
The Complexity of ODDA
n

Richard Beigel∗

University of Illinois at Chicago
William Gasarch†

University of Maryland

Martin Kummer‡

Universität Chemnitz-Zwickau
Georgia Martin§

Wheaton, Maryland
Timothy McNicholl¶

University of Dallas

Frank Stephan‖

Universität Heidelberg

∗Research performed at Yale University, the University of Maryland, and Lehigh University. Address:
Dept. of EECS (m/c 154), University of Illinois at Chicago, 851 S. Morgan St. - 1120 SEO, Chicago, IL
60607-7053, U.S.A. Supported in part by the National Science Foundation under grants CCR–8958528 and
CCR–9415410. Also supported through the Human–Computer Interaction Laboratory by NASA grant NAG
52895. (Email: beigel@uic.edu.)

†Dept. of C.S. and Inst. for Adv. Comp. Stud., University of MD, College Park, MD 20742, U.S.A.
Supported in part by NSF grants CCR–9301339 and CCR–9732692. (Email: gasarch@cs.umd.edu.)

‡Technische Universität Chemnitz-Zwickau, Fakultät für Informatik, Straße der Nationen 62, 09107
Chemnitz, Germany, EU. (Email: martin.kummer@informatik.tu-chemnitz.de.)

§12602 Goodhill Road, Wheaton, MD 20906, U.S.A.
¶Dept. of Math., University of Dallas, Irving, TX 75062, U.S.A. (Email: tmcnicho@acad.udallas.edu.)
‖Mathematisches Institut, Universität Heidelberg, Im Neuenheimer Feld 294, 69120 Heidelberg, Ger-

many, EU. Supported by the Deutsche Forschungsgemeinschaft (DFG) grant Am 60/9-2. (Email:
fstephan@math.uni-heidelberg.de.)

1

Abstract

For a fixed set A, the number of queries to A needed in order to decide a set S is a
measure of S’s complexity. We consider the complexity of certain sets defined in terms
of A:

ODDA
n = {(x1, . . . , xn) : #A

n (x1, . . . , xn) is odd}

and, for m ≥ 2,

MODmA
n = {(x1, . . . , xn) : #A

n (x1, . . . , xn) 6≡ 0 (mod m)},

where #A
n (x1, . . . , xn) = A(x1) + · · ·+ A(xn). (We identify A(x) with χA(x), where χA

is the characteristic function of A.)
If A is a nonrecursive semirecursive set or if A is a jump, we give tight bounds on

the number of queries needed in order to decide ODDA
n and MODmA

n :

• ODDA
n can be decided with n parallel queries to A, but not with n− 1.

• ODDA
n can be decided with dlog(n + 1)e sequential queries to A but not with

dlog(n + 1)e − 1.

• MODmA
n can be decided with dn/me+ bn/mc parallel queries to A but not with

dn/me+ bn/mc − 1.

• MODmA
n can be decided with dlog(dn/me+ bn/mc+ 1)e sequential queries to A

but not with dlog(dn/me+ bn/mc+ 1)e − 1.

The lower bounds above hold for nonrecursive r.e. sets A as well. (Interestingly, the lower
bounds for r.e. sets follow by a general result from the lower bounds for semirecursive
sets.)

In particular, every nonzero truth-table degree contains a set A such that ODDA
n

cannot be decided with n− 1 parallel queries to A. Since every truth-table degree also
contains a set B such that ODDB

n can be decided with one query to B, a set’s query
complexity depends more on its structure than on its degree.

For a fixed set A,

Q(n, A) = {S : S can be decided with n sequential queries to A},
Q‖(n, A) = {S : S can be decided with n parallel queries to A}.

We show that if A is semirecursive or r.e., but is not recursive, then these classes form
non-collapsing hierarchies:

• Q(0, A) ⊂ Q(1, A) ⊂ Q(2, A) ⊂ · · ·
• Q‖(0, A) ⊂ Q‖(1, A) ⊂ Q‖(2, A) ⊂ · · ·

The same is true if A is a jump.

2

1 Introduction

One paradigm in computational complexity theory is the classification of recursive functions
according to their difficulty. Time is the most common complexity measure for recursive
functions. In this paper we will consider functions that are recursive in some fixed non-
recursive set A. One of the earliest measures considered for a function f recursive in A
is the running time of the fastest algorithm with oracle A that computes f . However, we
find that measure unsatisfying, because it is highly dependent on the computational model.
Instead, we define the complexity of a function f (relative to A) as the minimum number
of queries to A needed by an algorithm with oracle A that computes f . Thus we measure
the hardness of f directly in terms of the hard aspect of its computation, namely accessing
the nonrecursive oracle A.

Several natural examples of functions have been classified under the query complexity
measure [BGGO93, BGK96a, Gas91, Kum92, KS94]. In this paper we investigate the
complexity of the following sets:

Definition 1 Let A be a set of natural numbers. Let m and n be natural numbers such
that m ≥ 2 and n ≥ 1.

• ODDA
n = {(x1, . . . , xn) : #A

n (x1, . . . , xn) ≡ 1 (mod 2)}

• MODmA
n = {(x1, . . . , xn) : #A

n (x1, . . . , xn) 6≡ 0 (mod m)}

where #A
n (x1, . . . , xn) = A(x1) + · · · + A(xn). (We identify A(x) with χA(x), where χA is

the characteristic function of A.)

Sets like ODDA
n and MODmA

n are clearly computable with one query to a good oracle,
namely themselves. We do not want to measure the difficulty relative to an arbitrary
oracle, but rather relative to a natural one: A itself. This idea has already been employed
in various cases. For example, a “terse” set [BGGO93] is a set A such that, for every
n ≥ 1, computation of the n-fold characteristic function of A (i.e., the string-valued function
CA

n (x1, . . . , xn) = A(x1) · · ·A(xn)) requires n queries to A. (Note that if A is any set such
that, for every n ≥ 1, ODDA

n cannot be decided with n− 1 queries to A, then A is terse.)
The set ODDA

n is similar to the PARITY function, which has been well studied in the
contexts of circuit complexity [FSS84, Yao85, BS90, H̊as87, Smo87] and of pseudorandom-
ness [GNW95, Lev87].

Clearly, ODDA
n can be decided with n parallel queries to A. We show that if A is

semirecursive or if A is Σi- or Πi-complete for some i, then n−1 parallel queries do not suffice
to decide ODDA

n (unless A is recursive). Because every truth-table (tt) degree contains a
semirecursive set, it follows that every nonzero tt-degree contains a set A such that ODDA

n

requires n parallel queries to A. On the other hand, it is known that every tt-degree contains
a natural set A such that ODDA

n can be decided with just one query to A. This contrast
illustrates a theme in query complexity: a set’s complexity depends more on its structure
than on its degree.

We also obtain upper and lower bounds on the complexity of ODDA
n using sequential

queries, and on MODmA
n using both parallel and sequential queries. If A is nonrecursive,

but semirecursive or r.e., the results on ODDA
n imply that more queries to A allow you to

decide more sets, i.e., the query-complexity hierarchies over nonrecursive semirecursive sets

3

and over nonrecursive r.e. sets do not collapse. Interestingly, we prove a general implication
from lower bounds for semirecursive sets to lower bounds for r.e. sets.

Although query complexity is a useful measure, the dependence on a fixed oracle may be
unsatisfying. Since there is a semirecursive set in every tt-degree, it is also possible to define
the “semirecursive query complexity” of a set S as the minimum, over all semirecursive
sets B, of the number of queries to B needed in order to decide S. For each S, this
complexity is a well-defined function of the input. However, because semirecursive sets
can have arbitrarily high degree, you might suspect that every set has semirecursive query
complexity 1, rendering the measure meaningless. In fact, if A is semirecursive then the
semirecursive parallel-query complexity of ODDA

n is always n, unless A is recursive. Thus,
semirecursive query complexity depends on the structure of the problem and of the oracle,
but not on the degree of the problem or of the oracle.

2 Notation, Definitions, and Useful Facts

Throughout this paper, all lower-case italic letters denote natural numbers, M denotes a
Turing machine, and all other upper-case italic letters denote subsets of N. {Ai}i∈N denotes
the infinite sequence A0, A1, Let 〈〉 be a computable, 1-1, onto mapping from the set
of all sequences x1, . . . , xn such that n ≥ 1 into N.

We use standard notation from recursion theory [Odi89, Soa87]. Let M0,M1, . . . be an
effective list of all Turing machines, and let M

()
0 ,M

()
1 , . . . be an effective list of all oracle

Turing machines. Let We denote the domain of Me. Hence W0,W1, . . . is an effective list
of all r.e. sets of natural numbers. We sometimes write We to denote the corresponding set
of strings. We write Me(x) ↓ if Me(x) converges, Me(x) ↓= b if Me(x) converges and the
output is b, Me(x) ↑ if Me(x) diverges, Me,s(x) ↓ if Me(x) converges within s steps, and
Me,s(x) ↑ if Me(x) does not converge within s steps.

Define A′ to be {e : MA
e (e) ↓}, i.e., A′ is the halting problem relative to A. Define

A(0) = A, and A(i+1) =
(
A(i)

)′
. For all i ≥ 1, the set ∅(i) is Σi-complete, and the set ∅(i) is

Πi-complete. Note that K ≡m ∅′.

Definition 2 (Join) A⊕B = {2x : x ∈ A} ∪ {2x + 1 : x ∈ B}.

When an oracle Turing machine with oracle A⊕B queries an even number, we say that it
queries A; when it queries an odd number, we say that it queries B.

Definition 3 Let A be r.e. in Z.

1. {As}s∈N is a recursive-in-Z enumeration of A if

• A =
⋃

s∈N As,

• A0 = ∅,
• (∀s)[As is finite],

• (∀s)[As ⊆ As+1], and

• the function f defined by f(x, s) = As(x) is recursive in Z.

4

2. A recursive enumeration of A is a recursive-in-∅ enumeration of A.

We define classes of functions that can be computed with a bound on the number of
queries to an oracle.

Definition 4 ([BGGO93]) FQ(n, A) is the collection of all total functions f such that f is
recursive in A via an oracle Turing machine that makes at most n sequential (i.e., adaptive)
queries to A. FQ‖(n, A) is the collection of all total functions f such that f is recursive in
A via an oracle Turing machine that makes at most n parallel (i.e., nonadaptive) queries to
A (as in a weak truth-table reduction).

Definition 5 ([BGGO93]) FQX(n, A) is the collection of all total functions f such that
f is recursive in A⊕X via an oracle Turing machine that makes at most n sequential (i.e.,
adaptive) queries to A and an unlimited (though finite) number of queries to X. FQX

‖ (n, A)
is the collection of all total functions f such that f is recursive in A⊕X via an oracle Turing
machine that makes at most n parallel (i.e., nonadaptive) queries to A and an unlimited
number of queries to X. The queries to X can be made before, simultaneously with, or
after the queries to A.

Correspondingly, we define classes of sets that can be decided with a bound on the
number of queries.

Definition 6

• B ∈ Q(n, A) if χB ∈ FQ(n, A).

• B ∈ Q‖(n, A) if χB ∈ FQ‖(n, A).

• B ∈ QX(n, A) if χB ∈ FQX(n, A).

• B ∈ QX
‖ (n, A) if χB ∈ FQX

‖ (n, A).

If the oracle is a function g rather than a set A, complexity classes FQ(n, g), FQ‖(n, g),
FQX(n, g), FQX

‖ (n, g), Q(n, g), Q‖(n, g), QX(n, g), and QX
‖ (n, g) are defined similarly to

FQ(n, A) etc. For a class of sets C, we define FQ(n, C) =
⋃

A∈C FQ(n, A), and we define
FQ‖(n, C) etc. similarly.

We define sets whose query-complexity hierarchy does not collapse.

Definition 7

• A is supportive if (∀n)[Q(n, A) ⊂ Q(n + 1, A)].

• A is parallel supportive if (∀n)[Q‖(n, A) ⊂ Q‖(n + 1, A)].

Fact 8 Let n ≥ 1.

• Q(i, A) = Q(i, A)

• Q‖(i, A) = Q‖(i, A)

5

• ODDA
n ∈ Q(i, A) ⇐⇒ ODDA

n ∈ Q(i, A)

• ODDA
n ∈ Q‖(i, A) ⇐⇒ ODDA

n ∈ Q‖(i, A)

• A is supportive iff A is supportive.

• A is parallel supportive iff A is parallel supportive.

Definition 9 Let n ≥ 1. A function f is n-enumerable (denoted f ∈ EN(n)) if there exists
a recursive function g such that, for all x, |Wg(x)| ≤ n and f(x) ∈ Wg(x).

Suppose that f ∈ EN(n). Then, given x, we can enumerate over time at most n
possibilities for f(x), one of which is correct, although we might never know that we have
enumerated all the possibilities. (This concept first appeared in a recursion-theoretic frame-
work in [Bei87b]. Some very general theorems about EN(n) were proved in [KS94]. The
name “enumerable” was coined in [CH89].)

Definition 10 ([BGGO93]) Let n ≥ 1. CA
n is the n-fold characteristic function of A, i.e.,

the string-valued function defined by CA
n (x1, . . . , xn) = A(x1) · · ·A(xn).

(In the definition above, C stands for characteristic. In [BGGO93] and most of the liter-
ature, CA

n is denoted FA
n ; however, the notation CA

n is used in a recent book on bounded
queries [GM99].) Note that FQ‖(n, A) = FQ(1,CA

n).

Theorem 11 ([BGGO93]) Let f be a function.

(∃X)[f ∈ FQ(n, X)] ⇐⇒ f ∈ EN(2n).

Theorem 12 Let n ≥ 1.

1. (Nonspeedup [Bei87b, BGGO93]) If CA
n ∈ EN(n), then A is recursive.

2. (Cardinality [Kum92]) If #A
n ∈ EN(n), then A is recursive.

An easy corollary to the Nonspeedup theorem shows that extra queries allow you to
compute more functions.

Corollary 13 ([Bei87a])

1. If FQ(n + 1, A) = FQ(n, A), then A is recursive.

2. If FQ‖(n + 1, A) = FQ‖(n, A), then A is recursive.

Proof: 1. Assume that FQ(n + 1, A) = FQ(n, A). Then CA
n+1 ∈ FQ(n, A), since CA

n+1 ∈
FQ(n + 1, A). By an easy induction, CA

k ∈ FQ(n, A) for all k ≥ 1. In particular, CA
2n ∈

FQ(n, A) ⊆ EN(2n) by Theorem 11. By Theorem 12.1, A is recursive.
2. Same as 1. Just change FQ(·, A) to FQ‖(·, A) throughout.

In contrast, we will see in Section 8 that extra queries do not always allow you to decide
more sets.

We will prove several results about semirecursive sets. Semirecursive sets are abundant:
there is a semirecursive set in every tt-degree, and there is an r.e., semirecursive set in every
r.e. tt-degree. Furthermore, some deep recursion-theoretic techniques show that query-
complexity lower bounds concerning semirecursive sets carry over automatically to r.e. sets.

6

Definition 14 ([Joc68])

1. A linear ordering v on N is recursive in X if the set of ordered pairs {(x, y) : x v y}
is recursive in X.

2. A is semirecursive in X if there exists a linear ordering v on N such that v is recursive
in X and A is closed downward under v.

3. A is semirecursive if A is semirecursive in ∅.

Note that A is semirecursive in X iff A is semirecursive in X.

Lemma 15 ([Joc68]) A is semirecursive in X iff there exists f ≤T X such that, for all
x, y,

• f(x, y) ∈ {x, y}, and

• A ∩ {x, y} 6= ∅ ⇒ f(x, y) ∈ A.

Theorem 16 ([Joc68])

1. Every tt-degree contains a semirecursive set.

2. Every r.e. tt-degree contains an r.e., semirecursive set.

Definition 17 Fix a computable, 1-1, onto mapping 〈〈〉〉 from the set of all sequences
x1, . . . , xn, j such that 1 ≤ j ≤ n into N.

GEA = {〈〈x1, . . . , xn, j〉〉 : #A
n (x1, . . . , xn) ≥ j}.

Definition 18 ([Hay78]) A is a p-cylinder if A×A ≤m A and A×A ≤m A.

(In the definition above, p stands for positive.)

Fact 19 Let n ≥ 1.

1. [Hay78] A is a p-cylinder iff the set {B : B ≤m A} is closed under positive truth-table
reductions.

2. A is a p-cylinder iff GEA ≤m A.

3. If A is a p-cylinder then #A
2n−1 ∈ FQ(n, A).

4. If A is semirecursive, A = B′, or A = B′, then A is a p-cylinder.

Proof: 1. Every positive truth table can be written as an OR of ANDs.
2. GEA is positive truth-table reducible to A.
3. Use binary search with GEA as an oracle.
4. If A is semirecursive via v, define min and max according to the order v. Then

(x, y) ∈ A× A iff max (x, y) ∈ A, and (x, y) ∈ A× A iff min (x, y) ∈ A. The conclusion for
jumps is easy and well known.

7

The following is practically folklore in the bounded-query community.

Fact 20 ([Bei87b],[GM99, Page 84]) Let A be semirecursive.

1. (∀n ≥ 1)[CA
n ∈ FQ(1,#A

n) ⊆ FQ(dlog(n + 1)e, A)].

2. If A is not recursive, then (∀n ≥ 1)[#A
n /∈ FQ‖(n− 1, A)].

3. (∀n ≥ 1)[CA
n ∈ EN(n + 1)].

Proof: Let A be semirecursive via v.
1. Without loss of generality, assume that x1 v · · · v xn. If #A

n (x1, . . . , xn) = i, then
CA

n (x1, . . . , xn) = 1i0n−i. By Facts 19.3 and 19.4, #A
n ∈ FQ(dlog(n + 1)e, A).

2. Since A is not recursive, CA
n /∈ FQ‖(n− 1, A), by Corollary 13.2; therefore, #A

n /∈
FQ‖(n− 1, A), by part 1.

3. For x1, . . . , xn with x1 v · · · v xn, enumerate the strings 0n, 10n−1, . . . , 1n−10, 1n

as possibilities for CA
n (x1, . . . , xn).

Let REC denote the class of recursive sets, RE denote the class of r.e. sets, and SEMI
denote the class of semirecursive sets. Let RECX , REX , and SEMIX denote those classes
relativized to the oracle X.

3 Summary of Results

Let i, n, m be integers such that m ≥ 2, n ≥ 1, and i ≥ 1. Let A be a Σi- or Πi-complete
set or a nonrecursive semirecursive set. Then

1. ODDA
n ∈ Q‖(n, A)−Q‖(n− 1, A).

2. ODDA
n ∈ Q(dlog (n + 1)e, A)−Q(dlog (n + 1)e − 1, A).

3. MODmA
n ∈ Q‖(dn/me+ bn/mc, A)−Q‖(dn/me+ bn/mc − 1, A).

4. MODmA
n ∈ Q(dlog(dn/me+ bn/mc+ 1)e, A)−Q(dlog(dn/me+ bn/mc+ 1)e − 1, A).

5. A is supportive and parallel supportive.

Statement 5 and the lower bounds in statements 1–4 above hold as well for nonrecursive
r.e. sets. But the upper bounds in 2–4 do not, because every nonzero r.e. T-degree contains
an r.e. set B such that, for all n ≥ 1, ODDB

n /∈ Q(n− 1, B). A proof of this result appears
in [GM99, Section 4.8.3]; this proof can easily be modified to show that every nonzero r.e.
T-degree contains an r.e. set B such that, for all m ≥ 2 and n ≥ 1, MODmB

n /∈ Q(n− 1, B).
By statement 1 above and Theorem 16, every nonzero tt-degree contains a set A such

that ODDA
n /∈ Q‖(n− 1, A) for all n ≥ 1. On the other hand, it is known that every tt-

degree contains a natural set A such that ODDA
n ∈ Q(1, A) for all n ≥ 1, and we will present

other examples of natural sets with this property (but not in every degree).

8

4 The Complexity of ODDA
n for Semirecursive A

Let A be a nonrecursive semirecursive set. We know that, for all n ≥ 1, ODDA
n can be

decided with n parallel queries or dlog (n + 1)e sequential queries to A. In this section, we
prove that both of those bounds are tight, even if we allow queries to an arbitrary semire-
cursive set instead of A. This legitimizes the definition of semirecursive query complexity
that we mentioned in Section 1.

Lemma 21 Let n ≥ 1. If A is a p-cylinder then #A
2n+1 can be computed with two parallel

queries, one to #A
n+1 and one to ODDA

n .

Proof: We show how to compute #A
2n+1(~z). Since A is a p-cylinder, GEA ≤m A by

Fact 19.2. Therefore, for every i with 1 ≤ i ≤ 2n + 1, we can compute xi such that
xi ∈ A ⇐⇒ #A

2n+1(~z) ≥ i. Thus #A
2n+1(x1, . . . , x2n+1) = #A

2n+1(~z) and A(x1) ≥ · · · ≥
A(x2n+1), so ⌈

1
2#A

2n+1(x1, x2, x3, . . . , x2n+1)
⌉

= #A
n+1(x1, x3, x5, . . . , x2n+1).

By the definition of ODDA
2n+1,

#A
2n+1(x1, x2, x3, . . . , x2n+1) mod 2 = ODDA

2n+1(x1, x2, x3, . . . , x2n+1)
= ODDA

n+1(x1, x3, x5, . . . , x2n+1)⊕ODDA
n (x2, x4, x6, . . . , x2n),

where ⊕ denotes addition modulo 2, not the join of two sets. Therefore,

#A
2n+1(x1, x2, x3, . . . , x2n+1)
= 2#A

n+1(x1, x3, x5, . . . , x2n+1)− (ODDA
n+1(x1, x3, x5, . . . , x2n+1)⊕ODDA

n (x2, x4, x6, . . . , x2n)).

Thus #A
2n+1 can be computed with two parallel queries, one to #A

n+1 and one to ODDA
n ,

completing the proof.

The following definition and lemma are needed to prove the lower bound stated in
Theorem 25, which is then used to establish lower bounds for semirecursive sets through
Theorems 26 and 27.

Definition 22 Let m ∈ N and B ⊆ N.

1. A function f is in TQ(m,B) if there exist an oracle Turing machine M () and a recursive
function g such that

• f is computed by MB,

• for every x ∈ domain(f), the set of queries made in the MB(x) computation is
contained in Wg(x), and

• |Wg(x)| ≤ m.

2. A set S is in TQ(m,B) if χS ∈ TQ(m,B).

9

The following facts about TQ(m,B) are left as easy exercises for the reader.

Fact 23 Let k, p ≥ 1, let m,m1, . . . ,mp ∈ N, and let A,B ⊆ N.

1. FQ‖(m,B) ⊆ TQ(m,B) ⊆ FQ(m,B).

2. FQ(m,B) ⊆ TQ(2m − 1, B).

3. Let g be a p-ary recursive function, and let f, f1, . . . , fp be total functions such that

• for every x, f(x) = g(f1(x), . . . , fp(x)), and

• for every i with 1 ≤ i ≤ p, fi ∈ TQ(mi, B).

Then g ∈ TQ(
∑p

i=1 mi, B).

4. If A ∈ TQ(m,B) then, for all n ≥ 1, CA
n ∈ TQ(nm, B) and #A

n ∈ TQ(nm, B).

5. If ODDA
k ∈ TQ(m,B) then, for all n ≥ 1,

(a) ODDA
nk ∈ TQ(nm, B), and

(b) n < k ⇒ ODDA
n ∈ TQ(m,B).

Lemma 24 Let m ∈ N. If CB
2 ∈ EN(3), then TQ(m,B) ⊆ EN(m + 1).

Proof: Suppose that CB
2 ∈ EN(3) via h, and let f ∈ TQ(m,B) via M () and g. Let

x ∈ domain(f). We describe a partial recursive function Ex such that

• domain(Ex) ⊆ {0, 1}≤m,

• f(x) ∈ image(Ex), and

• |image(Ex)| ≤ m + 1.

The process of going from x to the code for Ex will be recursive; hence, using Ex, one can
easily show that f ∈ EN(m + 1).

ALGORITHM For Ex

1. Input σ ∈ {0, 1}≤m. Let p = |σ|, and let b1, . . . , bp ∈ {0, 1} such that σ = b1 · · · bp.

2. Enumerate Wg(x) until p elements appear. (If |Wg(x)| < p, then Ex(σ) ↑.)

3. Let y1, . . . , yp be the first p elements of Wg(x), in order of enumeration. For all i, j
such that 1 ≤ i < j ≤ p, enumerate Wh(yi,yj) until bibj appears. (If for some i, j this
never occurs, then Ex(σ) ↑.)

4. (We now know that the statement CB
p (y1, . . . , yp) = b1 · · · bp is consistent with the

fact that CB
2 ∈ EN(3) via h.) Simulate the computation M ()(x). For every i with

1 ≤ i ≤ p, if yi is queried, answer with bi. If a number z /∈ {y1, . . . , yp} is queried,
diverge.

10

5. If the simulation in step 4 terminates, then output its answer and halt.

END OF ALGORITHM

Let Wg(x) = {y1, y2, . . .}, a finite set of size ≤ m. For every σ ∈ {0, 1}≤m, the com-
putation of Ex(σ) is guessing that CB

|σ|(y1, . . . , y|σ|) = σ. Note that the different σ’s are
coordinated, in that they all use their ith bit as a guess for B(yi) (unless i > |σ|). Also note
that if Ex(σ) ↓ and σ ≺ τ , then either Ex(τ) ↓= Ex(σ) or Ex(τ) ↑.

Clearly, f(x) ∈ image(Ex). We show that |image(Ex)| ≤ m + 1. Let

C = {σ ∈ {0, 1}≤m : Ex(σ) ↓ ∧(∀σ′ ≺ σ)[Ex(σ′) ↑]}.

For every k ≤ m, let

Gk = C ∩ {0, 1}≤k

Hk = {τ ∈ {0, 1}k : (∃σ)[σ ∈ C ∧ τ ≺ σ]}
Ck = Gk ∪Hk

Clearly, the following hold.

• |image(Ex)| ≤ |C|.

• Cm = C.

• (∀k ≤ m)[Gk ∩Hk = ∅].

• (∀k < m)[Gk ⊆ Gk+1].

Furthermore, if σ ∈ Ck and 1 ≤ i < j ≤ |σ|, then σ(i)σ(j) ∈ Wh(yi,yj). We show that
|C| ≤ m + 1, which implies that |image(Ex)| ≤ m + 1.
Claim: If 1 ≤ k < m and σ, τ are strings in Ck−1 with σ 6= τ and |σ| = |τ | = k − 1,
then |Ck ∩ {σ0, σ1, τ0, τ1}| ≤ 3. Hence there is at most one string in Ck−1 with both 1-bit
extensions in Ck. Since Hk−1 ⊆ Ck−1, there is at most one string in Hk−1 with both 1-bit
extensions in Ck.
Proof of Claim: Suppose that σ and τ differ on the ith bit, and that σ(i) = 0 and τ(i) = 1.
If σ0 ∈ Ck, then 00 ∈ Wh(yi,yk). If σ1 ∈ Ck, then 01 ∈ Wh(yi,yk). If τ0 ∈ Ck, then
10 ∈ Wh(yi,yk). If τ1 ∈ Ck, then 11 ∈ Wh(yi,yk). Since |Wh(yi,yk)| ≤ 3, we know that
|Ck ∩ {σ0, σ1, τ0, τ1}| ≤ 3.
End of Proof of Claim

We prove, by induction on k ≤ m, that |Ck| ≤ k + 1. For k = 0, we have C0 = {λ},
where λ is the empty string, so |C0| ≤ 1. Assume that k ≥ 1, and that |Ck−1| ≤ k. Note
that

|Ck| = |Gk −Gk−1|+ |Hk|+ |Gk−1|.

Every string in (Gk − Gk−1) ∪ Hk is a 1-bit extension of some string in Hk−1. Since, by
the claim above, at most one string in Hk−1 has both 1-bit extensions in Ck, we have
|Gk −Gk−1|+ |Hk| ≤ |Hk−1|+ 1. Hence

|Ck| = |Gk −Gk−1|+ |Hk|+ |Gk−1| ≤ |Hk−1|+ 1 + |Gk−1| = |Ck−1|+ 1 ≤ k + 1.

Since |Cm| ≤ m + 1, we have |image(Ex)| ≤ m + 1.

11

Theorem 25 Let A be a p-cylinder, and let B be such that CB
2 ∈ EN(3). Assume there

exists k ≥ 1 such that ODDA
k ∈ TQ(k − 1, B). Then A is recursive.

Proof:
We show that there exists n0 ≥ 1 such that #A

n0
∈ TQ(n0 − 1, B). By Lemma 24,

TQ(n0 − 1, B) ⊆ EN(n0); hence we will have #A
n0

∈ EN(n0). By Theorem 12.2, A is
recursive.

For n ∈ N, define T (n) to be the least m such that #A
2n+1 ∈ TQ(m, B). Since ODDA

k ∈
TQ(k − 1, B), we have ODDA

d 2k

k
e(k)

∈ TQ(d2k

k e(k − 1), B) by Fact 23.5. Now d2k

k e(k) ≥ 2k,

and it can be shown that d2k

k e(k−1) ≤ 2k−1. Combining these inequalities with Fact 23.5,
we have that ODDA

2k ∈ TQ(2k − 1, B) and A ∈ TQ(2k − 1, B). By Fact 23.4, for every
n, #A

2n+1 ∈ TQ((2n + 1)(2k − 1), B), so T (n) ≤ (2n + 1)(2k − 1). In particular, T (k) ≤
(2k + 1)(2k − 1) = 22k − 1.

By Lemma 21, for n ≥ 1, #A
2n+1 is computable with two parallel queries, one to #A

2n−1+1

and one to ODDA
2n−1 . Since ODDA

2k ∈ TQ(2k − 1, B), by Fact 23.5 we have that, for n > k,
ODDA

2n−1 ∈ TQ((2n−1/2k)(2k − 1), B); hence, by Fact 23.3,

T (n) ≤ T (n− 1) + (2n−1/2k)(2k − 1).

By a simple induction we have that, for n ≥ k,

T (n) ≤ 2n(1− 1/2k) + 22k − 2k.

In particular, T (3k) ≤ 23k − 2k < 23k, so #A
23k+1

∈ TQ(23k, B). Hence it suffices to let
n0 = 23k + 1.

Theorem 26 Let A be a p-cylinder, and let B be such that CB
2 ∈ EN(3).

1. If (∃k ≥ 1)[ODDA
k ∈ Q‖(k − 1, B)], then A is recursive.

2. If (∃k ≥ 1)[ODDA
2k ∈ Q(k, B)], then A is recursive.

Proof:
1) If ODDA

k ∈ Q‖(k − 1, B) then, by Fact 23.1, ODDA
k ∈ TQ(k − 1, B). By Theorem 25, A

is recursive.
2) If ODDA

2k ∈ Q(k,B) then, by Fact 23.2, ODDA
2k ∈ TQ(2k − 1, B). By Theorem 25, A is

recursive.

Theorem 27 If A is a nonrecursive semirecursive set, then for all n ≥ 1,

ODDA
n ∈ Q‖(n, A)−Q‖(n− 1,SEMI)

and
ODDA

n ∈ Q(dlog (n + 1)e, A)−Q(dlog (n + 1)e − 1,SEMI).

In particular, every nonzero tt-degree contains a set A with this property, and every nonzero
r.e. tt-degree contains an r.e. set A with this property.

12

Proof: Let A be a nonrecursive semirecursive set. The nontrivial upper bound follows
from Fact 20.1. The lower bounds follow from Fact 20.3, Fact 19.4, and Theorem 26.

The existence of such sets in every nonzero tt-degree (and of such sets in every nonzero
r.e. tt-degree which are also r.e.) follows from Theorem 16.

5 The Complexity of ODDA
n for R.E. A

In this section we will prove a deep connection between recursive enumerability and semire-
cursiveness. The key to our results is the existence of a set X such that (1) every r.e. set
is semirecursive in X and (2) every r.e. set that is recursive in X is in fact recursive. Our
proofs are based on two important concepts from recursion theory: recursively bounded
sets and extensive sets.1

Definition 28 ([Joc89]) A set X is extensive if, for every 0,1-valued partial recursive
function g, there is a 0,1-valued total function h ≤T X such that h extends g.

(The Turing degrees of the extensive sets are the same as the Turing degrees of the consistent
extensions of Peano arithmetic [Joc89], but this is not important for our purposes.)

Lemma 29 If A is r.e. and X is extensive, then A is semirecursive in X.

Proof: Assume that A is r.e. and X is extensive. Let {As}s∈N be a recursive enumeration
of A. Define a 0,1-valued partial recursive function g by

g(x, y) =


1 if (∃s)[x ∈ As ∧ y /∈ As],
0 if (∃s)[y ∈ As ∧ x /∈ As],
↑ otherwise.

Since X is extensive, there is a 0,1-valued total function h ≤T X such that h extends g. Let

f(x, y) =
{

x if h(x, y) = 1,
y if h(x, y) = 0.

Then f ≤T X, (∀x, y)[f(x, y) ∈ {x, y}], and

A ∩ {x, y} 6= ∅ ⇒ f(x, y) ∈ A,

so A is semirecursive in X by Lemma 15.

Definition 30

• A function f is recursively dominated if there exists a recursive function g such that
(∀x)[f(x) < g(x)].

1The degrees of recursively bounded sets and extensive sets have been well studied. The former are called
hyperimmune free [MM68, Odi89, Soa87], the latter are called DNR2 [Joc89] or PA [Kuč85].

13

• A set X is recursively bounded (r.b.) if every total function f such that f ≤T X is
recursively dominated.2

(The r.b. sets are the same as the sets of hyperimmune-free degree [MM68].)

Lemma 31 ([MM68]) Let X be r.b. If A is r.e. and A ≤T X, then A is recursive.

Proof: Assume that A is r.e. and A ≤T X. Let {As}s∈N be a recursive enumeration
of A, and let

f(x) =
{

µs[x ∈ As] if x ∈ A,
0 otherwise.

Then f ≤T A ≤T X. Since X is r.b., there is a recursive function g such that (∀x)[f(x) <
g(x)]. But then, for all x,

x ∈ A ⇐⇒ x ∈ Ag(x),

so A is recursive.

The following lemma is implicit in [JS72].

Lemma 32 There exists a set that is r.b. and extensive.

Proof sketch: There exists an infinite, recursive binary tree T such that every infinite
branch of T is extensive: Given a finite string of bits σ,

σ ∈ T ⇐⇒ (∀e, x < |σ|)(∀b ∈ {0, 1})[(〈e, x〉 < |σ| ∧Me,|σ|(x) ↓= b) ⇒ σ(〈e, x〉) = b].

A is an infinite branch of T unless there are b ∈ {0, 1} and e, s, x such that e, x, 〈e, x〉 < s
and Me,s(x) ↓= b 6= A(〈e, x〉), in which case the string A(0) · · ·A(s − 1) is not in T . By
the Hyperimmune-Free Basis Theorem [JS72] (see also [Soa87, Page 109]), T has an infinite
branch A which is of hyperimmune-free degree; such A is r.b. [MM68].

Lemma 33 There exists X such that

• RE ⊆ SEMIX , and

• RE− REC ⊆ SEMIX − RECX .

Proof: Let X be an r.b., extensive set, which exists by Lemma 32. By Lemma 29,
RE ⊆ SEMIX . By Lemma 31, RE ∩ RECX ⊆ REC, so RE − REC ⊆ RECX . Thus
RE− REC ⊆ SEMIX − RECX .

The following lemma lets us turn lower bounds for semirecursive sets into lower bounds
for r.e. sets.

Lemma 34 For each set A, let fA be a function.
2The term recursively bounded as used here is not to be confused with the same term used elsewhere to

define other entities. It is common (see [JS72], for example) to say that a tree T is recursively bounded if
there is a recursive function f such that, for every node σ of T and every x < |σ|, σ(x) ≤ f(x). (Note that,
by that definition, every binary tree is recursively bounded.)

14

1. (∀X)(∀A ∈ SEMIX − RECX)[fA /∈ FQ(k, SEMIX)] ⇒
(∀A ∈ RE− REC)[fA /∈ FQ(k, RE)].

2. (∀X)(∀A ∈ SEMIX − RECX)[fA /∈ FQ‖(k, SEMIX)] ⇒
(∀A ∈ RE− REC)[fA /∈ FQ‖(k, RE)].

Proof: 1. We prove the contrapositive. Assume that there exists A with

A ∈ RE− REC and fA ∈ FQ(k, RE).

By Lemma 33, there exists X such that RE−REC ⊆ SEMIX −RECX and RE ⊆ SEMIX .
Then

A ∈ SEMIX − RECX and fA ∈ FQ(k, SEMIX).

2. Similar. Replace FQ(k, ·) by FQ‖(k, ·) in the proof of part 1 above.

Theorem 35 Let A be a nonrecursive r.e. set.

1. (∀n ≥ 1)[ODDA
n /∈ Q‖(n− 1,RE)].

2. (∀n ≥ 1)[ODDA
2n /∈ Q(n, RE)].

Proof: By the relativization of the lower bounds in Theorem 27 (which can be done by
relativizing the proofs of Theorems 25 and 26 and the results used therein, including the
Cardinality Theorem), we obtain the following for all X and all A ∈ SEMIX − RECX :

1. (∀n ≥ 1)[ODDA
n /∈ QX

‖ (n− 1,SEMIX)].

2. (∀n ≥ 1)[ODDA
2n /∈ QX(n, SEMIX)].

The result now follows by Lemma 34.

For other applications of the Hyperimmune-Free Basis Theorem relevant to the study
of query complexity, see [KS94, Section 6]. For a self-contained proof of Theorem 35 that
does not use the Hyperimmune-Free Basis Theorem, see [GM99, Section 6.2.2].

6 The Complexity of ODDA
n for Σi-complete A

The following theorem is obtained by relativizing the proof of Theorem 35.

Theorem 36 Let A be r.e. in Z, but not recursive in Z.

1. (∀n ≥ 1)[ODDA
n /∈ QZ

‖ (n− 1,REZ)].

2. (∀n ≥ 1)[ODDA
2n /∈ QZ(n, REZ)].

Theorem 37 Let A = Z ′ or A = Z ′.

1. (∀n ≥ 1)[ODDA
n ∈ Q‖(n, A)−QZ

‖ (n− 1, A)].

15

2. (∀n ≥ 1)[ODDA
n ∈ Q(dlog (n + 1)e, A)−QZ(dlog (n + 1)e − 1, A)].

Proof: The first upper bound is obvious. The second upper bound follows from Fact 19,
parts 3 and 4. If A = Z ′, then A is r.e. in Z but not recursive in Z, so in this case the lower
bounds follow from Theorem 36. By Fact 8, the same lower bounds apply to Z ′ as to Z ′.

The following theorem is immediate.

Theorem 38 Let A be Σi-complete or Πi-complete for some i ≥ 1.

1. (∀n ≥ 1)[ODDA
n ∈ Q‖(n, A)−Q‖(n− 1, A)].

2. (∀n ≥ 1)[ODDA
n ∈ Q(dlog (n + 1)e, A)−Q(dlog (n + 1)e − 1, A)].

Note: The special case A = K appears in [BGH89].

7 The Complexity of MODmA
n

For a broad class of sets A, including jumps and semirecursive sets, we show that MODmA
n

is m-equivalent to ODDA
k where k = dn/me+ bn/mc. Thus our bounds for ODDA

k translate
into bounds for MODmA

n .

Lemma 39 Let m ≥ 2 and n ≥ 1. If A is a p-cylinder then

MODmA
n ≡m ODDA

dn/me+bn/mc.

Proof: Since A is a p-cylinder, GEA ≤m A by Fact 19.2. Let k = dn/me+ bn/mc.
First, we show that MODmA

n ≤m ODDA
k . Consider an input x1, . . . , xn. Since GEA ≤m A,

we can compute y1, . . . , yn such that yi ∈ A ⇐⇒ #A
n (x1, . . . , xn) ≥ i. Then #A

n (x1, . . . , xn) =
#A

n (y1, . . . , yn) and A(y1) ≥ · · · ≥ A(yn), so

(x1, . . . , xn) ∈ MODmA
n ⇐⇒ (y1, ym, ym+1, y2m, y2m+1, y3m, . . .) ∈ ODDA

k .

(If m divides n, the last argument is yn; otherwise, the last argument is yb n
m
cm+1.)

Second, we show that ODDA
k ≤m MODmA

n . Consider an input x1, . . . , xk. Since
GEA ≤m A, we can compute y1, . . . , yk such that yi ∈ A ⇐⇒ #A

k (x1, . . . , xk) ≥ i.
Then #A

k (x1, . . . , xk) = #A
k (y1, . . . , yk) and A(y1) ≥ · · · ≥ A(yk), so

(x1, . . . , xk) ∈ ODDA
k ⇐⇒ (y1, . . . , y1, y2, y3, . . . , y3, y4, . . .) ∈ MODmA

n .

(The argument yi appears m − 1 times if i is odd and i < k. The argument yk appears
n mod m times if k is odd.)

The following theorem is immediate from the results in this paper for ODDA
n .

Theorem 40

16

1. If A is a nonrecursive semirecursive set, then for all m ≥ 2 and n ≥ 1,
MODmA

n ∈ Q‖(dn/me+ bn/mc, A)−Q‖(dn/me+ bn/mc − 1,SEMI) and
MODmA

n ∈ Q(dlog (dn/me+ bn/mc+ 1)e, A)−Q(dlog (dn/me+ bn/mc+ 1)e − 1,SEMI).
In particular, every nonzero tt-degree contains a set A with this property, and every
nonzero r.e. tt-degree contains an r.e. set A with this property.

2. If A is r.e. but not recursive, then for all m ≥ 2 and n ≥ 1,

MODmA
n /∈ Q‖(dn/me+ bn/mc − 1,RE) ∪ Q(dlog (dn/me+ bn/mc+ 1)e − 1,RE).

3. If A = B′ or A = B′ for some set B, then for all m ≥ 2 and n ≥ 1,
MODmA

n ∈ Q‖(dn/me+ bn/mc, A)−Q‖(dn/me+ bn/mc − 1, A) and
MODmA

n ∈ Q(dlog (dn/me+ bn/mc+ 1)e, A)−Q(dlog (dn/me+ bn/mc+ 1)e − 1, A).

The conclusion of part 3 applies, in particular, to Σi- and Πi-complete sets for i ≥ 1.

8 Sets A with ODDA
n ∈ Q(1, A) and MODmA

n ∈ Q(1, A)

It is known [Rog67, Page 112] that every tt-degree contains a natural set A such that, for
all B, B ≤tt A ⇐⇒ B ≤m A. In particular, for all m ≥ 2 and n ≥ 1, ODDA

n and MODmA
n

are decidable with just one query to A. We construct other examples of natural sets A with
these properties (but not in every degree).

Definition 41 ([Rog67, Page 112]) Fix an effective encoding for Boolean functions of
finitely many variables.

{Btt = 〈h, x1, . . . , xn〉 : n ≥ 1, h is an n-ary Boolean function, h(B(x1), . . . , B(xn)) = 1}.

Proposition 42 ([Rog67, Page 112],[Odi89, Page 593]) Every tt-degree contains a set
A such that, for all m ≥ 2 and n ≥ 1,

• S ≤tt A ⇒ S ≤m A,

• ODDA
n ≤m A, and

• MODmA
n ≤m A.

Proof: Let A = Btt for some B in the given degree.

We now exhibit other natural sets A such that ODDA
n and MODmA

n can be decided
with just one query to A.

Definition 43 B(ω) = {〈x, i〉 : x ∈ B(i)}.

(It is well known that the set ∅(ω) is recursively isomorphic to the set of all true first-order
statements of arithmetic, suitably encoded [Rog67, Page 318].)

Proposition 44 Let A = B(ω). Then, for all m ≥ 2 and n ≥ 1,

17

1. S ≤wtt A ⇒ S ≤m A,

2. ODDA
n ≤m A,

3. MODmA
n ≤m A, and

4. Q‖(n, A) = Q(1, A).

Proof: Part 1. Assume that S ≤wtt B(ω). On input x, compute the list of queries,
and determine the maximum i such that 〈y, i〉 is on the list of queries for some y. For this
particular x, the remaining part of the computation is recursive in B(i), hence r.e. in B(i).
Thus we can compute a single number z such that S(x) = B(i+1)(z) = B(ω)(〈z, i + 1〉).
Therefore S ≤m B(ω).

Parts 2–4 follow immediately from part 1.

Note the contrast between Proposition 44 and Theorem 38. The following generalization
of those two results is left as an exercise for readers familiar with recursive ordinals and the
extension of the jump operator to them.

Proposition 45 Let α be a recursive ordinal and A = B(α).

1. If α is a successor ordinal, then (∀n ≥ 1)[ODDA
n ∈ Q‖(n, A) − Q‖(n− 1, A)] and

(∀n ≥ 1)[ODDA
2n ∈ Q(n + 1, A)−Q(n, A)].

2. If α is a limit ordinal, then (∀n ≥ 1)[ODDA
n ∈ Q(1, A)].

A similar proposition holds for MODmA
n .

9 Supportive Sets and ODDA
n

Recall that A is supportive if (∀n)[Q(n, A) ⊂ Q(n + 1, A)], and A is parallel supportive if
(∀n)[Q‖(n, A) ⊂ Q‖(n + 1, A)]. By Theorems 27 and 37, jumps and nonrecursive semire-
cursive sets are supportive and parallel supportive. By Theorem 35, nonrecursive r.e. sets
are parallel supportive. We will show that nonrecursive r.e. sets are supportive as well. As
in the previous results, the separation is witnessed by ODDA

k for some k, but unlike the
previous results, we do not know which value of k.

Lemma 46 If (∀n)(∃k ≥ 1)[ODDA
k /∈ Q(n, A)], then A is supportive and parallel support-

ive.

Proof: Assume that (∀n)(∃k ≥ 1)[ODDA
k /∈ Q(n, A)]. Then A is nonrecursive, so

A ∈ Q(1, A)−Q(0, A). Fix n ≥ 1. The set {k ≥ 1 : ODDA
k /∈ Q(n, A)} is nonempty. Let m

be its least element. Then m > n ≥ 1 and ODDA
m−1 ∈ Q(n, A), so

ODDA
m ∈ Q(n + 1, A)−Q(n, A).

Thus A is supportive. The proof that A is parallel supportive is similar.

Corollary 47

18

1. Let A be nonrecursive. If A is semirecursive, r.e., or in the range of the jump operator,
then A is supportive and parallel supportive.

2. Every nonzero tt-degree contains a set that is both supportive and parallel supportive.

Proof: 1. By Theorems 27, 35, and 37, (∀n)(∃k ≥ 1)[ODDA
k /∈ Q(n, A)]. Therefore, by

Lemma 46, A is supportive and parallel supportive.
2. By Theorem 16, every tt-degree contains a semirecursive set, so we are done by

part 1.

The proofs of the following two theorems are left as exercises for readers familiar with
random sets, 1-generic sets, and/or autoreducible sets.

Theorem 48 If A is random or 1-generic, then (∀n ≥ 1)[ODDA
n ∈ Q‖(n, A)−Q(n− 1, A)];

hence A is both supportive and parallel supportive, by Lemma 46.

Theorem 49 If (∃n ≥ 1)[ODDA
n ∈ Q(n− 1, A)], then A is autoreducible.

Note 50 It is well known (see [Odi89, Page 588], for example) that if A is r.b. (i.e., of
hyperimmune-free degree) then (∀S)[S ≤T A ⇒ S ≤tt A]. By the proof of Proposition 42,
(∀S)[S ≤T Att ⇒ S ≤m Att]. Thus Att is neither supportive nor parallel supportive.

This fact, together with Corollary 47 and Theorem 48, might give the impression that
a set is supportive iff it is parallel supportive. This is not the case, however, since Ktt and
∅(ω) are examples of sets that are supportive but not parallel supportive. Proof sketches of
these results appeared in [BGK+96b]; full proofs appear in [GM99, Section 8.2].

Some earlier work on supportive sets and the like appears in [Bei87a, Bei88].

References

[Bei87a] Richard Beigel. Functionally supportive sets. Technical Report 87–10, The
Johns Hopkins University, Dept. of Computer Science, 1987.

[Bei87b] Richard Beigel. Query-Limited Reducibilities. PhD thesis, Stanford University,
1987. Also available as Report No. STAN-CS-88–1221.

[Bei88] Richard Beigel. When are k+1 queries better than k? Technical Report 88-06,
The Johns Hopkins University, Dept. of Computer Science, 1988.

[BGGO93] Richard Beigel, William I. Gasarch, John T. Gill, and James C. Owings. Terse,
superterse, and verbose sets. Information and Computation, 103(1):68–85,
March 1993.

[BGH89] Richard Beigel, William I. Gasarch, and Louise Hay. Bounded query classes
and the difference hierarchy. Archive for Mathematical Logic, 29(2):69–84,
December 1989.

[BGK96a] Richard Beigel, William Gasarch, and Efim Kinber. Frequency computation
and bounded queries. Theoretical Computer Science, 163:177–192, 1996.

19

[BGK+96b] Richard Beigel, William Gasarch, Martin Kummer, Georgia Martin, Timothy
McNicholl, and Frank Stephan. On the query complexity of sets. In 21st
International Symposium on Mathematical Foundations of Computer Science
(MFCS ’96), Cracow, Poland, 1996.

[BS90] Ravi Boppana and Michael Sipser. The complexity of finite functions. In
Jan van Leeuwen, editor, Handbook of Theoretical Computer Science, Volume
A: Algorithms and Complexity, pages 757–804. MIT Press and Elsevier, The
Netherlands, 1990.

[CH89] Jin-yi Cai and Lane A. Hemachandra. Enumerative counting is hard. Infor-
mation and Computation, 82(1):34–44, July 1989.

[FSS84] Merrick Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the
polynomial-time hierarchy. Mathematical Systems Theory, 17(1):13–27, April
1984.

[Gas91] William Gasarch. Bounded queries in recursion theory: A survey. In Proc.
of the 6th Annu. Conference on Structure in Complexity Theory, pages 62–78.
IEEE Computer Society Press, June 1991.

[GM99] William I. Gasarch and Georgia A. Martin. Bounded Queries in Recursion
Theory. Birkhäuser, Boston, 1999.

[GNW95] Oded Goldreich, Noam Nisan, and Avi Wigderson. On Yao’s XOR-lemma.
Technical Report TR95-050, Electronic Colloquium on Computational Com-
plexity, 1995.

[H̊as87] Johan H̊astad. Computational Limitations of Small-Depth Circuits. MIT Press,
Cambridge, MA, 1987.

[Hay78] Louise Hay. Convex subsets of 2n and bounded truth-table reducibility. Discrete
Mathematics, 21(1):31–46, January 1978.

[Joc68] Carl G. Jockusch. Semirecursive sets and positive reducibility. Transactions of
the AMS, 131:420–436, May 1968.

[Joc89] Carl G. Jockusch. Degrees of functions with no fixed points. In J.E. Fen-
stad, I. Frolov, and R. Hilpinen, editors, Logic, Methodology, and Philosophy
of Science VIII, pages 191–201. North Holland, 1989.

[JS72] Carl G. Jockusch, Jr. and Robert I. Soare. Π0
1 classes and degrees of theories.

Transactions of the AMS, 173:33–56, 1972.

[KS94] Martin Kummer and Frank Stephan. Effective search problems. Mathematical
Logic Quarterly, 40:224–236, 1994.

[Kuč85] Antonin Kučera. Measure of Π0
1 classes and complete extensions of PA. In Re-

cursion Theory Week at Oberwolfach, volume 1141 of Lecture Notes in Math-
ematics, pages 245–259, Berlin, 1985. Springer-Verlag.

20

[Kum92] Martin Kummer. A proof of Beigel’s cardinality conjecture. Journal of Symbolic
Logic, 57(2):677–681, June 1992.

[Lev87] Leonid A. Levin. One way functions and pseudorandom generators. Combina-
torica, 7:357–363, 1987.

[MM68] Webb Miller and Donald A. Martin. The degree of hyperimmune sets. Zeitsch.
f. math. Logik und Grundlagen d. Math., 14:159–166, 1968.

[Odi89] Piergiorgio Odifreddi. Classical Recursion Theory (Volume I). North-Holland,
Amsterdam, 1989.

[Rog67] Hartley Rogers, Jr. Theory of Recursive Functions and Effective Computability.
McGraw Hill, New York, 1967.

[Smo87] Roman Smolensky. Algebraic methods in the theory of lower bounds for
Boolean circuit complexity. In Proc. of the 19th ACM Sym. on Theory of
Computing, pages 77–82, 1987.

[Soa87] Robert I. Soare. Recursively Enumerable Sets and Degrees. Perspectives in
Mathematical Logic. Springer-Verlag, Berlin, 1987.

[Yao85] Andrew C. Yao. Separating the polynomial-time hierarchy by oracles. In Proc.
of the 26th IEEE Sym. on Found. of Comp. Sci., pages 1–10, 1985.

21

