)−1)-T] then, by part i, PSPACE ∈ Σp
2/poly∩Πp

2/poly.

By [7, Theorem 4.3] Σp,PSPACE
2 ⊆ Σp

4. Hence PSPACE ⊆ Σp
4.

In [12], using special properties of SAT, Beigel showed that PFNP
f(n)-tt 6⊆ PFX

(f(n)−1)-T
for any X unless NTIME(nf(nO(1))) = RTIME(nf(nO(1))). As a Corollary to The-
orem 5.1 we derive a result with a similar flavor, but without using any special
properties of the oracle.

Corollary 5.4. Let f(n) = logO(1) n. If (∃X)[PFA
f(n)-tt ⊆ PFX

(f(n)−1)-T] then A ∈
DTIME(npolylog n)/poly.

Proof: By assumption, f(n) = O(logi n) for some i. Let d be such that
if k(m) = d(logi+1m) then (∀m)[f(mk(m)) ≤ k(m)]. By Theorem 5.1.d A ∈
DTIME(nO(k(n))2f(n))/poly ⊆ DTIME(npolylog n)/poly.

6. Applications: Circuit Complexity

We consider G-circuits that make oracle queries. Following Wilson [82], we allow an
oracle G-circuit to query an oracle X /∈ G by permitting the circuit to contain X-gates
(which compute membership in X). The number of queries to X is the number of
X-gates in the G-circuit.

Notation 6.1. We have several conventions about how to interpret a circuit. If
a circuit is intended to recognize a set then we assume that the nth circuit takes
elements of Σn as input. If a circuit is intended to compute FA=n

k(n) then we assume

that the nth circuit takes elements of (Σn)k(n) as input. If a circuit is intended to
compute a set of type W from Theorem 4.4 then we assume that the nth circuit takes
as input elements of (Σn)k(n) × {0, 1}k(n).

Let k(n) ∈ PF. Let A ⊆ Σ∗. There exist trivial polynomial-size constant depth
circuit {Cn}∞n=1 such that Cn makes k(n) queries to A and

(∀n)(∀t ∈ (Σn)k(n))[Cn(t) = FA=n

k(n)(t)].

For which sets A can we compute FA=n

k(n) with a small oracle circuit with k(n)−1 queries
to some X? We show that such an A must be easy to compute with a (non-oracle)
circuit. As a corollary we obtain an extension of a result by Cai [25] on PARITY.
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Theorem 6.2. Let k(n) ∈ PF. Let A ⊆ Σ∗. If there is an (s(n), d(n)) oracle
G-circuit family {Cn}∞n=1 such that Cn computes FA=n

k(n) while making only k(n) − 1

oracle queries to some oracle X then A is recognized by an (nO(k(n))s(n), d(n)+O(1))
G-circuit family.

Proof: Assume the hypothesis. Equivalently, there exist, for each n, 2k(n)−1 G-
circuits C1

n, . . . , C
2k(n)−1

n each having size s(n) and depth d(n) such that for every
t ∈ (Σn)k(n) there exists i ≤ 2k(n)−1 such that FA

k(n)(t) = Ci
n(t). Let

W =
∞⋃

n=1

{(t,~b) : t ∈ (Σn)k(n),~b ∈ {0, 1}k(n) and (∀i ≤ 2k(n)−1)[~b 6= Ci
n(t)]}.

It is easy to see that W can be recognized by a (2k(n)s(n), d(n) + O(1)) G-circuit
family. By Corollary 4.6 A can be recognized by an (nO(k(n))s(n), d(n) + O(1)) G-
circuit family.

A special case of the following corollary was originally proved by Cai [25].

Definition 6.3.

MODm(x1, . . . , xk) =

{
1 if x1 + · · ·+ xk ≡ 0 (mod m)
0 otherwise

Corollary 6.4. Let k(n) = no(1), and let d be a positive integer. Let m be a positive
integer divisible by a prime number p, and let q be a power of any prime number
other than p. Let G consist of the NOT function, as well as AND, OR, and MODq

functions of every arity. If there is an (s(n), d) oracle G-circuit family {C}∞n=1 such

that each circuit Cn computes F
MOD=n

m

k(n) with k(n)− 1 oracle queries to some oracle X,

then s(n) = 2nΩ(1)
.

Proof: Assume the hypothesis. Then by Theorem 6.2 MODm can be computed
by an (nO(k(n))s(n), d+O(1)) G-circuit family. However, constant-depth G-circuits for

MODm require size 2nΩ(1)
[23, 73] (see also [39, 40, 41, 84]. Therefore nk(n)s(n) = 2nΩ(1)

.

Since k(n) = no(1) we obtain s(n) = 2nΩ(1)
.

7. Applications: Enumerability

Cai and Hemachandra [29] proved that #SAT is not nk-enumerable unless P = P#P.
We use Theorems 3.34 and 4.4 to prove many functions are not f(n)-enumerable
for a variety of f (under suitable assumptions). We also obtain their result as a
consequence of our theorems and [79, Theorem 4.1].

Our techniques can be used to obtain results for counting functions associated to
many complexity classes, and for #GA (the number of automorphisms of a graph).

In this section we study the following three functions.
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Definition 7.1.

i. #SAT is the function that, given a Boolean formula φ(x1, . . . , xn), returns |{~b ∈
{0, 1}n : φ(~b) = 1}|.

ii. #QBFi is the function that, given a quantified Boolean formula φ(x1, . . . , xn)
which (1) has n free variables, (2) starts with an ∃, and (3) has at most i − 1
alternations of quantifiers, returns

|{~b ∈ {0, 1}n : φ(~b) = 1}|.

iii. #QBF is the function that, given a quantified Boolean formula φ(x1, . . . , xn),

returns |{~b ∈ {0, 1}n : φ(~b) = 1}|.

Definition 7.2. We say that g ≤p
m f if there exist S, T ∈ PF such that g(x) =

S(x, f(T (x))). Intuitively, T maps x to an element T (x) such that f(T (x)) has infor-
mation that allows one to compute g(x), and S extracts that information. Hardness
and completeness are defined accordingly. In this paper we will refer to T as the
reduction and supress the role of S.

Definition 7.3. Let g : Σ∗ → N. Then let

bitg = {〈x, 0i〉 : the i-th bit of the binary expansion of g(x) is 1}.

Notation 7.4. A quantified Boolean formula is a Boolean formula where some of the
variables (though not necessarily all) are quantified. When writing down a quantified
Boolean formula with some variables free we will write φ(x1, . . . , xm) to denote that

x1, . . . , xm are the free variables. Note that for any ~b ∈ {0, 1}m, φ(~b) is either true or

false. We denote that φ(~b) is true (false) by φ(~b) = 1 (φ(~b) = 0).

We will be concerned with reducting many queries to g to just one query to g.
The next definition defines a function g+

q that reports the answers to many queries
to g. The next two sections present lemmas which allow you to show that, for some
functions g, g+

q can be computed with one query to g.

Definition 7.5. Let g be any function and q be any polynomial. The function g+
q is

defined on the set
⋃∞

m=0(Σ
≤m)q(m) as g+

q (x1, . . . , xq(m)) = 〈g(x1), . . . , g(xq(m))〉.
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7.1. Lemmas on Functions associated to #C

Definition 7.6. Let C be a class of sets. Then

#C = {f : (∃R ∈ C)(∃k)[f(x) = |{z : |z| = |x|k and R(x, z)}| ]}.

Example 7.7. The following are examples of classes C and functions f such that f
(when modified slightly to fit the definition of #C exactly) is complete for #C.

i. C = P and f = #SAT, the function that, given a Boolean formula φ(x1, . . . , xn),

returns |{~b ∈ {0, 1}n : φ(~b) = 1}|.

ii. C = Σp
i and f = #QBFi, the function that, given a quantified Boolean formula

φ(x1, . . . , xn) which (1) has n free variables, (2) starts with an ∃, and (3) has

at most i− 1 alternations of quantifiers, returns |{~b ∈ {0, 1}n : φ(~b) = 1}|.

iii. C = PSPACE and f = #QBF, the function that, given a quantified Boolean
formula φ(x1, . . . , xn), returns |{~b ∈ {0, 1}n : φ(~b) = 1}|.

iv. Let C = US, (defined by [19]) which is the class of all sets of the form

{x : there is exactly one path such that N(x) accepts }

where N is a nondeterministic polynomial time Turing machine. Let f be the
function that, when given a Boolean formula φ(x1, . . . , xn1 , y1, . . . , yn2), returns

|{~b ∈ {0, 1}n2 : φ(x1, . . . , xn1 ,
~b) ∈ USAT}|. (Recall that USAT is the set of

formulas that have exactly one satisfying assignment.)

v. This is a generalization of the previous example. It is due to Lozano and Ogi-
wara [61]. If N is a nondeterministic polynomial time machine and x ∈ Σ∗ then
let #accN(x) be the number of accepting paths of N on x, and #rejN(x) be the
number of rejecting paths of N . Let Q be a polynomial time decidable predicate
on N×N. A set A is in the class C = QP if there exists a nondeterministic time
Turing machine N such that A = {x : Q(#accN(x),#rejN(x))}. Let f be the
function that, when given a Boolean formula φ(x1, . . . , xn1 , y1, . . . , yn2), returns

|{~b ∈ {0, 1}n2 : Q(a, 2n1 − a) where a = #SAT(φ(x1, . . . , xn1 ,
~b))}|.

vi. Note that the following classes are of the type specified in the above item:
⊕P (defined in [64]), MODkP (defined in [16, 27]), co-MODkP, C=P (defined
in [80]), and PP (defined in [35]).

The following lemma translates self-reducibility from classes of sets to the associ-
ated counting classes.

Notation 7.8. LetMe denote the eth Turing machine. LetMe,s(x) denote the output
of machine Me after running for s steps on input x.
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Lemma 7.9. Assume that C is closed under ≤p
m-reductions and that C has a self-

reducible ≤p
m-complete set A. Then #C has a ≤p

m-complete function g such that bitg

is self-reducible.

Proof: Let

g(e, x, y, 0c, 0s) = |{z : |z| = c and Me,s(x, yz) ∈ A}|.

(Note that we really do mean Me,s(x, yz). We do not mean Me,s(x, y, z). This is not
a typo.)

We show that g ∈ #C. Since C is closed under ≤p
m-reductions and A ∈ C the set

{〈〈e, x, y, 0c, 0s〉, z0|〈e,x,y,0c,0s〉|−c〉 : Me,s(x, yz) ∈ A}

is in C. Hence g ∈ #C.
We show that g is #C-hard. If f ∈ #C then let R ∈ C, k ∈ N be as in the

definition of #C. Since A is ≤p
m-complete for C, R ≤p

m A. Let e be such that Me is
the reduction. Let qe be the polynomial that bounds the run time of Me. Note that
f(x) = g(e, x, λ, 0|x|

k
, 0qe(|x|)). Hence g is ≤p

m-complete for #C.
We show that bitg is self-reducible. When c > 0

|{z : |z| = c and Me,s(x, yz) ∈ A}|
= |{z : |z| = c− 1 and Me,s(x, y0z) ∈ A}|+ |{z : |z| = c− 1 and Me,s(x, y1z) ∈ A}|.

When c = 0
|{z : |z| = c and Me,s(x, yz) ∈ A}| = A(Me,s(x, y)).

Hence

g(e, x, y, 0c, 0s) =

{
g(e, x, y0, 0c−1, 0s) + g(e, x, y1, 0c−1, 0s) if c > 0;
A(Me,s(x, y)) if c = 0.

The self-reducible algorithm for bitg operates as follows. If c > 0 then
bitg(〈〈e, x, y, 0c, 0s〉, 0i〉) can be computed from

bitg(〈〈e, x, y0, 0c−1, 0s〉, 01〉), . . . , bitg(〈〈e, x, y0, 0c−1, 0s〉, 0i〉),

bitg(〈〈e, x, y1, 0c−1, 0s〉, 01〉), . . . , bitg(〈〈e, x, y1, 0c−1, 0s〉, 0i〉)
by using the above equation for g. If c = 0 then bitg(〈〈e, x, y, 00, 0s〉, 0i〉) can be
computed from A(Me,s(x, y)). Since A is self-reducible this can be calculated by a
polynomial time Turing machine that makes queries q ≺A Me,s(x, y) (where ≺A is the
ordering used to make A self-reducible). We can transform these queries into queries
to bitg as follows. Let Mj be a fixed Turing machine such that Mj(x, y) = x and Mj

runs in s(|〈x, y〉|) steps (s is some polynomial that depends on details of the model
of computation). Then A(q) iff bitg(〈〈j, q, λ, 00, 0s(|〈q,λ〉|〉, 01〉).

The algorithm given above is a self-reduction for bitg using the following ordering.

〈〈e′, x′, y′, 0c′ , 0s′〉, 0i′〉 ≺ 〈〈e, x, y, 0c, 0s〉, 0i〉

iff one of the following holds.
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i. e′ = e, x′ = x, |y| ≤ |y′| + c′, c′ < c, s′ = s, i′ ≤ i. (This is used when we are
decreasing c and increasing y.)

ii. e′ = j, e 6= j, x′ �A Me,s(x, y), y
′ = λ, c′ = c = 0, s′ = s(|〈x′, λ〉|), i′ ≤ i.

(When x′ = Me,s(x, y) this is used when we’ve just made c = 0 and need to go
to the algorithm for A. We need to include the x′ �A Me,s(x, y) so that the
order is transitive.)

iii. e′ = e = j, x′ ≺A x, y = y′ = λ, c = c′ = 0, s′ = s(|〈x, λ〉|), i′ ≤ i. (We use this
when we are using that A is self-reducible.)

The number of elements in a chain with top element 〈〈e, x, y, 0c, 0s〉, 0i〉 is at most
(i + 1)(c + |{x′ : x′ ≺A x}|). Since ≺A has polynomially bounded chains, so does ≺.

For the next lemma we use the following conventions to make the notation easier.

Convention: We modify our Turing machines such that if Me is any Turing machine
and x ∈ Σ∗ then the following hold.

i. If Me does not halt within s steps then we define Me,s(x) = 0.

ii. If z ∈ Σ∗0 then Me(x, z) = 0.

Lemma 7.10. Assume that C is closed under ≤p
m-reductions and that C has a self-

reducible ≤p
m-complete set A. Then #C has a ≤p

m-complete function g such that the
following hold.

i. bitg is self-reducible.

ii. For all polynomials q, g+
q ≤p

m g via some reduction Tq. Furthermore, there
is a degree a such that for all polynomials q of degree ≥ a (∀z)[|Tq(z)| ≤
O(|z|2+ 1

deg(q) )].

Proof: Let g be the function from Lemma 7.9. By Lemma 7.9 g is #C-complete
and bitg is self-reducible. We show property (ii).

Let q be some fixed polynomial. We define a set A′ and Turing machines Me′′ and
Me′ .

Let

A′ =
∞⋃

m=0

{〈x1, . . . , xm〉 : (∃i)[xi ∈ A− {0} and (∀j 6= i)[xj = 0]]}.

Clearly A′ ≤p
m A via a linear reduction T ′. Since C is closed under ≤p

m-reductions
A′ ∈ C.
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We define Me′′ on strings of a certain form. On strings not of that form Me′′

returns λ. Let FORMi be the union over m, as q(m) ≥ i, of strings of the form

〈 〈〈e1, x1, y1, 0
c1 , 0s1〉, . . . , 〈eq(m), xq(m), yq(m), 0

cq(m) , 0sq(m)〉〉,
〈0m+c1 , 02m+c2 , . . . , 0(i−1)m+ci−1 , ziwi, 0

(i+1)m+ci+1 , . . . , 0mq(m)+cq(m)〉 〉

where |zi| = ci, zi /∈ 0∗, and |wi| = im. (We need zi /∈ 0∗ so that all the FORMi sets
are disjoint.)

Let FORM =
⋃

i FORMi. Note that testing if a string t is in FORM can be
done by scanning t, finding q(m), and inverting it to find m. This can be done in
O(|t|) + Invq(q(m)) where Invq is the time it takes to invert q(m). Note that Invq is
a polynomial whose degree is independent of q.

For all t ∈ FORM let

Me′′(t) = 〈0, 0, . . . , 0,Mei,si
(xi, yizi), 0 . . . , 0〉.

(I.e., i− 1 0’s followed by Mei,si
(xi, yizi) followed by q(m)− i− 1 0’s.)

We are concerned with the run time of Me′′ . Let SIM(e, s) bound the number
of steps it takes to simulate Me for s steps (this is independent of the input). We
can assume that SIM(e, s) is a polynomial in |e|, s. To compute Me′′(t) we first read
the input and check if it is in the correct form, and then carry out the indicated
simulation. Hence the runtime of Me′′(t) is

O(|t|) + Invp(q(m)) + SIM(ei, si) = O(|t|) + Invp(q(m)) +O(SIM(m,m)).

We denote this runtime by qe′′(|t|). Note that |t| = Ω(m(q(m))2). Hence

qe′′(|t|) =

{
O(SIM(|t|, |t|)) + Invp(p(|t|)) if mq(m)2 < SIM(m,m) + Invp(q(m));
O(|t|) otherwise.

Hence deg(qe′′) is independent of deg(q), and when q is of large enough degree qe′′ is
linear.

Let Me′ be defined as Me′(t) = T ′(Me′′(t)). Since T ′ is linear the runtime of Me′(t)
is O(pe′′(|t|)). We denote this runtime by qe′(|t|). The degree of qe′ is independent of
deg(q), and when q is of large enough qe′ is linear.

We now show that g+
q ≤p

m g. Let the input be

〈 〈e1, x1, y1, 0
c1 , 0s1〉, . . . , 〈eq(m), xq(m), yq(m), 0

cq(m) , 0sq(m)〉 〉.

where (∀i)[|〈ei, xi, yi, 0
ci , 0si〉| ≤ m].

We formulate a query to ask g. Let

x = 〈 〈e1, x1, y1, 0
c1 , 0s1〉, . . . , 〈eq(m), xq(m), yq(m), 0

cq(m) , 0sq(m)〉 〉,
c = |〈0m+c1 , 02m+c2 , . . . , 0mq(m)+cq(m)〉|,
s = pe′(|〈x, 0c〉|),
u = 〈e′, x, λ, 0c, 0s〉.
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Note that
g(u) = |{z : |z| = c and Me′,s(x, z) ∈ A}|.

Since s is larger than the runtime of Me′ on (x, z) for any |z| = c we can replace
Me′,s(x, z) with Me′(x, z). Hence

g(u) = |{z : |z| = c and Me′(x, z) ∈ A}|
= |{z : |z| = c and T ′(Me′′(x, z)) ∈ A}|
= |{z : |z| = c and Me′′(x, z) ∈ A′}|.

In order for Me′′(x, z) ∈ A′ we first need that 〈x, z〉 ∈ FORM . That requires that
there is an i such that 〈x, z〉 ∈ FORMi. Note that the i is unique. Hence

|{z : |z| = c and Me′′(x, z) ∈ A′}| =
q(m)∑
i=1

|{z : 〈x, z〉 ∈ FORMi and Me′′(x, z) ∈ A′}|.

If 〈x, z〉 ∈ FORMi then

z = 〈0m+c1 , 02m+c2 , . . . , 0(i−1)m+ci−1 , ziwi, 0
(i+1)m+ci+1 , . . . , 0q(m)m+cq(m)〉

(where |zi| = ci, zi /∈ 0∗, and |wi| = im),

Me′′(x, z) = 〈0, 0, . . . , 0,Mei,si
(xi, yizi), 0, . . . , 0〉.

By the definition of A′ we have Me′′(x, z) ∈ A′ iff Mei,si
(xi, yizi) ∈ A − {0}. By our

convention on Turing machines, there are no z ∈ 0∗ such that Me,s(x, yz) ∈ A− {0}.
Using both of these facts we obtain the following:

|{z : 〈x, z〉 ∈ FORMi and Me′′(x, z) ∈ A′}|
= |{zi : |zi| = ci, zi /∈ 0∗ and Mei,si

(xi, yizi) ∈ A}| ∗ |{wi ∈ Σim}|
= |{zi : |zi| = ci and Mei,si

(xi, yizi) ∈ A}| ∗ |{wi ∈ Σim}|
= g(〈ei, xi, yi, 0

ci , 0si〉) ∗ (|Σ|)im.

Putting this all together we obtain

g(u) = |{z : |z| = c and Me′,s(x, z) ∈ A}|
= |{z : |z| = c and Me′(x, z) ∈ A}|
= |{z : |z| = c and T ′(Me′′(x, z)) ∈ A}|
= |{z : |z| = c and Me′′(x, z) ∈ A′}|

=
q(m)∑
i=1

|{z : 〈x, z〉 ∈ FORMi and Me′′(x, z) ∈ A′}|

=
q(m)∑
i=1

|{zi : |zi| = ci, zi /∈ 0∗, and Mei,si
(xi, yizi) ∈ A}| ∗ |{wi ∈ Σim}|

=
q(m)∑
i=1

|{zi : |zi| = ci and Mei,si
(xi, yizi) ∈ A}| ∗ |{wi ∈ Σim}|

= g(〈ei, xi, yi, 0
ci , 0si〉) ∗ (|Σ|)im.
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Since (∀i)[g(〈ei, xi, yi, 0
ci , 0si〉) ≤ 2ci < (|Σ|)m], the values of g(〈ei, xi, yi, 0

ci , 0si〉) can
be deduced from g(u).

We assume that q is of high enough degree so that qe′ is linear. We bound |u| in
terms of n, the length of the original input. Note that

|x| = n,

c = O(mq(m)2) +
q(m)∑
i=1

ci = O(n+mq(m)2),

s = pe′(O(|x|+ c)) = O(pe′(n+mq(m)2)) = O(n+mq(m)2),

|u| = |〈e′, x, λ, 0c, 0s〉| = O(n+mq(m)2).

Since n = Ω(q(m)) the runtime can be bounded by O(n2+ 1
deg(q) ).

7.2. Lemmas on Functions associated with Formulas

We now show that for certain functions g we have, for any polynomial q, g+
q ≤p

m g
with very little blowup in size. In particular we will be looking at #SAT, #QBFi,
and #QBF (see Definition 7.1).

Cai and Hemachandra [28] proved that #SAT+
q ≤p

m #SAT though the idea is
essentially due to Papadimitriou and Zachos [64]. Their reduction causes a polynomial
blowup of size. We show that #QBF+

q ≤p
m #QBF with very little blowup in size.

Lemma 7.11. There exists T ∈ PF such that the following hold.

i. T takes as input a finite sequence φ1, . . . , φq of quantified Boolean formulas that
have the same number of free variables.

ii. T outputs a formula φ such that the following hold.

(a) Knowing #QBF(φ) yields 〈#QBF(φ1), . . . ,#QBF(φq)〉.
(b) |φ| ≤ O(|〈φ1, . . . , φq〉|).

Proof: Given φ1, . . . , φq we describe how to construct φ. Let m be the number of
variables in each φi. Let the variables of φi be xi1, . . . , xim. We assume without loss
of generality that q is a power of 2.

We will first construct a formula φ′ that satisfies ii(a) but is too long to satisfy
ii(b). We then show how to obtain an equivalent formula that is shorter.

Let i → vi be a bijection from {1, . . . , q} to {0, 1}log q. Let z1, . . . , zlog q be new
(free) variables. We define the expression (~z = vi) to be the monomial that is 1 iff we
set zj to the jth bit of vi. Formally

(~z = vi) = (
∧

vi[j]=1

zj) ∧ (
∧

vi[j]=0

¬zj).

Let y10, . . . , y1m, y20, . . . , y2m, . . ., yq0, . . . , yqm be new variables.
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Let

φ′ =
q∨

i=1

[φi ∧ (~z = vi) ∧ (
i−1∧
a=1

m∧
b=0

yab)].

Note that it is impossible for two disjuncts of φ′ to be true at the same time. Hence

#QBF(φ′) =
q∑

i=1

#QBF(φi ∧ (~z = vi) ∧ (
i−1∧
a=1

m∧
b=0

yab)).

Note that φi, (~z = vi), and
∧i−1

a=1

∧m
b=0 yab use disjoint sets of variables. Also note that

the (q − i)(m + 1) variables in {yab : i + 1 ≤ a ≤ q, 0 ≤ b ≤ m} are not constrained.
Hence

#QBF(φi ∧ (~z = vi) ∧ (
i−1∧
a=1

m∧
b=0

yab))

= #QBF(φi) ·#QBF(~z = vi) ·#QBF(
i−1∧
a=1

m∧
b=0

yab)

= #QBF(φi) · 2(q−i)(m+1).

Putting this all together we obtain

#QBF(φ′) =
q∑

i=1

2(q−i)(m+1)#QBF(φi).

Since (∀i)[#QBF(φi) < 2m+1] all the values #QBF(φi) can be easily deduced from
#QBF(φ′).

The formula φ′ would be an ideal candidate for T (φ1, . . . , φq) except that it is too
long. We actually output a shorter formula that is equivalent to φ′. The idea is to
introduce new variables w1, . . . , wq such that wi will be equivalent to

∧i−1
a=1

∧m
b=0 yab.

The formula φ is the conjunction of the following three formulas.

i. w1 =
∧m

b=0 y1b.

ii.
∧q

i=2[wi = (wi−1 ∧
∧m

b=0 yib)].

iii.
∨q

i=1[φi ∧ (~z = vi) ∧ wi].

Clearly #QBF(φ) = #QBF(φ′). Note that

|φ| = O(m) +O(mq) +
q∑

i=1

O(|φi|+ logm) = O(|〈φ1, . . . , φq〉|).

Definition 7.12. Let A be a set of quantified Boolean formulas. The set A is nice
if the following hold.
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i. All Boolean formulas (without quantifiers) are in A.

ii. If φ1, φ2 ∈ A then φ1 ∨ φ2 ∈ A and φ1 ∧ φ2 ∈ A.

For a set of formulas to be nice we do not require that it be a minimal set of
formulas that satisfy the conditions. For example the set of formulas that have at
most i alternations of quantifiers is nice.

Lemma 7.13. Let A be a nice set of quantified Boolean formulas. Let f be the
function #QBF restricted to A. For all polynomials q, f+

q ≤p
m f via some reduction

Tq where (∀z)[|Tq(z)| = O(|z|1+ 1
deg(q) )].

Proof: Fix a polynomial q. Let an input to f+
q be 〈φ1, . . . , φq(m)〉 where (∀i)[|φi| ≤

m]. Assume that φi has mi ≤ m variables. Let ψi = φi ∧
∧m

b=mi+1 xib where the xib

variables are new free variables. Note that for each i (1) ψi has exactly m variables,
(2) f(φi) = f(ψi), and (3) |ψ| = |φi|+O(m).

The vector 〈ψ1, . . . , ψq(m)〉 is in the domain of the transformation T from
Lemma 7.11. Let

Tq(〈φ1, . . . , φq(m)〉) = T (〈ψ1, . . . , ψq(m)〉).

Since T (〈ψ1, . . . , ψq(m)〉) yields all the f(ψi) and f(ψi) = f(φi), clearly Tq(〈φ1, . . . , φq(m)〉)
yields all the f(φi). Since A is nice, clearly Tq(〈φ1, . . . , φq(m)〉) ∈ A.

Note that

|Tq(〈φ1, . . . , φq(m)〉)| = |T (〈ψ1, . . . , ψq(m)〉)|
= O(|〈ψ1, . . . , ψq(m)〉|)

= O(
q(m)∑
i=1

|ψi|)

= O(
q(m)∑
i=1

|φi|+m)

= O(
q(m)∑
i=1

2m)

= O(mq(m))

= O(q(m)1+ 1
deg(q) ).

Since the length of the input is Ω(q(m)) and the length of the output is

O(q(m)1+ 1
deg(q) ), we are done.

Lemma 7.14. Let f be #SAT, #QBFi, or #QBF. For all polynomials q, f+
q ≤p

m f

via some reduction Tq where (∀z)[|Tq(z)| = O(|z|1+
1

deg(q) )].
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7.3. Lemmas on #GA

Definition 7.15. If G is a graph then Aut(G) is the group of automorphism of G.
The set GA is the set of graphs G such that |Aut(G)| 6= 1. The function #GA takes
as input a graph and outputs |Aut(G)|. The set GI is the set of pairs of graphs that
are isomorphic. The function #GI takes as input a pair of graphs and outputs the
number of isomorphisms between them. It is well known that GA, #GA, GI, and
#GI are all polynomial time Turing equivalent (see [53]).

Notation 7.16. Sn is the group of all permutations of {1, . . . , n}.

Lemma 7.17. Let G be a graph on n vertices.

i. If i ≤ n and ia : #GA(G) then a ≤ n.

ii. Assume that, for all i ≤ n and a ≤ n, it is known if ia : #GA(G). Then
#GA(G) can be determined.

Proof: Since Aut(G) is a subgroup of Sn we have #GA(G) : n!. We use this in
both parts.

i) Since ia : #GA(G) we have ia : n!. We bound a by counting the number of factors
of n! that have an i. The factors i, 2i, 3i, . . . , bn

i
c contribute ≤ n

i
factors (for now).

Then the factors i2, 2i2, . . . , b n
i2
c contribute ≤ n

i2
more factors. continuing in this

manner we see that the number of factors of i is at most n
i

+ n
i2

+ · · · ≤ n.

ii) Since #GA(G) : n! all the prime factors of #GA(G) are ≤ n. We can easily
identify which numbers ≤ n are primes (this is easy since the length is n). By i and
the premise we know all the prime power factors of #GA(G). From this we can easily
deduce #GA(G).

Lemma 7.18. Let G be a graph on at least two vertices. Let m,n ∈ N .

i. We can find, in polynomial time, a connected graph G′ such that #GA(G′) =
#GA(G).

ii. If |V (G)| < n then we can find, in time polynomial in n, a graph G′ such that
|V (G′)| = n and #GA(G) = #GA(G′).

iii. We can find, in time polynomial in n and m, m pairwise non-isomorphic graphs
G1, . . . , Gm such that #GA(G) = #GA(G1) = #GA(G2) = · · · = #GA(Gm).
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Proof: We use the following gadgets for all three parts. If H = (V,E) is a graph
and i ∈ N then taili(H) is formed by adding i vertices to H in a line and attaching
every vertex of H to the same endpoint of that line. Formally

taili(G) = (V ′, E ′),

V ′ = V ∪ {a1, . . . , ai},
E ′ = E ∪ {(v, a1) : v ∈ V } ∪ {(aj, aj+1) : 1 ≤ j ≤ i− 1}.

i) Let G′ = tail1(G).

ii) Let G′ = tailn−|V (G)|(G).

iii) For 1 ≤ i ≤ m let Gi = taili(G).

Definition 7.19. Let k(m) be a function. The function #GA+
k takes k(m)

graphs (G1, . . . , Gk(m)) with at most m vertices each as input, and returns
(#GA(G1), . . . ,#GA(Gk)). This definition is a special case of f+

k but is stated overtly
for clarity.

Lemma 7.20. For all k ∈ N, #GA+
k ≤p

m #GA.

Proof: We show this for k = 2. The general case will follow by induction.
Let G1 and G2 be graphs. By Lemma 7.18 (parts i and ii) we can assume they

are connected, non-isomorphic, and have exactly n vertices. We will construct G such
that from #GA(G) one can deduce #GA(G1) and #GA(G2).

Let m = n + 1. Let G1
1, . . . , G

m
1 be obtained by applying Lemma 7.18 to G1 and

m. Let
G = G1

1 ∪ · · · ∪Gm
1 ∪G2.

Note that #GA(G) = (#GA(G1))
m(#GA(G2)). We assume we know #GA(G).

We determine, for each i ≤ n and a ≤ n, if x = ia divides #GA(Gj) (j = 1, 2).
By Lemma 7.17 this suffices to determine #GA(G1) and #GA(G2). Given x we
determine b such that xb divides #GA(G) but xb+1 does not. Divide b by m to
determine c, d such that b = cm+ d where 0 ≤ d < m. There are several cases.

i. If c = d = 0 then x does not divide #GA(G1) or #GA(G2).

ii. If c 6= 0 and d = 0 then x divides #GA(G1) but not #GA(G2). (To prove this
we use Lemma 7.17 and the fact that if xe is a factor of #GA(G1) then xem is
a factor of #GA(G).)

iii. If c = 0 and d 6= 0 then x does not divide #GA(G1) but x does divide #GA(G2).
(This uses that d < m and if x : #GA(G1) then xm : #GA(G).

iv. If c 6= 0 and d 6= 0 then x divides both #GA(G1) and #GA(G2).
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7.4. b(n)-enumerable for small b(n)

The main theorem of this section establishes conditions on a function g that cause
the implication

g b(n)-enumerable ⇒ g ∈ PF

for many sublinear functions b(n).

Theorem 7.21. Let b and g be functions and A be a set such that the following hold.

i. There exists a polynomially bounded function q such that FA
q ≤p

m g via a re-

duction T such that (∀γ)(
∞
∀m)[|t| ≤ γmq(m) ⇒ b(|T (t)|) ≤ q(m)]. (We do not

really need this for all γ, just for the particular one associated to the tupling
function as indicated in the proof.)

ii. g is b(n)-enumerable.

iii. A is self-reducible.

Then A ∈ P. (Note that in the case of A = bitg the function g+
q can replace FA

q in
premise i, and the conclusion is g ∈ PF.)

Proof: Let k(m) = log q(m). To show A ∈ P we will show that A is k(m)-cheatable
and use Theorem 3.34.

To show that A is k(m)-cheatable we describe how to enumerate ≤ q(m) pos-
sibilities for FA

q (t), one of which must be correct, given t = 〈x1, . . . , xq(m)〉 (where
(∀i)[|xi| ≤ m]).

Note that |t| ≤ γmq(m) where γ is a constant depending on the tupling function.
First compute z = T (t). Since g is b(n)-enumerable we can compute the ≤ b(|z|)

possibilities for g(z). Note that each possibility for g(z) leads to a possibility for
FA

q (t). The number of possibilities is b(|z|) = b(|T (t)|). Since |t| ≤ γmq(m), premise

i of the hypothesis yields (
∞
∀m)[b(|T (t)|) ≤ q(m)]. Hence we can enumerate ≤ q(m)

possibilities for FA
q (t). Since one of the possibilities enumerated for g(z) was correct,

one of the possibilities enumerated for FA
q (t) is correct.

Corollary 7.22. Let ε > 0. Let b(n) = nε. Let g be a function and A be a set such
that the following hold.

i. There exist α, d such that if q(m) = mα then FA
q ≤p

m g via a reduction T with
|T (t)| ≤ O(|t|d). In addition (α+1)dε < α. (The hypothesis did not state ε < 1;
however, the condition (α+1)dε < α virtually implies ε < 1 in any application.)

ii. g is b(n)-enumerable.

iii. A is self-reducible.
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Then A ∈ P. (Note that in the case of A = bitg the function g+
q can replace FA

q in
premise i, and the conclusion is g ∈ PF.)

Proof: We show that the premise of Theorem 7.21 holds with b(n) = nε, g, and
A. This yields A ∈ P. Clearly premises ii and iii hold. We show premise i.

Let q(m) = mα. We need (∀γ)(
∞
∀m)[|t| ≤ γmq(m) ⇒ b(|T (t)|) ≤ q(m)]. Let γ be

a constant and let t be of length ≤ γmq(m) = γmα+1. Then

b(|T (t)|) = b(O(|t|d) ≤ O(|t|dε) = O(m(α+1)dε).

Since (α+ 1)dε < α we have (
∞
∀m)[b(|T (t)|) ≤ mα = q(m)].

Corollary 7.23. Let b(n) = k, a constant. Let g be a function and A be a set such
that the following hold.

i. Let q(m) = k + 1. FA
q ≤p

m g.

ii. g is b(n)-enumerable.

iii. A is self-reducible.

Then A ∈ P. (Note that in the case of A = bitg the function g+
q can replace FA

q in
premise i and the conclusion is g ∈ PF.)

Proof: We show that the premise of Theorem 7.21 holds with b(n) = k, g, and
A. This yields A ∈ P. Clearly premises ii and iii hold. Since (∀t)[b(|T (t)|) = k ≤
k + 1 = q(m)] we have premise i.

Corollary 7.24. Assume that C is closed under ≤p
m-reductions and that C has a

self-reducible ≤p
m-complete set A.

i. #C has a ≤p
m-complete function g such that

(∀ε < 1

2
)[g nε-enumerable ⇒ P = P#C].

ii. If f is ≤p
m-hard for #C then

(∃δ0)(∀ε < δ0)[f nε-enumerable ⇒ P = P#C].

Proof: i. By Lemma 7.10 there exists a function g that is ≤p
m-complete for #C

such that bitg is self-reducible. We will show that the premises of Corollary 7.22 (the
version with g+

q ≤p
m g) are satisfied with b(n) = nε, g, and A = bitg. This will yield

g ∈ PF; therefore, #C ⊆ PF and P = P#C.
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By Lemma 7.10, for all polynomials q of degree ≥ a, g+
q ≤p

m g via a reduction T

such that |T (t)| ≤ O(|t|2+ 1
deg(q) ).

We assume that g is nε-enumerable. Let q(m) = mα where α will be specified later.
We impose one condition on α now: α ≥ a. Hence we have g+

q ≤p
m g via a reduction

T such that |T (t)| ≤ O(|t|2+ 1
α ). To apply Corollary 7.22 we need (α+1)(2+ 1

α
)ε < α.

Since ε < 1
2

there exists a large enough α to make this inequality true.

ii. Let g be from part (i). If f is ≤p
m-hard for #C then there exists a polynomial time

function T such that g(t) = f(T (t)). Let b be such that |T (t)| ≤ |t|b. Note that if f
is nε′-enumerable then g is nbε′-enumerable.

Let δ = 1
2b

. If there exists ε < δ such that f is nε-enumerable then g is nbε-
enumerable. Since bε < 1/2, by part (i) we have P = P#C.

We can obtain corollaries about the functions in Example 7.7.iv by using
Lemma 7.10 (and using that for all Q ∈ P the class QP has a self-reducible com-
plete function[61, Lemma 3.1]). We can also obtain corollaries about #SAT, #QBFi,
and #QBF by using Lemma 7.14 (and using that bit#SAT etc. are self-reducible).
However, for these functions, Corollary 7.32 yields a better result.

We have the following corollary.

Corollary 7.25. Let i, j ≥ 1 and C = Σi-SPACE(logj n). If f is ≤p
m-hard for #C

then
(∃δ ≤ 1)(∀ε < δ)[f nε-enumerable ⇒ P = P#C].

Proof: Clearly C is closed under ≤p
m-reductions and C has a self-reducible ≤p

m-
complete set A. Hence this follows from Corollary 7.24.

We now look at #GA. Clearly #GA is n!-enumerable (where n is the number of
vertices). Lazlo Babai [6] has shown that #GA is 2

n
2 (n/2)!-enumerable. We would

like to obtain matching upper and lower bounds. We are unable to show this but we
can show the following.

Corollary 7.26. Let k ∈ N . If #GA is k-enumerable then #GA ∈ P (and hence
GI ∈ P).

Proof: Let g be #GA. One can show bitg is self-reducible by the techniques used

to show GI is self-reducible (see [53]). By Lemma 7.20 g+
k+1 ≤p

m g. Hence F
bitg

k+1 ≤p
m g.

By Corollary 7.23 #GA ∈ PF.

Chang, Gasarch, and Torán [9] have used Corollary 7.22 to show that if #GA
is nε-enumerable (any ε < 1) then GI ∈ P. They have also obtained (1) if #GA
is poly-enum the GI ∈ R, and (2) if #GA is 2nε

-enumerable (ε < 1
6
) then GI is in

NP[|V |6ε log |V |]/poly. (A set of graphs is in NP[f(|V |)] if it is in NP via a machine
that makes at most f(|V |) nondeterministic moves. The concept is from [50] and the
notation is from [63], though they deal with sets of strings and lengths as opposed to
sets of graphs and |V |.) These two theorems use ideas from the proof that GI ∈ AM[2]
( [38], also see [53, Corollary 2.10]).

50



7.5. b(n)-enumerable for large b(n)

The main theorem of this section establishes conditions on a function g and a real
ε < 1 that cause the implication

g is 2nε

-enumerable ⇒ Pg ⊆ Σp
4 ∩ Πp

4.

We will apply this to #SAT, #QBFi, and #QBF. In addition we show that if any
#P-hard function is nk-enumerable then P = P#P.

Theorem 7.27. Let b and g be functions and A be a set such that the following hold.

p1) There exists a polynomially bounded function q such that FA
q ≤p

m g via a reduc-

tion T such that (
∞
∀m)(∀t ∈ (Σ≤m)q(m))[b(|T (t)|) ≤ 2q(m) − 1]. (t is the code for

a q(m)-tuple of strings, each of which is ≤ m in length. Formally it is of the
form x1%x2% · · ·%xq(m) where each xi has length ≤ m.)

p2) g is b(n)-enumerable. (b(n) need not be bounded by a polynomial so we use the
definition of enumerable stated in Definition 2.10.)

p3) A is self-reducible.

Then the following occur.

a) A ∈ Σp
2/poly ∩ Πp

2/poly and PA ⊆ Σp
4 ∩ Πp

4.

b) If A = bitg then Pg ⊆ Σp
4 ∩ Πp

4. In this case the function g+
q can replace FA

q in
premise p1.

c) If the function q in premise p1 is such that q(m) = O(logm) then the conclusion
can be strengthened to A ∈ NP/poly ∩ co-NP/poly and PA ⊆ Σp

3 ∩ Πp
3. If in

addition A = bitg then Pg ⊆ Σp
3 ∩ Πp

3. In this case the function g+
q can replace

FA
q in premise p1.

Proof: a) We will find a set W ∈ Πp
1 such that A satisfies the premise of Theo-

rem 4.4 and Corollary 4.6.c. with W and q. By Theorem 4.4 we will have

A ∈ NPW/poly ∩ co-NPW/poly ⊆ Σp
2/poly ∩ Πp

2/poly.

By Corollary 4.6 we will have PA ⊆ Σp
4 ∩ Πp

4.
To define W we will need a function e. We state what properties e will need,

define W , and then show that such an e exists.
The function e will have the following properties.

1) e ∈ PF.

2) e :
⋃∞

m=0(Σ
m)q(m) × N → Σ∗.
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3) (
∞
∀m)(∀t ∈ (Σm)q(m))(∃i ≤ 2q(m) − 2)[e(t, i) = FA

q(m)(t)].

Once we have e we can define W as follows. Let W be the union over m of the
set of ordered pairs (t,~c) where the following hold.

a) t ∈ (Σm)q(m) and ~c ∈ {0, 1}q(m).

b) (∀i ≤ 2q(m) − 2)[~c 6= e(t, i)]. (W will be nontrivial since this condition only
eliminates ≤ 2q(m) − 1 choices for ~c, namely e(t, 0), . . . , e(t, 2q(m) − 2).)

It is easy to see that A satisfies the premise of Theorem 4.4 with this choice of W
and q and that W ∈ Πp

1.
It remains to define e. Since g is b(n)-enumerable there exists a function e′ ∈ PF,

e′ : Σ∗ × N → Σ∗, that b(n)-enumerates g (in the sense of Definition 2.10). We will
use e′ later.

Let m ∈ N, and t = x1% · · ·%xq(m) (where (∀i)[|xi| = m]). Note that t ∈
Σ≤m%

q(m)
. Let i ∈ N. We describe how to compute e(t, i).

First compute z = T (t). Every possibility for g(z) yields a possibility for FA
q (t).

Let POSS ∈ PF map possibilities for g(z) to the corresponding possibilities for FA
q (t).

Let e(t, i) = POSS(e′(z, i)). Clearly e ∈ PF.
By the definition of e′ we know that (∃i ≤ b(|z|)− 1)[e′(z, i) = g(z)], hence (∃i ≤

b(|T (t)|))[e(t, i) = FA
q(m)(t)]. Since t ∈ Σ≤m%

q(m)
premise p1 yields (

∞
∀m)[b(|T (t)|) −

1 ≤ 2q(m) − 2]. Hence stipulation 3 on the function e is met.

b) Pg ⊆ Pbitg = PA ⊆ Σp
4 ∩ Πp

4.

c) If q(m) = O(logm) thenW ∈ P hence A ∈ NPW/poly∩co-NPW/poly = NP/poly∩
co-NP/poly. Since A is self-reducible, by Corollary 4.6 PA ⊆ Σp

3 ∩ Πp
3. If A = bitg

then Pg ⊆ Pbitg = PA ⊆ Σp
3 ∩ Πp

3.

Corollary 7.28. Let ε > 0. Let b(n) = 2nε
. Let g be a function and A be a set such

that the following hold.

i. There exists α, d such that if q(m) = mα then FA
q ≤p

m g via a reduction T with
|T (t)| ≤ O(|t|d). In addition (α+1)dε < α. (The hypothesis did not state ε < 1;
however, the condition (α+1)dε < α virtually implies ε < 1 in any application.)

ii. g is b(n)-enumerable.

iii. A is self-reducible.

Then A ∈ Σp
2/poly∩Πp

2/poly and PA ⊆ Σp
4 ∩Πp

4. If A = bitg then Pg ⊆ Σp
4 ∩Πp

4. (In
this case the function g+

q can replace FA
q in premise i and the conclusion is g ∈ PF.)
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Proof: We show that the premises of Theorem 7.27 hold with b(n) = 2nε
, g, and

A. Clearly premises ii and iii hold. We show premise i.

Let q(m) = mα. We need (∀γ)(
∞
∀m)[|t| ≤ γmq(m) ⇒ b(|T (t)|) ≤ 2q(m) − 1]. Let

γ be a constant and let t be of length ≤ γmq(m) = γmα+1. Then

b(|T (t)|) = b(O(|t|d) ≤ 2O(|t|dε) ≤ 2O(m(α+1)dε).

Since (α+ 1)dε < α we have (
∞
∀m)[b(|T (t)|) ≤ 2mα − 1 = 2q(m) − 1].

Corollary 7.29. Assume that C is closed under ≤p
m-reductions and that C has a

self-reducible ≤p
m-complete set A.

i. #C has a ≤p
m-complete function g such that

(∀ε < 1

2
)[g 2nε

-enumerable ⇒ P#C ⊆ Σp
4 ∩ Πp

4].

ii. If f is ≤p
m-hard for #C then

(∃δ ≤ 1)(∀ε < δ)[f 2nε

-enumerable ⇒ P#C ⊆ Σp
4 ∩ Πp

4].

Proof: i. By Lemma 7.10 there exists a function g that is ≤p
m-complete for #C

such that bitg is self-reducible. We will show that the premise of Corollary 7.28 (the
version stated in conclusion b with g+

q instead of FA
q ) is satisfied with b(n) = 2nε

, g,
and A = bitg. This will yield Pg ⊆ Σp

4 ∩ Πp
4 and hence P#C ⊆ Σp

4 ∩ Πp
4.

We assume that g is 2nε
-enumerable. Let q(m) = mα where α will be specified

later. We impose one condition on α now: α ≥ a. By Lemma 7.10, g+
q ≤p

m g via

a reduction T such that |T (t)| ≤ O(|t|2+
1

deg(q) ). To apply Corollary 7.28 we need
(α+1)(2+ 1

α
)ε < α. Since ε < 1

2
there exists a large enough α to make this inequality

true.

ii. Let g be from part (i). If f is ≤p
m-hard for #C then there exists a polynomial time

function T such that g(x) = f(T (x)). Let b be such that |T (x)| ≤ |x|b. Note that if

f is 2nε′
-enumerable then g is 2nbε′

-enumerable.
Let δ = 1

2b
. If there exists ε < δ such that f is 2nε

-enumerable then g is 2nbε
-

enumerable. Since bε < 1/2, by part (i) we have that P#C ⊆ Σp
4 ∩ Πp

4.

Corollary 7.30. Let Q ∈ P such that P ⊆ QP (as defined in Example 7.7). If f is
≤p

m-hard for #QP then

(∃δ ≤ 1)(∀ε < δ)[f 2nε

-enumerable ⇒ PH ⊆ P#QP ⊆ Σp
4 ∩ Πp

4].
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Proof: By [61, Lemma 3.1] the class QP has a self-reducible complete set, hence
QP and f satisfies the premise of Corollary 7.29.ii.

If P#QP ⊆ Σp
4 ∩ Πp

4 then, by Toda’s theorem [78] that PH ⊆ P#P, we have

P#QP ⊆ Σp
4 ∩ Πp

4 ⇒ PH ⊆ P#P ⊆ P#QP ⊆ Σp
4 ∩ Πp

4.

Corollary 7.31. Let ε be any real such that 0 ≤ ε < 1. Let i ≥ 1.

i. If #SAT is 2nε
-enumerable then Σp

4 ∩ Πp
4 = PH = P#P.

ii. If #QBFi is 2nε
-enumerable then Σp

4 ∩ Πp
4 = PH = P#P.

iii. If #QBF is 2nε
-enumerable then Σp

4 ∩ Πp
4 = PH = PSPACE.

Proof: We prove (i).
Let g = #SAT. We assume that g is 2nε

-enumerable. We will show that the
premise of Theorem 7.27 (the version stated in conclusion b with g+

q instead of FA
q )

is satisfied with b(n) = 2nε
, g, and A = bitg. This will yield Pg ⊆ Σp

4 ∩ Πp
4 and hence

P#P ⊆ Σp
4 ∩ Πp

4. By [78] Σp
4 ∩ Πp

4 ⊆ PH ⊆ P#P, hence Σp
4 ∩ Πp

4 = PH = P#P.
Clearly premises p2 and p3 of Theorem 7.27 are satisfied. We show that premise p1

is satisfied. Let q(m) = mα where α will be specified later. By Lemma 7.14 g+
q ≤p

m g

via a reduction T such that (∀z)[|T (z)| ≤ O(|z|1+ 1
α )]. In order to apply Theorem 7.27

we need that (α+ 1)(1 + 1
α
)ε < α. Since ε < 1 there exists a large enough α to make

this inequality true.
The proof of (ii) is similar to the proof of (i). A proof similar to (i) can establish

that if the premise of (iii) holds then Σp
4 ∩ Πp

4 = PH = P#PSPACE. However, it is
easy to see that any function in #PSPACE can be computed with polynomial space.
Hence P#PSPACE = PPSPACE = PSPACE.

The following corollary has been obtained independently by Cai and Hemachan-
dra [29].

Corollary 7.32. If #SAT is p(n)-enumerable for some polynomial p then P#P = P.

Proof: If #SAT is p(n)-enumerable then there exists ε > 0 such that #SAT is
2nε

-enumerable. Hence, by Corollary 7.31 P#P = Σp
4 ∩ Πp

4.
We show that P = NP which will imply P = Σp

4. Combining that with the above
yields P = P#P.

Let MAXSAT be the following problem: given a CNF-formula, find a truth as-
signment that maximizes the number of clauses that are satisfied. MAXSAT ∈ PFSAT

via binary search techniques. If there is more than one then output the lexicgraph-
ically least such truth assignment. Krentel [54] showed that MAXSAT ∈ PFSAT

via binary search techniques. Toda and Watanabe [79, Theorem 4.1] showed that
PFPH ⊆ PF#P[1], hence MAXSAT ∈ PF#P[1]. Since #SAT is ≤p

m-hard for #P and
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#SAT is p(n)-enumerable we know MAXSAT is q(n)-enumerable for some polynomial
q. We use this to show SAT ∈ P.

Given a formula φ we enumerate q(n) possible values of MAXSAT(φ). Since there
are only q(n) of them we can plug each one into φ. If any of them satisfy φ then
φ ∈ SAT, otherwise φ /∈ SAT.

All the theorems and corollaries easily relativize (using a relativized version of
Theorem 4.4). From these relativized results we obtain the following corollaries.

Definition 7.33. Let b(n) be a function with range N. Let A ⊆ 2Σ∗ and f be a
function. The function f is (b(n),A)-enumerable if there exist A ∈ A and e ∈ PFA

such that e : Σ∗ × N → Σ∗ and (∀x)(∃i < b(|x|)[e(x, i) = f(x)]. (We need to have
i < b(|x|) instead of i ≤ b(|x|) since the natural numbers N include 0. We assume the
second input to e is written in binary.)

Corollary 7.34. Let i, j ≥ 1. Let ε be any real such that 0 ≤ ε < 1.

i. If #SAT is (2nε
,Σp

j)-enumerable then Σp
j+4 ∩ Πp

j+4 = PH = P#P.

ii. If #QBFi is (2nε
,Σp

j)-enumerable then Σp
j+4 ∩ Πp

j+4 = PH = P#P.

iii. If #QBF is (2nε
,Σp

j)-enumerable then Σp
j+4 ∩ Πp

j+4 = PH = P#PSPACE.

It is open whether the following is true: If #SAT is 2nε
-enumerable then P = NP.

Stephan [75] has shown that for every superpolynomial f there is a relativized world
such that #SAT is f(n)-enumerable and P 6= NP. Since our techniques all relativize
it is unlikely that they will suffice to solve the open question.

8. Structural Properties

In this section we examine the classes of sets A that have properties based on how
easy it is to compute FA

k .
In Section 8.1 we exhibit closure and nonclosure properties of cheatable sets. We

show the following.

• If A is i-cheatable and B is j-cheatable then A ∪ B, A ∩ B, and A ⊕ B are
(i+ j)-cheatable.

• There exists sets A and B such that A is i-cheatable, B is j-cheatable, but
A∩B, A⊕B, and A∪B are not (i+ j − 1)-cheatable (i.e., the previous result
is tight).
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It is of interest that Turing reductions preserve k-cheatability exactly (by
Lemma 3.25), but union, intersection, and join cause a loss of some “cheatability.”

In Section 8.2 we compare p-selective sets to cheatable sets. Both classes contain
P. Both classes are contained in P/poly (see Ko [51] for p-selective⊆ P/poly and see
Lemma 3.7 of this paper for cheatable⊆ P/poly), and the proofs are similar. Hence it
is natural to ask if either class is contained in the other. We show that this is not the
case by showing that all possible combinations of these two properties are possible.

It is easy to construct a p-superterse set by diagonalization. The p-generic sets
were defined [4] so that (informally) any property that can be enforced by diagonal-
ization is true for a p-generic set. We prove the (unsurprising) result that all p-generic
sets are p-superterse.

In Section 8.4 we examine the polynomial degrees that contain p-superterse sets
(called p-superterse degrees). From this work we also show, assuming P 6= NP, that
certain sets are p-superterse. We show the following.

• Every polynomial Turing degree contains either a p-superterse set or a cheatable
set, but not both (Theorem 8.10).

• If P 6= NP then all ≤p
k-tt-hard sets for the Boolean hierarchy are p-superterse

(Corollary 8.15). (This has been superseded by [17, 60], who have shown that
if P 6= NP then SAT is p-superterse.)

We also study the structure of the p-superterse degrees. We show the following.

• Let a and b be any two computable ≤p
T-degrees such that a≤p

Tb and b is not
p-superterse. Let L be any countable distributive lattice. L can be embedded
into the p-superterse ≤p

T-degrees on the interval between a and b. This also
holds for ≤p

tt, ≤p
btt, and ≤p

m. (Theorem 8.22).

• If P 6= NP and L is any countable distributive lattice then L can be embedded
into the p-superterse NP ≤p

T-degrees. This also holds for ≤p
tt, ≤p

btt, and ≤p
m.

(Corollary 8.23).

For this section we need a restricted version of p-superterseness.

Definition 8.1. A set is k-p-superterse if (∀X)[FA
k /∈ PFX

(k−1)-T].

8.1. Closure Properties for Cheatable Sets

By Lemma 3.25 the class of cheatable sets is closed under ≤p
T-reductions. We show

that the class of cheatable sets is also closed under union, intersection, and join.

Theorem 8.2. If A is i-cheatable and B is j-cheatable then A∩B, A∪B, and A⊕B
are (i+ j)-cheatable.
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Proof: Since A is i-cheatable and B is j-cheatable there exist sets X and Y such
that for all m, FA

m ∈ PFX
i-T and FB

m ∈ PFY
j-T. Hence FA⊕B

m is in PFX⊕Y
(i+j)-T, so A ⊕ B

is (i + j)-cheatable. Since A ∪ B ≤p
T A ⊕ B and A ∩ B ≤p

T A ⊕ B, it follows from
Lemma 3.25 that A ∪B and A ∩B are (i+ j)-cheatable.

The next theorem shows that the previous result is the best possible.

Theorem 8.3. There exist sets A and B such that A is i-cheatable and B is j-
cheatable, but A ∩ B and A ⊕ B are not (i + j − 1)-cheatable. (In fact, both are
(i+ j)-p-superterse.)

Proof: We construct A and B such that the following occur.

i. A is i-cheatable.

ii. B is j-cheatable.

iii. A ∩B is (i+ j)-p-superterse.

iv. A ∩B ≤p
m A⊕B (hence A⊕B is also (i+ j)-p-superterse).

Let TOW be defined by TOW (0) = 1, TOW (n+ 1) = 2TOW (n). We construct sets A
and B such that⋃

n≥n0
{0TOW (n)+k : i+ 1 ≤ k ≤ i+ j} ⊆ A ⊆ ⋃

n≥n0
{0TOW (n)+k : 1 ≤ k ≤ i+ j},⋃

n≥n0
{0TOW (n)+k : 1 ≤ k ≤ i} ⊆ B ⊆ ⋃

n≥n0
{0TOW (n)+k : 1 ≤ k ≤ i+ j},

where n0 is a constant such that TOW (n0 + 1)− TOW (n0) ≥ i+ j.

Let M
()
0 ,M

()
1 , . . . be an effective list of all polynomial time bounded oracle Turing

machines that make at most i+ j−1 queries. Without loss of generality, assume that
MX

e runs in time bounded by 2|x| for every input x and oracle X.
We use the strings in {0TOW (e)+k : 1 ≤ k ≤ i+ j} to diagonalize against M ()

e . We
call this set of strings the e-th block.

ALGORITHM FOR A

Step 1: Input(0n).

Step 2: Find e ≥ n0 and k such that n = TOW (e) + k, 1 ≤ k ≤ i + j. If none exists
then output NO and halt. If i+ 1 ≤ k ≤ i+ j then output YES and halt.

Step 3: Run M ()
e (0TOW (e)+1, . . . , 0TOW (e)+i+j) pursuing all paths. Since there are only

2i+j−1 possible paths there exists a string of i+ j bits that is not output by any
path of the M ()

e (0TOW (e)+1, . . . , 0TOW (e)+i+j) computation. Let b1 · · · bi+j be the
least such string.

Step 4: If bk = 1 then output YES, else output NO.
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END OF ALGORITHM.
The algorithm for B is similar. The only difference is that in step 2 we output

YES if 1 ≤ k ≤ i.
We show that for any X, MX

e does not compute FA∩B
i+j . Since the first i strings of

any block are in B, the membership of those strings in A∩B is entirely determined by
their membership in A. Since the last j strings of any block are in A the membership
of those elements in A ∩B is entirely determined by their membership in B. Hence

FA∩B
i+j (0TOW (e)+1, . . . , 0TOW (e)+i+j) = b1 · · · bi+j

where b1 · · · bi+j is the least string that is not a possible answer for
M ()

e (0TOW (e)+1, . . . , 0TOW (e)+i+j). Thus for any X,

FA∩B
i+j (0TOW (e)+1, . . . , 0TOW (e)+i+j) = b1 · · · bi+j 6= MX

e (0TOW (e)+1, . . . , 0TOW (e)+i+j).

In the algorithm forA, steps 1, 2, and 4 run in polynomial time, and step 3 runs in time
2n. Hence A ∈ DTIME(2O(n)) (the constant depends on details of the machine model).
We will show that A is i-cheatable by showing that FA

i+1 ∈ PFA
i-tt, which implies that

for all m, FA
m ∈ PFA

i-tt. Suppose that we are to compute FA
i+1(x1, . . . , xi+1). Check

if there exists an xp that is not in a block. If this is the case then xp /∈ A, and i
queries suffice to find FA

i+1(x1, . . . , xi+1). If this does not happen then check if there
exists an xp that is among the last j elements of a block. If this is the case then
xp ∈ A, and i queries suffice to find FA

i+1(x1, . . . , xi+1). If neither of these two occurs
then we can assume |x1| < |x2| < · · · < |xi+1| and that none of the elements are
the last j elements of a block. Since there are only i + j elements in a block, |x1|
must be in a different block than xi+1. This implies that |x1| < log |xi+1|. Hence
we can determine, by the DTIME(2O(n)) algorithm for A, the value of A(x1) in time
polynomial in |xi+1|, which is less than the length of (x1, . . . , xi+1). Now i queries
suffice to find FA

i+1(x1, . . . , xi+1).
The proof that B is j-cheatable is similar.
A ∩B ≤p

m A⊕B by the following reduction:

f(0n) =


10n if n = TOW (e) + k, e ≥ n0, and 1 ≤ k ≤ i
00n if n = TOW (e) + k, e ≥ n0, and i+ 1 ≤ k ≤ i+ j
x0 otherwise

where x0 is a fixed string such that x0 /∈ A⊕B.

Note: Let C = A and D = B where A and B are the sets given by Theorem 8.3. Since
k-cheatability is preserved under complement, C is i-cheatable, D is j-cheatable and
C ∪D is not (i+ j− 1)-cheatable. Thus a version of Theorem 8.3 for unions holds as
well.

8.2. P-Selective Sets

In this section show that cheatability and p-selectivity (Definition 3.14) are incom-
parable.
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Theorem 8.4. The following exist.

i. 1-cheatable sets that are p-selective but not in P.

ii. 1-cheatable sets that are not p-selective.

iii. non-cheatable sets that are p-selective.

iv. non-cheatable sets that are not p-selective.

Proof: In [5] tally sets are constructed that are 1-cheatable but not in P. Let
T1 be such a set. It is easy to construct tally sets that are not cheatable (e.g.,
noncomputable tally sets [15]). Let T2 be such a set. In [71], Selman shows that
given any tally set T /∈ P there are sets A,B ≡p

T T such that A is p-selective and
B is not p-selective. (Let A be the set of strings lexicographically preceding the
characteristic sequence of T . Let B = T ⊕ T .) For i = 1, 2 let Ai and Bi be such
that Ai, Bi ≡p

T Ti, Ai is p-selective and Bi is not p-selective. Since k-cheatability is
preserved by polynomial-time Turing equivalence A1 is 1-cheatable and p-selective,
B1 is 1-cheatable and not p-selective, A2 is non-cheatable and p-selective, and B2 is
non-cheatable and not p-selective.

8.3. P-Generic Sets

In [4] Ambos-Spies et al. defined p-generic sets, in a manner similar to the 1-generic
sets of computability theory [47]. Intuitively a p-generic set has any property that a
computable set can be constructed to have via easy diagonalization. The following
definition of p-generic is not standard but is equivalent to the standard one.

Definition 8.5. If A is a tally set then the characteristic string of A is the infinite
string of 0’s and 1’s that has 1 in the n-th place iff 0n ∈ A. We denote the first s bits
of the characteristic string of A by A[s].

Definition 8.6. A tally set A is p-generic if for every set C ∈ P,

(∃c)(∀s)(∃τ ∈ {0, 1}c)[A[s]τ ∈ C] ⇒ (∃s)[A[s] ∈ C].

(The standard definition fixes c = 1.)

It is not surprising to find that all p-generic sets are p-superterse.

Theorem 8.7. If A is p-generic then A is p-superterse.
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Proof: Suppose that A is p-generic, but not k-p-superterse. By Fact 2.20, there
exists a polynomial-time Turing machine M ′ that, on input (x1, . . . , xk), outputs a
set of 2k−1 answers, such that one of the answers is FA

k (x1, . . . , xk). Let

C = {σ ∈ {0, 1}∗ : 〈σ(|σ| − k + 1), . . . , σ(|σ|)〉 /∈M ′(0|σ|−k+1, . . . , 0|σ|)},

where σ(i) denotes the i-th character of σ. Obviously C is in P.
Let n = |σ|. Choose a string τ of length k such that τ /∈ M ′(0n+1, . . . , 0n+k).

Then στ ∈ C. Since every string can be extended by a constant amount to obtain an
element of C there is an s such that A[s] ∈ C. Hence

〈A(0s−k+1), . . . , A(0s)〉 /∈M ′(0s−k+1, . . . , 0s),

which contradicts the nature of M ′. Thus A is indeed k-p-superterse. Since A is
k-p-superterse for every k, A is p-superterse.

8.4. P-Superterse Degrees

In this section we investigate which degrees contain sets that are cheatable, p-
superterse, k-p-superterse, etc. As a corollary, we show that every set that is ≤p

k-tt-
hard for the Boolean hierarchy is p-superterse, unless P = NP. Then we examine the
structure of the lattice formed by the p-superterse degrees.

Definition 8.8. Let ≤p
r denote a polynomial-time reducibility. An ≤p

r -degree is an
equivalence class of the relation ≡p

r. We say that a degree is cheatable, p-superterse,
etc., if it contains a set that is respectively cheatable, p-superterse, etc.

Notation 8.9. We denote degrees of all types by boldface. By convention, if a is a
(p-superterse, p-terse, etc.) degree then A will be a (p-superterse, p-terse, etc.) set
in that degree.

If ≤p
r is not too strong a reducibility, then we will see that every ≤p

r -degree is
p-superterse iff it is not cheatable.

Theorem 8.10. Let d be a ≤p
tt- or ≤p

T-degree. Then d is p-superterse iff d is not
cheatable.

Proof: Let D be any set in d and let A be ≤p
m-complete for PD

tt (e.g., take A = Dtt,
see [66, 74]). We claim that A is either p-superterse or cheatable. Suppose that A is
not p-superterse, so there exist k and X such that FA

k ∈ PFX
(k−1)-T. By Fact 2.17.iii,

there exists B ∈ PA
k-tt ⊆ PD

tt such that FA
k ∈ PFB

(k−1)-tt. Since B ∈ PD
tt , we have

B ≤p
m A. Therefore FA

k ∈ PFA
(k−1)-tt, so A is k-cheatable by [14, Observation 6.2].
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Lemma 8.11. Let A be a set.

i. If A is k-cheatable then every B ≡p
T A is k-cheatable.

ii. If A is not k-cheatable then there exists a k-p-superterse set B ≡p
2k-tt A.

Proof: i. Assume A is k-cheatable. By Lemma 3.25 every set B ≤p
T A is k-

cheatable.
ii. Assume A is not k-cheatable. Then (∀X)[FA

2k /∈ PFX
k-T]. Find the maximum

a < 2k such that (∃X)[FA
a ∈ PFX

k-T]. By Fact 2.17.iii there exists B ≡p
2k−tt A such

that FA
a ∈ PFB

k-tt. We prove by contradiction that B is k-p-superterse. If B is not k-p-
superterse then FB

k ∈ PFZ
(k−1)-T for some Z, so FA

a ∈ PFZ
(k−1)-T. Hence FA

a+1 ∈ PFZ⊕A
k-T .

This contradicts the maximality of a.

Corollary 8.12. Let d be a ≤p
tt- or ≤p

T-degree. Then d is k-p-superterse iff d is not
k-cheatable.

Definition 8.13. PA
btt is the class of sets that are ≤p

btt A (≤p
btt is defined in Defini-

tion 2.4). PSAT
btt is referred to as the Boolean Hierarchy [26] and will be denoted by

BH.

Corollary 8.14. Let A be a non-cheatable set. If there exists k such that B is ≤p
k-tt-

hard for PA
btt then B is p-superterse.

Proof: Since A is not cheatable, PA
btt contains a j-p-superterse set Cj for every j.

Since Cj ≤p
k-tt B, B must be j-p-superterse for every j.

Corollary 8.15. If P 6= NP then every set that is ≤p
k-tt-hard for BH is p-superterse.

Proof: Assume that B is ≤p
k-tt-hard for BH = PSAT

btt . If B is not p-superterse then,
by Corollary 8.14 SAT is cheatable. By Corollary 3.26 this implies P = NP.

This corollary has been superceded by Ogihara [60] and by Beigel, Kummer, and
Stephan [17, Corollary 4.5], who showed that if P 6= NP then every set that is btt-hard
for NP is p-superterse.

61



8.4.1. Structure of the P-Superterse Degrees

In this section we use techniques of Ladner [55] and Ambos-Spies [2, 3] to examine the
structure of the polynomial many-one and Turing degrees that contain p-superterse
sets. Our main contribution is the proof that certain classes are computably pre-
sentable, and hence that Ambos-Spies’ machinery can be applied.

Ladner [55] has constructed (assuming P 6=NP) a set in NP − P that is not NP-
complete. Similar techniques can be used to prove the following theorem.

Theorem 8.16. If SAT is p-superterse (p-terse, k-p-terse) then NP contains a set
that is p-superterse (p-terse, k-p-terse) but is not NP-complete.

Corollary 8.17. If P 6= NP then there exists a 2-p-terse set in NP that is not NP-
complete.

Proof: By [5, 14], if P 6=NP then SAT is 2-p-terse. Assuming P 6=NP, Theorem 8.16
yields a set in NP that is 2-p-terse but not NP-complete.

Ladner’s techniques have been extended in many papers dealing with the structure
of the ≤p

m- and ≤p
T-degrees [2, 3, 24, 30, 56, 58]. For example, it is known that the

p-degrees are dense. Ambos-Spies codified the constructions in a particularly nice
way, leading to easy proofs of virtually all the previous results, as well as some new
results. We apply his techniques to yield many theorems about the structure of the
≤p

m- and ≤p
T-degrees that contain p-terse sets. The techniques apply to p-superterse,

non-p-selective (Definition 3.14), and many other kinds of sets.

Notation 8.18. Throughout this section “r” will denote either m or T , i.e., if one
replaces all of the r’s with m’s or replaces all of the r’s with T ’s, the results will hold.

Definition 8.19. [2, 3] If U is a set and i ∈ N then let U i = {x : 〈x, i〉 ∈ U}. A class
of computable sets A is computably presentable (called “recursively presentable” in
the reference) if there exists a computable set U such that A = {U i : i ∈ N}.

In order to apply Ambos-Spies’s techniques we must prove that for all computable
A the class of non-p-superterse sets X such that X ≤p

r A is a computably presentable
class.

Lemma 8.20. Let A be any computable set and i, j ∈ N. The following class of sets
is computably presentable.

C1 = {C : C ≤p
r A and (∃Z)[FC

i ∈ PFZ
j-T]}
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Proof: We prove the lemma for Turing reducibility, but a similar proof holds for
many-one reducibility.

If i ≤ j then C1 is the class of all sets that are ≤p
r A, which is computably

presentable [3]. Henceforth we assume i > j.
By Fact 2.20, if there exists Z such that FC

i ∈ PFZ
j-T then FC

i is 2j-enumerable.
Hence there is a function f such that f(x1, . . . , xi) is a set of 2j elements of {0, 1}i

(suitable coded), one of which is FC
i (x1, . . . , xi). We refer to such an f as a covering

function for C.
Let P ()

e be the e-th polynomial time-bounded deterministic oracle Turing machine.
If X is a set then PX

e denotes the language recognized by Pe with oracle X. If no
oracle is shown then the empty oracle is assumed. For every m = 〈e1, e2〉 we will
construct a set Em ∈ C1. We will guarantee that

Em =
{
PA

e1
if Pe2 computes a covering function for L(PA

e1
);

a finite set otherwise.

ALGORITHM for Em

Step 1: Input(x).

Step 2: For all i-tuples (x1, . . . , xi) such that every component xi is less than x (lexico-
graphically), compute FEm

i (x1, . . . , xi) by calling the algorithm recursively.

Step 3: For all i-tuples (x1, . . . , xi) such that every element is less than x, compute
Pe2(x1, . . . , xi).

Step 4: If there exists an i-tuple (x1, . . . , xi) of elements less than x such that either
FEm

i (x1, . . . , xi) /∈ Pe2(x1, . . . , xi), or Pe2(x1, . . . , xi) represents a set with more
than 2j strings, then output NO. Else run PA

e1
(x) and output the answer.

END OF ALGORITHM.
If Em is finite then Em ∈ C1 trivially. If Em is infinite then (by step 4) for

every i-tuple (x1, . . . , xi), Pe2(x1, . . . , xi) represents a set of at most 2j elements and
FEm

i (x1, . . . , xi) ∈ Pe2(x1, . . . , xi). Hence Pe2 computes a covering function for Em. In
addition, Em ≤p

T A via Pe1 . Hence Em ∈ C1. Therefore for each m, Em ∈ C1.
If C ∈ C1, then there exists an m = 〈e1, e2〉 such that C = L(PA

e1
) and FC

i ∈ PFZ
j-T

via covering function Pe2 . Hence every set in C1 is of the form Em for some m.
Finally, define U(〈x,m〉) = Em(x). Thus C1 is computably presentable.

Lemma 8.21. Let A,B be computable sets and let i, j ∈ N. The following classes
are computably presentable.

C2 = {C : C ≤p
r A and C is not p-superterse},

C3 = {C : A ≤p
r C ≤p

r B and C is not p-superterse}
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Proof: The result for C2 follows from the preceding lemma and the fact that the
computable union of computably presentable classes is computably presentable. The
result for C3 follows by standard techniques of [3].

Theorem 8.22. Let a and b be any two computable ≤p
r -degrees such that a<p

rb and
b is p-superterse. Let L be any countable distributive lattice. L can be embedded into
the p-superterse ≤p

r -degrees on the interval between a and b.

Proof: Ambos-Spies showed that given any two ≤p
r -degrees a and b such that

a<p
rb, and given any computably presentable class D such that b /∈ D, any countable

distributive lattice L can be embedded into the degrees in [a,b] that do not contain
sets in D. Taking D = D2, the set of non-p-superterse degrees in [a,b], yields the
theorem.

Corollary 8.23. If P 6= NP and L is any countable distributive lattice then L can be
embedded into the p-superterse NP ≤p

r -degrees.

Proof: By Lemma 8.21 the class of non-p-superterse sets in NP is a computably
presentable class (taking A = SAT in the definition of C2). The result now follows
from Theorem 8.22 by taking a to be the trivial degree and b to be the NP-complete
degree.

As corollaries, we see that the preceding results apply if we replace p-superterse
degrees with p-terse, k-p-terse, or non-p-selective [71] degrees. The techniques in this
section apply, as well, to non-self-reducible and non-near-testable [36] degrees.

It is open whether the structure of the p-terse ≤p
r degrees is isomorphic to the

structure of the ≤p
r degrees (where r is either m or T). One possible difference is

that the ≤p
m degrees form a distributive upper semi-lattice, while for the p-terse ≤p

m

degrees this is open.
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10. Appendix

10.1. A Variant on the BP Operator

Schöning [70] defined the BP operator as a generalization of the complexity class
BPP. We will need a generalization BP• of the BP operator. Our approach closely
follows his; hence we provide only sketches.

Recall Schöning’s definition of the BP operator.

Definition 10.1. Let C be a class of sets. We say that A ∈ BP · C iff there exists a
set B ∈ C and a polynomial p such that for all n ∈ N, for all x ∈ Σn,

x ∈ A ⇒ Pr[〈x, y〉 ∈ B : y ∈ Σp(n) uniformly ] ≥ 3

4
,

x /∈ A ⇒ Pr[〈x, y〉 /∈ B : y ∈ Σp(n) uniformly ] ≥ 3

4
.

In Schöning’s definition the string y ranged over all of Σp(n). We need to consider
what happens if y ranges over some subset Y ⊆ Σp(n).

Definition 10.2. Let C be a class of sets. We say that A ∈ BP• · C iff there exists a
set B ∈ C, a polynomial p, and a set Y ⊆ Σ∗ such that for all n ∈ N, for all x ∈ Σn,

x ∈ A ⇒ Pr[〈x, y〉 ∈ B : y ∈ Y ∩ Σp(n) uniformly ] ≥ 3

4
,

x /∈ A ⇒ Pr[〈x, y〉 /∈ B : y ∈ Y ∩ Σp(n) uniformly ] ≥ 3

4
.

Definition 10.3. Let A,B be sets. We say that A ≤p
pos B iff A ≤p

T B via an oracle

Turing machine M () with the additional property that X ⊆ Y ⇒ L(MX) ⊆ L(MY ).
A class of sets C is closed under positive reductions if for all A,B, if B ∈ C and
A ≤p

pos B then A ∈ C.

Lemma 10.4. Let C be a class of sets closed under positive reductions. For any set
A ∈ BP• · C and any polynomial q there is a set B ∈ C, a polynomial p, and a set
Y ⊆ Σ∗ such that for all n ∈ N, for all x ∈ Σn,

x ∈ A ⇒ Pr[〈x, y〉 ∈ B : y ∈ Y ∩ Σp(n)] ≥ 1− 1

2q(n)
,

x /∈ A ⇒ Pr[〈x, y〉 /∈ B : y ∈ Y ∩ Σp(n)] ≥ 1− 1

2q(n)
.
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Proof: Since A ∈ BP• · C there exists a set B′ ∈ C, a polynomial p′ and a set
Y ′ ⊆ Σ∗ such that for all x ∈ Σn,

x ∈ A ⇒ Pr[〈x, y〉 ∈ B′ : y ∈ Y ′ ∩ Σp′(n)] ≥ 3

4
,

x /∈ A ⇒ Pr[〈x, y〉 /∈ B′ : y ∈ Y ′ ∩ Σp′(n)] ≥ 3

4
.

Let

t(n) =

⌈
2

log 4/3
q(n)

⌉
,

Y =
∞⋃

n=0

{〈y1, . . . , yt(n)〉 : (∀i)[|yi| = p′(n) and yi ∈ Y ′]},

B =
∞⋃

n=0

{〈x, 〈y1, . . . , yt(n)〉〉 : a majority of the 〈x, yi〉 are in B′}.

Let p(n) be the length of 〈y1, . . . , yt(n)〉 where all the yi are of length p′(n) (this p(n)
will depend on t(n) and the pairing function being used).

Note that B ∈ C since C is closed under positive reductions. The rest of the proof
proceeds exactly like [70, Lemma 3.3].

Theorem 10.5. If C is closed under positive reductions then BP• · C ⊆ C/poly.

Proof: Let A ∈ BP• · C. Apply Lemma 10.4 with q(n) = n + 1 to obtain B ∈ C,
a polynomial p, and Y ⊆ Σ∗ such that

x ∈ A ⇒ Pr[〈x, y〉 ∈ B : y ∈ Y ∩ Σp(n)] ≥ 1− 1

2n+1
,

x /∈ A ⇒ Pr[〈x, y〉 ∈ B : y /∈ Y ∩ Σp(n)] ≥ 1− 1

2n+1
.

By a probabilistic argument we show that, for all n, there exists a y ∈ Y ∩Σp(n) such
that (∀x)[x ∈ A iff B(x, y)].

Pr[(∃x ∈ Σn)[B(x, y) 6= A(x)] : y ∈ Y ∩ Σp(n)]

≤
∑

x∈Σn

Pr[B(x, y) 6= A(x) : y ∈ Y ∩ Σp(n)]

≤ (|Σ|)n · 1

2n+1

≤ 1

2
.

Hence at least one such y must exist. That string y can serve as advice.
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Definition 10.2 requires that its given condition hold for all n. However, we will
be dealing with languages where this condition only holds for some n, and for those
n, we still need polynomial advice.

Theorem 10.6. Let C be any class of languages closed under positive reductions. Let
I ⊆ N. Let A be a set such that there exists B ∈ C, a polynomial p, a set Y ⊆ Σ∗
such that for all n ∈ I, for all x ∈ Σn,

x ∈ A ⇒ Pr[〈x, y〉 ∈ B : y ∈ Y ∩ Σp(n)] ≥ 3

4
,

x /∈ A ⇒ Pr[〈x, y〉 /∈ B : y ∈ Y ∩ Σp(n)] ≥ 3

4
.

Then A′ = A ∩ ⋃
n∈I Σn ∈ C/poly.

Proof: For each length n one bit of advice tells if n ∈ I or not. If n ∈ I then
proceed as in Theorem 10.5, using an analogue of Lemma 10.4. If n /∈ I then clearly
A′ ∩ Σn = ∅.

10.2. A Variant of the Ajtai and Ben-Or Construction

Ajtai and Ben-Or [1] showed how to convert a probabilistic circuit into a deterministic
circuit with only a constant increase in depth and a polynomial increase in size. We
need a variant of their theorem. Our approach closely follows theirs; hence we provide
only sketches.

Definition 10.7. Let C be a circuit on n inputs. The circuit C separates A from B
if

x ∈ A ⇒ C(x) = 1

x ∈ B ⇒ C(x) = 0.

Recall the standard definition of a probabilistic circuit.

Definition 10.8. The circuit model allows negation, unbounded fan-in and-gates,
and unbounded fan-in or-gates. The inputs are {x1, . . . , xn} and {y1, . . . , ym} and
their negations. The xi are called input variables and the yi are called random vari-
ables. Let 0 ≤ q ≤ p ≤ 1. Let A,B be disjoint subsets of {0, 1}n. Let C be a
probabilistic circuit on n inputs and m random variables. The circuit C separates A
from B with probabilities (p, q), denoted by (C,A,B, p, q), if

x ∈ A ⇒ Pr[C(x, y) = 1 : y ∈ {0, 1}m uniformly ] ≥ p,

x ∈ B ⇒ Pr[C(x, y) = 1 : y ∈ {0, 1}m uniformly ] ≤ q.

In this definition the string y ranged over all of {0, 1}m. We need to consider what
happens if y ranges over some subset Y ⊆ {0, 1}m.
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Definition 10.9. Let 0 ≤ q ≤ p ≤ 1. Let A,B be disjoint subsets of {0, 1}n.
Let C be a probabilistic circuit on n inputs and m random variables. Let Y ⊆
{0, 1}m. The circuit C separates A from B with probabilities (p, q) using Y (denoted
SEP(C,A,B, p, q, Y )) if for all x ∈ Σn,

x ∈ A ⇒ Pr[C(x, y) = 1 : y ∈ Y ∩ {0, 1}m uniformly ] ≥ p,

x ∈ B ⇒ Pr[C(x, y) = 1 : y ∈ Y ∩ {0, 1}m uniformly ] ≤ q.

The following is Lemma 1 from [1] in our framework.

Lemma 10.10. Let n,m ∈ N and 0 ≤ q ≤ p ≤ 1. Let A,B be disjoint subsets of
{0, 1}n. Let Y ⊆ {0, 1}m. Let C be a probabilistic circuit having size s and depth d,
such that SEP(C,A,B, p, q, Y ).

i. If p ≥ p1 and q ≤ q1 then SEP(C,A,B, p1, q1, Y ).

ii. There is a circuit Cb having size s and depth d such that SEP(Cb, B,A, 1 −
q, 1− p, Y ).

iii. For any natural number u there are a circuit Cu having size us + 1 and depth
d+ 1 and a set Y ′ ⊆ {0, 1}m such that SEP(Cu, A,B, pu, qu, Y ′).

iv. If 1 − p + q < 2−n then there is a deterministic circuit Cd having size s and
depth d that separates A from B. SEP(Cd, A,B, 1, 0, Y ).

Proof: i. and ii. follow from the definition.

iii. Let Cu consist of u independent copies of C where all the outputs are connected
to one

∧
gate. Let Y ′ = Y × · · · × Y (u times). Cu has size us+ 1 and depth d+ 1.

Since probabilities multiply, clearly SEP(Cu, A,B, pu, qu, Y ′).

iv. Identical to Lemma 1.d of [1].

We now state three lemmas that can be proved from Lemma 10.10. Proofs are
omitted; however they are similar to the proofs of Lemmas 2 and 3 and Theorem 4
of [1].

Lemma 10.11. Let r ≥ 2. Let n,m ∈ N. Let A,B be disjoint subsets of {0, 1}n.
Let Y ⊆ {0, 1}m. Let C be a probabilistic circuit having size s and depth d, such that
SEP(C,A,B, 1

2
(1 + (log n)−r), 1

2
, Y ). Then there exists a circuit C ′ of size sn2 log n

and depth d+ 2 such that SEP(C,A,B, 1
2
(1 + (log n)−r+1), 1

2
, Y ).

Lemma 10.12. Let n,m ∈ N. Let A,B be disjoint subsets of {0, 1}n. Let
Y ⊆ {0, 1}m. Let C be a probabilistic circuit having size s and depth d, such that
SEP(C,A,B, 1

2
(1 + (log n)−1), 1

2
, Y ). Then there exists a circuit C ′ of size sn8 and

depth d+ 4 such that SEP(C ′, A,B, 1, 0, Y ).
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Lemma 10.13. Let {C}∞n=1 be an (s(n), d(n)) probabilistic circuit family where Cn

has k(n) random variables. Let {Y }∞n=1 be such that Yn ⊆ {0, 1}k(n). Assume that
for all n, SEP(Cn, An, An,

3
4
, 1

4
, Yn). Then there exists an (nO(1)s(n), d(n) + O(1))

deterministic circuit family for A.

The proofs of Ajtai and Ben-Or, and likewise our modifications, use circuits as
black boxes, which are combined by NOT-, OR-, and AND-gates. Hence the results
above apply to probabilistic G-circuits (defined in the obvious way) as well. We have
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[52] K.-I. Ko and U. Schöning. On circuit-size complexity and the low hierarchy in
NP. SIAM J. Comput., 14(1):41–51, Feb. 1985.
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