
1

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

A Thorough Analysis of Quadratic Sieve Factoring Algorithm and Its
Comparison to Pollard-rho Factoring Algorithm

Zongxia Li
Computer Science and Mathematics

University of Maryland
zli12321@umd.edu

William Gasarch
Computer Science Affiliate in Mathematics

University of Maryland
gasarch@umd.edu

1 Abstract

One of the most significant challenges on cryp-
tography today is the problem of factoring large
integers since there are no algorithms can factor in
polynomial time and factoring large numbers more
than some limits(200 digits) remain difficult. The
security of the current crypto systems depend on
the hardness of factoring large public keys. In this
work, we want to use the implement two existing
factoring algorithms - pollard-rho and quadratic
sieve - and compare their performance. In addi-
tion, we want to analyze how close is the theoreti-
cal time complexity of both algorithms compare to
their actual time complexity and how bit length of
numbers can affect quadratic sieve’s performance.
Finally, we verify whether quadratic sieve would
do better than pollard-rho for factoring numbers
smaller than 80 bits.

2 Introduction

The idea of public key cryptography was first
introduced in 1975 by Martin Hellman, Ralph
Merkle, and Whitfield Diffie at Stanford Univer-
sity (Diffie, 1988). Before the era of public key
crypto system, it two people want to exchange se-
cret information without anybody else knowing,
they have to agree in advance on a secret key that is
known only by them but not anyone else. After the
invention of public key systems, two people can
exchange secret information without ever meeting
each other. The idea is that the secret message can
only be decrypted in a reasonable amount of time
using secret keys possessed by two people who
are exchanging information. Then Ron Rivest,
Adi Shamor, and Leonard Adleman introduced the
RSA public key cryptosystem that is considered to
be more secure than previous cryptosystems. This
cryptosystem is implemented based on two ideas:
public-key encryption and digital signatures (Mi-

lanov, 2009). In the public-key encryption part,
the sender generates a random prime p, a base
number g, and a random number a. Then the
sender sends need to send (p, g, ga((mod p)) to
the receiver. After the receiver receives the num-
ber, the receiver then generates a random num-
ber b, and send gb (mod p) back to the sender.
The sender and the receiver can then compute the
shared secret key easily based on the information
they have (Diffie and Hellman, 1976). However,
for a third party to know the secret, they have to
compute gab with four values - p, g, ga((mod p),
and gb (mod p). This is the place where factoring
algorithm comes in. If the public key is a products
consisting of two large primes, where each prime
is roughly 512 bits, or 1024 bits, or 2048 bits, then
the third party would have to find the factors for
the public key to find out the secret key. There are
already many existing factoring algorithms. How-
ever, none of them can factor large products in a
reasonable time- polynomial time. Nowadays, it is
feasible to factor 155- decimal digit numbers but
it is still considered hard to factor numbers more
than 150 decimal digits (Duta et al., 2016). Al-
though we cannot examine the runtime of those al-
gorithms on large products- more than 512 bits, we
can analyze some of those algorithms with relative
small scale numbers- numbers fewer than 100 bits.
Pollard-rho and quadratic-sieve are two of popular
factoring algorithms we analyze in this work.

We implement the pollard-rho algorithm
based on the birthday paradox and probability the-
ory (Gasarch, fall 2020). Then we implement
the quadratic sieve algorithm and optimize some
important steps using fast Gaussian elimination.
These two algorithms serve to factor products of
two primes. Runtime between the two algorithms
will be compared and analyzed, then runtime of
quadratic sieve will be analyzed when the factors
of the products have different bit lengths.

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

The contribution of this work has is summarized
as follows:

• Our experiment shows that that pollard-rho
performs better than quadratic sieve most of
the time for numbers under 80 bits.

• We do an extensive analysis on the run-
time of quadratic sieve under different
circumstances- the bit difference of the two
factors are large and the bit difference of the
two factors are small. Our result shows that
for products of the same bit length, the av-
erage runtime of quadratic sieve tends to be
shorter when the bit difference of two factors
are smaller. We verified that quadratic sieve
does better when the bit difference of the two
factors are small.

3 Related Work

In this section, we briefly review the work
related to pollard rho and quadratic sieve. In
1983, Joseph L. Gerver implemented quadratic
sieve algorithm(QS), continued algorithm(CF) of
Brillhart and Morrison and continued algorithm
with early abort modification(CFEA) (Gerver, Jul
1983). In his work, he factored a 47-digit number
that has never been factored before into three
primes using quadratic sieve, and that number is
17674971819005665268668200903822757930076
11. He also compared the runtime of QS, CF, and
CFEA. It turns out that QS starts to do better than
CF when the product exceeds 40 bits, and QS
does better than CFEA when the product exceeds
60 bits. Although QS could beat CF and CFEA
easily, when the product bit length exceeds 60
bits, pollard-rho is considered to do better than
QS theoretically for products under 100 bits.

Peter Montgomery, an American mathemati-
cian who wokred at the System Development
Corporation and Microsoft Research then did
a modification to quadratic sieve and named it
Multiple Polynomial Quadratic Sieve. Robert
D. Silverman later implemented this modifica-
tion of quadratic sieve and factored 45 digit
numbers in 0.25 hours and 82 digit numbers in
1265 hours (Silverman, 1987). Before Silver-
man’s time, there are only two implementations of
quadratic sieve algorithm. The second implemen-
tation, done from the ’Cunningha, Project’, used
a Cray XMP supercomputer to factor the number
(1071 - 1)/9 (about 70 digits) in 9.5 hours (Sil-

verman, 1987). By the year 1994, quadratic sieve
was able to a 129- digit RSA number (Pomerance,
1967). As better supercomputers and parallel ma-
chines are made, quadratic sieve is able to factor
numbers with more digits.

Pollard-Rho factoring algorithm. Aminudin
et al. analyzed the runtime of pollard-rho
and their experiment results shows that their al-
gorithm was able to factor a 44 bit number-
11752700814259- at 7.394 seconds and a 66
bit number- 49808531654765413631- at 28 sec-
onds. They concluded that pollard-rho was signif-
icantly faster than Fermat’s factorization (Amin-
udin and Cahyono, April 2021). As a com-
parison, our pollard-rho algorithm is able to
factor 11752700814259 in 0.0007 seconds and
49808531654765413631 in 0.06 seconds.

4 Methodology

We first show the theories behind pollard rho
and our implementation of it. Then we show
the mathematical steps required to implement
quadratic sieve and what techniques we incorpo-
rate into optimizing the the quadratic sieve algo-
rithm.

4.1 Pollard Rho Factorization

The pollard-rho factoring algorithm is based
on a probabilistic method to factor composite
numbers N by finding the greatest common di-
visor(gcd) between the difference of two random
numbers x and y (x and y are between 1 and N -
1) generated by an arbitrary function and N iter-
atively. The hope is that we could somehow find
a pair of random numbers x and y such that the
gcd(x - y, N) is the factor of N. The method is
published by J.M. Pollard in 1975 and is based
on the Birthday Paradox problem (Barnes, Dec 7
2004). The Birthday Paradox states that if we are
to choose m samples from N items with replace-
ment, with m to be large enough, some items will
be chosen twice. The pollard-rho algorithm uses
the following sequences to generate random x and
y values for finding the gcd of x-y and N:

x0← random positive integer (mod N)

c← random positive integer (mod N)

xi← fc(x) = xi−1 ∗ xi−1 + c (mod N)

y0← fc(x) (mod N)

yi← fc(fc(yi−1)) (mod N)

3

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

Since the sequence can be at most N-1, when
the sequence gets larger, the sequence will finally
become periodic. We find the nontrivial factor of
the composite if gcd(x-y, N) 6= 1 and gcd(x-y, N)
6= N. According to the Birthday Paradox, the time
to find a nontrivial factor is proportional to the size
of N1. The expected number of steps to find the
factor is approximately N

1
4 . The runtime is con-

sidered extremely good with one flaw: the algo-
rithm never stops if it cannot find a nontrivial fac-
tor.

The implementation of our algorithm is shown
below:

Algorithm 1 Pollard-Rho Algorithm

c← rand(1, N − 1)
fc(x)← x ∗ x+ c
x← rand(1, N − 1)
y ← fc(x) (mod N)
while True do

x← fc(x)
y ← fc(fc(y))
d← gcd(x− y,N)
if d 6= 1 and d 6= N then

return d
end if

end while

Besides the pseudocode of the shown above, we
also added two extra tricks into the algorithm. We
first check whether N is a prime or not then we
run the algorithm to prevent infinite loop. Before
we run the major loop in the algorithm above, we
check whether N is divisible by first ten primes to
speed up the algorithm.

4.2 Quadratic Sieve Algorithm

The quadratic sieve algorithm is a more compli-
cated factoring algorithm which contains several
parts.

4.3 Safe Prime Generators

We want to generate random primes of certain
lengths but sometimes it is expensive to check
whether a large number is a prime, or even im-
possible. Thus, we want to generate numbers that
are considered to be primes with high probabili-
ties, but can still be composites with a really low
probability.

1https://www.cs.umd.edu/users/gasarch/
COURSES/456/F20/lecfactoring/bday.pdf

5 Experiments

In this section, we introduce experimental setup
and present the results of our experiment. Con-
crete and specific examples will be presented to
give a better understanding of our results.

5.1 Experimental Setup
Dataset We want to test the performance of the
two algorithms on composites with different bit
lengths. We used safe prime method to generate
safe primes of different bit lengths- 40 bits, 50 bits,
and 60 bits. We also want to compare the perfor-
mance of both algorithms for composites of cer-
tain bit lengths but with prime factors of different
bit lengths. An example for generating 40 bit com-
posites is a combination of 5 bit and 35 bit primes
multiplied together to get a 40 bit product. The
list of combinations of primes we generated are
shown in table 1. In addition, we want to examine
the two algorithms’ performance on composites of
random bit lengths (The bit lengths of the compos-
ites are not neccessarily multiples of 5). Thus, we
generated 4462 pairs of primes with random bit
lengths but the products of those pairs of primes
do not exceed 70 bits. The experiment is run in
a personal laptop macbook pro with a ram mem-
ory of 16 GB and 2GHz Quad-Core Intel Core i5.
no parallel machine nor GPU is used in the whole
experiment.

Composite Size Prime 1 Size Prime 2 Size
40 5 35
40 10 30
40 15 25
40 20 20
50 5 45
50 10 40
50 15 35
50 20 30
50 25 25
60 5 55
60 10 50
60 15 45
60 20 40
60 25 35
60 30 30

5.2 Bit Length of Products and Runtime of
the Two Algorithms Comparison on
Random Bit Composites

In this section, we limit the runtime of finding
suitable B and M parameters for quadratic sieve

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

algorithm to 3 minutes for the sake of limited time
for this project. We want to compare the run-
time of the two algorithms on products in dif-
ferent bit lengths. We generated 4462 products
of random bit lengths and tested the runtime of
both programs. Figure 1 visualizes the runtime of
quadratic sieve algorithm on products of random
bit lengths. Figure 2 shows the runtime of pol-
lard rho algorithms for the same set of products.
Among 4462 products, only 4268 products are be-
ing successfully factored in the time limit. From
the two graphs, we see that the maximum runtime
of quadratic sieve is about 1.2 seconds. On the
contrary, the highest runtime for pollard rho on
the products is about 0.175 seconds. Thus, we see
that pollard rho completely beats quadratic sieve
on random bit length products no greater than 70
bits. In addition, it seems to take quadratic sieve
the longest time to factor products of around 65 bit
length. The runtime of quadratic sieve seems to
increase as the bit length of the products increase,
which looks reasonable. However, there are some
numbers between bit length of 50 bits and 60 bits
that took significantly longer runtime than other
numbers smaller than 60 bits. Here, we consider
the time to factor a number smaller than 60 bits
more than 0.6 seconds to be long. Table 2 shows
the numbers smaller than 60 bits but took more
than 0.6 seconds to factor.

For Pollard rho, it is not surprising that the run-
time of of the program gradually increases as the
bit length of the products increases. As the number
gets larger, the number of cycles to hit the correct
candidate factors becomes bigger. There is a sig-
nificant jump of the runtime of Pollard rho from
60 bit to 70 bits.

5.3 Analysis of Quadratic Sieve’s Parameters

B value is a list of primes smaller than B. We want
to use the list of primes to decompose numbers
into factors only from that list of primes. Then we
use the derived B prime factors for each number to
form a matrix. The larger the B value is, the more
number of primes we will have, which means we
will form a bigger matrix in our program to solve.
Theoretically, the runtime of the program is posi-
tively related to the B value. Figure 3 shows the lo-
gistic regression line of the size of the B value and
the runtime of quadratic sieving algorithm. The B
value is indeed positively correlated to the runtime
of the quadratic sieve.

Figure 1: The histogram shows the bit length of
composites and the runtime corresponding to that
bit length for quadratic sieving algorithm

Figure 2: Bit length of composites and the runtime
corresponding to that bit length for Pollard ρ

5.4 M Values and Runtime of Quadratic
Sieve

Now we want to examine how the M values relate
to the runtime of quadratic sieve algorithm. Start-
ing from the square root of the number we want
to factor, M value is how much farther we want
to go from that number. For example, if the num-
ber we want to factor is 337102662581 and square
root of 337102662581 is 580605. If we pick an
M value of 100, we will do B factoring on num-
bers 580605 to 580705. The large the M value is,
the more numbers we will have to do B factoring.
This also means we will have more rows in the
matrix we have to deal with, Thus, the M value
should be positively correlated to the runtime of
the program. Figure 4 shows the size of the M
value and the runtime of the program. To factor
the same composite using quadratic sieving algo-
rithm, if we find an optimal M value, and we use
an M value that is larger than the optimal M value,
then the runtime of the algorithm will increase.

5.5 Comparison of Runtime on Products of
fixed length

In the following section, we will compare the
runtime between quadratic sieve and pollard

5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

Table2. Bit difference and average runtime of quadratic sieve

Product Facto 1 Factor 2 factor 1 length factor 2 length

27522003582288223 2963 9288560102021 12 44
1751357076372217 4441 394360971937 13 39
349739602979093 291148573 1201241 29 21

185456974731188183 18796061 9866800003 25 34

rho for 40-bit products, 50-bit products, and
60- bit products. We randomly generated 1276
products of 40 bits and we factored them using
both algorithms. It turns out that pollard rho
does better than quadratic sieve for all 1276
numbers. Then we generated 2749 products of
50 bits and factored them using both algorithms.
There are only two numbers quadratic sieve
does better than pollard rho. These two numbers
are 332984151088201 and 455170965415169.
Both numbers are products of two 25-bit primes.
We then generated 3561 products of 60 bits
and there are 5 products quadratic sieve does
better than pollard rho. These five products are
433201593543320029, 35565484892954009,
466227204332054881, 427100149055786449,
and 485273147388660049. These numbers are
all products of two 30-bit primes. Although the
number of products quadratic sieve does better
than pollard rho increases as the bit length of
products increases, this does not mean there will
be more numbers quadratic sieve performs better
than pollard rho because the numbers these two
algorithms factor are increasing from 1276 to
2749 to 3561. In all of the cases, quadratic sieve
only does better than pollard rho when the two
factors have the same bit length. We will look into
whether quadratic sieve will perform better when
the bit length of two factors are close together in
later sections.

6 Checking the Failure Rate of
Quadratic Sieve for 40-bit, 50-bit, and
60-bit Products Within Three Minutes

Due to the time limits of this project, it is impossi-
ble to allow the program to run infinite amount of
time to factor some numbers that are hard to fac-
tor. Thus, if it takes the program more than three
minutes to find the suitable B and M values and
factor a product, we will cut off the program and
factor the next product.

6.1 40-bit Products Failure Analysis

For 40-bit products, there are 14 numbers
quadratic sieve cannot factor. The numbers the
program cannot factor is shown is table 3 in the
appendix. From table 3, we see that all the prod-
ucts quadratic sieve cannot factor are composed
of a 10-bit prime factor and a 30-bit prime factor.
We will examine more thoroughly on 50-bit and
60-bit products and see whether the same pattern
appears.

6.2 50-bit Products Failure Analysis

For 50-bit products, there are a total of 206 prod-
ucts quadratic sieve cannot factor within three
minutes. The following table 4 shows the bit
length of two primes and how many of them can-
not be factored on time. From table 4, we see that
the most number of products that cannot be fac-
tored are combinations of 10-bit primes and 40-
bit primes. We will question whether the products
that contain 10-bit primes are harder to factor.

6.3 60-bit Products Failure Analysis

The number of 60-bit products that cannot be fac-
tored and combination of bit length of primes is
shown in table 5 in the appendix. However, for
60-bit products, the most of products that cannot
be factored is not combination of a 10-bit prime
and a 50-bit prime. It is rather a combination of a
5-bit prime and a 55-bit prime. One possible rea-
son for why the most number of products cannot
be factored is the combination of bit lengths be-
tween the two prime factors. When the difference
of bit lengths of two primes are farther apart, then
it takes more time for quadratic sieve to factor the
numbers.

7 Percentage of Products that Cannot Be
Factored For 40-bit, 50-bit and 60-bit
Products

Because we have different number of samples for
40-bit, 50-bit and 60-bit products, we cannot just

6

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

look at how many products quadratic sieve can-
not factor for these bit length products. We must
look at the percentage of products quadratic sieve
cannot factor given the bit length of the product.
It turns out that for 40-bit products, about 1.097
percent of the numbers cannot be successfully fac-
tored within three minutes. For 50-bit products,
about 9.657 percent of the numbers cannot be fac-
tored within three minutes. For 60-bit products,
the failure rate is up to 65.403 percent. Thus, the
longer the bit length of the product is, the harder it
is for quadratic sieve to find out the suitable B and
M values and factored the products on time. We
cannot say quadratic sieve performs worse when
the product gets larger. When the size of a product
gets larger, the algorithm may spend most of its
time finding the correct B and M values instead of
doing the actual process of factoring the number.

8 How Well Does Quadratic Sieve
Perform When the Bit Difference of
Primes Changes

Table 6 shows how quadratic sieve performs when
the bit difference of the two prime factors vary. Es-
pecially, they show the percentage of numbers that
can be successfully factored within three minutes
for different combinations of bit length primes.

From the table 6, we see that except for 40-
bit products, the success rate of factoring in three
minutes seem to be the lowest when the bit dif-
ference of two primes are farthest apart and as the
bit difference gets closer, the success rate slightly
increases for 50-bit and 60-bit products.

9 Comparing Average Runtime for
Quadratic Sieve when the Difference of
Bit Lengths for the Two Primes are
Close or Far

From the last section, we concluded that the suc-
cess rate within three minutes for quadratic sieve
to factor a number is the lowest when the bit dif-
ference of the two primes are farthest apart. Thus,
we also want to make a hypothesis that as the bit
difference between the two products are farthest,
the average runtime of quadratic sieve should take
the longest among other bit differences. Table 7 in
the shows the average runtime of for the algorithm
for different bit length products and different bit
difference

Indeed, from table 7, we sees that for 40-bit,
50-bit and 60-bit products, the average runtime in

seconds to factor a product is the highest when the
bit difference are the greatest. Thus, the runtime
of quadratic sieve does not only depends on the
bit length of the product, but also on the bit dif-
ference of the two prime factors (Çetin K.Koç and
N.Arachchige, 1991).

10 Limitations

Computer Resources We have limited computing
power for running the two algorithms. The only
computer we use is a mac book pro with 16GB
memory. Quadratic sieve algorithm would speed
up if it runs in a parallel machine, since it can
Gaussian elimination simultaneously on multiple
rows in a matrix. However, for a normal personal
computer, quadratic sieve algorithm starts to take a
long time to find the correct B and M values. With
the time limit, the success rate of factoring a num-
ber for quadratic sieve becomes much lower when
the bit length of the product exceeds 70 bits. Thus,
we did not run quadratic sieve and pollard rho on
numbers greater than 70 bits. In theory, however,
quadratic sieve should does better than pollard rho
when the product is over 100 bits. We ran an ex-
periment on both algorithms for an 80-bit number,
the runtime of pollard rho is about 22.95 seconds,
and the runtime of quadratic sieve is about 44.25
seconds. Afterwards, we ran both algorithms on
a 100 bit number and pollard rho did not success-
fully factor the number in ten minutes. Quadratic
sieve factored the number in 587.66 seconds. Al-
though there is only one example for 100-bit num-
bers, we at least find an example that satisfies the
theory.

Time Limits Although the time limit of three
minutes for quadratic sieve and pollard rho greatly
saves our time on factoring thousands of exam-
ples, we forgot to record the time for finding the
correct B and M values for quadratic sieve. This
is important because for most numbers, quadratic
sieve cannot factor them for not finding the correct
B and M values on time, not for other reasons. If
we have a better algorithm for finding the correct
B and M values for quadratic sieve, then the suc-
cess rate of factoring numbers of quadratic sieve
would be much higher.

Limited Sample Sizes Because we can only
do analysis for 40-bit, 50-bit and 60-bit products,
the comparisons we can do for pollard rho and
quadratic sieve are very limited. We cannot see
a significant performance of quadratic sieve over

7

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

pollard rho for 100-bit length numbers since for
each pair of B and M values, it would take 10
minutes for quadratic sieve to factor and maybe
more than 10 minutes for pollard rho to factor.
The time cost of doing large bit length numbers
is very high. Also, the failure rate of factoring 80-
bit numbers for quadratic sieve is high for a three
minute timing- about 90 percent failure rate. The
limited sample size really limits the type compari-
son we want to do between two algorithms.

11 Summary and Outlook

11.1 Time Span to run the algorithms
Increase the timespan for factoring each product.
It takes 587.6639738 seconds- almost 10 minute
for quadratic sieve to factor the product. Also, we
have to count for the time to find out the B and
M values, which means 20 minutes to factor each
product. The time to run the algorithms might take
a month.

11.2 Factor more specific bit length primes
Find how much time it takes to factor a 40 bit num-
ber when the two products are 5 bit and 35 bit, 6
bit and 34 bit, 7 bit and 33 bit, etc... Do the same
for 45 bit, 50 bit, 55 bit 60 bit products.

11.3 Finding a better algorithm for finding B
and M values

Instead of increment B and M by 10 each alter-
nately starting B = 10 and M = 10, for larger num-
bers, we start B and M with 100 and 1000 and in-
crement the two values by 100 or other intervals
alternately.

References
Aminudin and Eko Budi Cahyono. April 2021. A prac-

tical analysis of the fermat factorization and pollard
rho method for factoring integers.

Connelly Barnes. Dec 7 2004. Integer factorization al-
gorithms.

Whitfield Diffie. 1988. The first ten years of public key
cryptography.

Whitfield Diffie and Martin E. Hellman. 1976. New
directions in cryptography.

Cristina-Loredana Duta, Laura Gheorghe, and Nicolae
Tapus. 2016. Framework for evaluation and com-
parison of integer factorization algorithms.

William Gasarch. fall 2020. Pollard’s ρ algorithm for
factoring(1975).

Joseph L. Gerver. Jul 1983. Factoring large numbers
with a quadratic sieve.

Çetin K.Koç and Sarath N.Arachchige. 1991. A fast
algorithm for gaussian elimination over gf(2) and its
implementation on the gapp.

Evgeny Milanov. 2009. The rsa algorithm.

Carl Pomerance. 1967. A tale of two sieves.

Robert D. Silverman. 1987. The multiple polynomial
quadratic sieve.

8

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

Product Bit length of factor 1 Bit length of factor 2

369062373143 10 30
534106988197 10 30
508085497589 10 30
369901521617 10 30
369901521617 10 30
458343342553 10 30
341238699311 10 30
421135689817 10 30
563755932497 10 30
482560209653 10 30
477265583519 10 30
456886122281 10 30
442321850393 10 30
386706654493 10 30

Table 3. 40-bit products that cannot be factored by quadratic sieve within three minutes

Bit length of factor 1 Bit length of factor 2 Number of them can’t be factored

5 45 38
10 40 51
15 35 38
20 30 37
25 25 42

Table 4. 50-bit products that cannot be factored by quadratic sieve within three minutes

Bit length of factor 1 Bit length of factor 2 Number of them can’t be factored

5 55 417
10 50 383
15 45 367
20 40 383
25 35 373
30 30 406

Table 5. 60-bit products that cannot be factored by quadratic sieve within three minutes

9

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

Bit difference Bit length of factor 1 Bit length of factor 2 Success rate in three minutes

30 5 35 1.0000
20 10 30 0.9646
10 15 25 1.0
0 20 20 1.0
40 5 45 0.9023
30 10 40 0.9136
20 15 35 0.9354
10 20 30 0.9370
0 25 25 0.9294
50 5 55 0.2992
40 10 50 0.3541
30 15 45 0.3822
20 20 40 0.3541
10 25 35 0.3721
0 30 30 0.3142

Table 6. Performance of quadratic sieve on different combination of primes of different bit lengths

Bit length of the product Bit difference average runtime in seconds

40 30 0.123
40 20 0.122
40 10 0.096
40 0 0.098
50 40 0.245
50 30 0.154
50 20 0.146
50 10 0.143
50 0 0.140
60 50 0.242
60 40 0.233
60 30 0.240
60 20 0.236
60 10 0.242
60 0 0.224

Table 7. Bit difference and average runtime of quadratic sieve

10

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

Figure 3: runtime vs. bit length for quadratic sieve

Figure 4: runtime vs. bit length for pollard rho

