
Limits on the Computational Power of Random Strings

Eric Allendera, Luke Friedmana, William Gasarchb,∗

aDept. of Computer Science, Rutgers University, New Brunswick, NJ 08855, USA
bDept. of Computer Science, University of Maryland, College Park, MD 20742, USA

Abstract

How powerful is the set of random strings? What can one say about a set A that is
efficiently reducible to R, the set of Kolmogorov-random strings? We present the first
upper bound on the class of computable sets in PR and NPR.

The two most widely-studied notions of Kolmogorov complexity are the “plain”
complexity C(x) and “prefix” complexity K(x); this gives rise to two common ways
to define the set of random strings “R”: RC and RK . (Of course, each different choice
of universal Turing machine U in the definition of C and K yields another variant RCU

or RKU
.) Previous work on the power of “R” (for any of these variants) has shown

• BPP ⊆ {A : A≤p
ttR}.

• PSPACE ⊆ PR.

• NEXP ⊆ NPR.

Since these inclusions hold irrespective of low-level details of how “R” is defined, and
since BPP, PSPACE and NEXP are all in ∆0

1 (the class of decidable languages), we
have, e.g.: NEXP ⊆ ∆0

1 ∩
⋂

U NPRKU .
Our main contribution is to present the first upper bounds on the complexity of sets

that are efficiently reducible to RKU
. We show:

• BPP ⊆ ∆0
1 ∩

⋂
U{A : A≤p

ttRKU
} ⊆ PSPACE.

• NEXP ⊆ ∆0
1 ∩

⋂
U NPRKU ⊆ EXPSPACE.

Hence, in particular, PSPACE is sandwiched between the class of sets polynomial-
time Turing- and truth-table-reducible to R.

As a side-product, we obtain new insight into the limits of techniques for deran-
domization from uniform hardness assumptions.

Keywords: Kolmogorov Complexity, Prefix Complexity, Uniform Derandomization,
Complexity Classes

∗Corresponding author. Tel.: +1 301 405 2698; fax: 301 405 6707.
Email addresses: allender@cs.rutgers.edu (Eric Allender), lbfried@cs.rutgers.edu

(Luke Friedman), gasarch@cs.umd.edu (William Gasarch)

Preprint submitted to Elsevier September 28, 2011

1. Introduction

In this paper, we take a significant step toward providing characterizations of some
important complexity classes in terms of efficient reductions to non-computable sets.
Along the way, we obtain new insight into the limits of techniques for derandomization
from uniform hardness assumptions.

Our attention will focus on the set of Kolmogorov random strings:

Definition 1. Let K(x) be the prefix Kolmogorov complexity of the string x. Then

RK = {x : K(x) ≥ |x|}.

(More complete definitions of Kolmogorov complexity can be found in Section 2. Each
universal prefix Turing machine U gives rise to a slightly different measure KU , and
hence to various closely-related sets RKU

.)
The first steps toward characterizing complexity classes in terms of efficient reduc-

tions to RK came in the form of the following curious inclusions:

Theorem 2. The following inclusions hold:

• BPP ⊆ {A : A≤p
ttRK} [11].

• PSPACE ⊆ PRK [2].

• NEXP ⊆ NPRK [1].

We call these inclusions “curious” because the upper bounds that they provide for
the complexity of problems in BPP, PSPACE and NEXP are not even computable; thus
at first glance these inclusions may seem either trivial or nonsensical.

A key step toward understanding these inclusions in terms of standard complexity
classes is to invoke one of the guiding principles in the study of Kolmogorov complex-
ity: The choice of universal machine should be irrelevant. Theorem 2 actually shows
that problems in certain complexity classes are always reducible to RK , no matter
which universal machine is used to define K(x). That is, combining this insight with
the fact that BPP, PSPACE, and NEXP are all contained in ∆0

1 (the class of decidable
languages), we have

• BPP ⊆ ∆0
1 ∩

⋂
U{A : A≤p

ttRKU
}.

• PSPACE ⊆ ∆0
1 ∩

⋂
U PRKU .

• NEXP ⊆ ∆0
1 ∩

⋂
U NPRKU .

The question arises as to how powerful the set ∆0
1∩

⋂
U{A : A ≤r RKU

} is, for various
notions of reducibility ≤r. Until now, no computable upper bound was known for the
complexity of any of these classes. (Earlier work [1] did give an upper bound for a
related class defined in terms of a very restrictive notion of reducibility: ≤p

dtt reductions
– but this only provided a characterization of P in terms of a class of polynomial-time
reductions, which is much less compelling than giving a characterization where the set
RK is actually providing some useful computational power.)

2

Our main results show that the class of problems reducible to RK in this way does
have bounded complexity; hence it is at least plausible to conjecture that some com-
plexity classes can be characterized in this way:
Main Results:

• ∆0
1 ∩

⋂
U{A : A≤p

ttRKU
} ⊆ PSPACE.

• ∆0
1 ∩

⋂
U NPRKU ⊆ EXPSPACE.

A stronger inclusion is possible for “monotone” truth-table reductions (≤p
mtt). We

show that

• ∆0
1 ∩

⋂
U{A : A≤p

mttRKU
} ⊆ coNP ∩ P/poly.

Combining our results with Theorem 2 we now have:

• BPP ⊆ ∆0
1 ∩

⋂
U{A : A≤p

ttRKU
} ⊆ PSPACE ⊆ ∆0

1 ∩
⋂

U PRKU .

• NEXP ⊆ ∆0
1 ∩

⋂
U NPRKU ⊆ EXPSPACE.

In particular, note that PSPACE is sandwiched in between the classes of computable
problems that are reducible to RK via polynomial-time truth-table and Turing reduc-
tions.

Our results bear a superficial resemblance to results of Book et al. [8, 9, 10], who
also studied decidable sets that are reducible in some sense to algorithmically random
sets. However, there is really not much similarity at all. Book et al. studied the class
ALMOST-R:

Definition 3. Let R be a reducibility (e.g, ≤p
m or ≤p

T). Then ALMOST-R is the class
of all B such that {A : B is R-reducible to A} has measure 1.

Book et al. showed that ALMOST-R can be characterized as the class of decid-
able sets that are R-reducible to sets whose characteristic sequences are (for example)
Martin-Löf random. Thus using such sets as oracles is roughly the same as providing
access to unbiased independent coin flips. But a set whose characteristic sequence is
Martin-Löf random will contain many strings of low Kolmogorov complexity, and a set
such as RK is very far from being Martin-Löf random. Another contrast is provided
by noting that ALMOST-NP = AM [21], whereas NPRK contains NEXP.

1.1. Derandomization from Uniform Hardness Assumptions

In this section, we present some easy consequences of our main result, regarding
the question of which problems can be reduced (via a uniform probabilistic reduction)
to the problem of distinguishing random and pseudorandom distributions.

Papers in derandomization that follow the “hardness vs. randomness” paradigm
generally fall into two categories: those that proceed from uniform hardness assump-
tions, and those that rely on nonuniform hardness. The nonuniform approach yields
the more general and widely-applicable tools. For instance, the work of Babai, Fort-
now, Nisan, and Wigderson [7] shows that, given any function f , one can construct a

3

pseudorandom generator1 Gf such that, given any test T that distinguishes the pseudo-
random distribution generated by Gf from the uniform distribution, one can conclude
that f has polynomial-size circuits that have access to T as an oracle. (Or, in terms
of the contrapositive, if f does not have small circuits relative to T , then the generator
Gf is secure against T .) As discussed by Gutfreund and Vadhan [14], invoking the
terminology introduced by Reingold et al. [22], this is an example of a fully black-box
construction.

In contrast, there has been much more modest success in providing derandomiza-
tion tools from uniform hardness assumptions. The canonical example here comes from
Impagliazzo and Wigderson [16] as extended by Trevisan and Vadhan [23]. They show
that for certain functions f in PSPACE (including some PSPACE-complete problems),
one can build a pseudorandom generator Gf such that, given any test T that distin-
guishes the pseudorandom distribution generated by Gf from the uniform distribution,
one can conclude that f can be computed in BPPT . (Or, in terms of the contrapositive,
if f is not in BPPT , then the generator Gf is secure against T .) As discussed by Gut-
freund and Vadhan [14], this is still an example of a black-box reduction (although it
is not fully black-box), since it works for every test T that distinguishes random from
pseudorandom.

Furthermore, Trevisan and Vadhan showed that a fully black-box construction, such
as is used in the nonuniform setting, can not yield derandomizations from uniform as-
sumptions [23]. Their argument is nonconstructive, in the sense that they derive a con-
tradiction from the assumption that a fully black-box construction exists, as opposed to
presenting a concrete function f for which no fully black-box construction will work.
Thus the question remained: For which functions f does such a reduction exist?

Gutfreund and Vadhan considered the question in more detail, and showed that
there is no function f outside of BPPNP for which there is a uniform non-adaptive
black-box reduction, showing that computing f reduces to the problem of distinguish-
ing random pseudorandom distributions [14]. (That is, if the BPPT algorithm comput-
ing f is non-adaptive in the sense that the list of oracle queries is computed before any
queries are asked, then f ∈ BPPNP.) Gutfreund and Vadhan also considered a more
general class of black-box reductions, still maintaining some restrictions on “adaptive-
ness”, and showed that there is no function f outside of PSPACE for which there is a
uniform black-box reduction of this restricted class, from computing f to distinguish-
ing random from pseudorandom [14]. It appears that no limits were known at all for
general BPP reductions to distinguishing random from pseudorandom.

We now state an easy consequence of our main theorems:

Theorem 4. If there is a uniform black-box reduction, showing that a computable
function f reduces to the problem of distinguishing random and pseudorandom dis-
tributions, then f ∈ EXPSPACE.

Proof: Let f be a computable Boolean function satisfying the hypothesis. Thus there is
a generator Gf mapping strings of length n/2 to strings of length n, and such that there

1The generator Gf in general is computable in PSPACEf , but in many important instances it is com-
putable in Pf .

4

is a polynomial-time oracle Turing machine M such that MT (x) outputs f(x) with
probability at least 2/3 given any test T that distinguishes random from pseudorandom
(i.e., such that the probabilities of the events Gf (y) ∈ T and x ∈ T differ by some δ,
for y of length n/2 and x of length n, chosen uniformly).

Since Gf is computable, the range of Gf is disjoint from RK (at least for all large
input lengths), and thus f ∈ BPPRKU for every universal prefix machine U (since many
strings will be in RKU

, but none of the pseudorandom outputs will be). But BPPRK =
ZPPRK [2], and thus in particular we have f ∈ ∆0

1 ∩
⋂

U NPRKU ⊆ EXPSPACE.

In addition to shedding light on the limitations of black-box reductions to distin-
guishing random from pseudorandom, Theorem 4 also provides some (slight) insight
about the completeness of problems related to the Minimum Circuit Size Problem:

The Minimum Circuit Size Problem (MCSP) (given the truth table of a Boolean
function f , and a number s, does f have a circuit of size s?) is a well-known example
of a problem in NP that is believed to lie outside of P, but is not widely believed to be
NP-complete [17, 2, 6].

For a complexity class C, let MCSPC denote an analog of MCSP for C: given the
truth table of a Boolean function f , and a number s, does f have an oracle circuit of
size s, where the oracle is for the standard complete set for C?

It is known [2, 6] that MCSPC is complete for C under P/poly reductions, where
C is any of {PSPACE, EXP, NEXP, EXPSPACE, doubly- or triply-exponential time
and space, etc., . . .}. Completeness under uniform reductions is known only for two
cases: MCSPPSPACE is complete for PSPACE under ZPP reductions, and MCSPEXP

is complete for EXP under NP reductions [2]. In the former case, completeness is
proved via the Impagliazzo-Wigderson generator [16]; in the latter case completeness
is proved via a uniform black-box NP-reduction to distinguishing random from pseu-
dorandom.

Now consider doubly-exponential space EEXPSPACE. Is MCSPEEXPSPACE

complete for EEXPSPACE under ZPP or even NP reductions? As a consequence of
Theorem 4, this question cannot be answered using the techniques that were used to re-
solve the analogous questions for PSPACE and EXP, which were black-box reductions
to distinguishing random from pseudorandom.

2. Background and Definitions

We review some basic facts and definitions about Kolmogorov complexity. For a
more detailed treatment of these topics, see [19].

For a fixed universal Turing machine U , the plain Kolmogorov complexity of a
string x, C(x), is the size of the shortest s such that U(s) = x. This paper is concerned
much more with prefix complexity. Although its definition (see below) is slightly less
natural than the plain complexity, the prefix complexity is an important variant because
of certain mathematical properties it possesses. For instance, the plain complexity is
not subadditive (i.e. C(x, y) ≤ C(x) + C(y) + c does not hold in general for any
constant c), and the series

∑
x 2−C(x) diverges, which means it cannot easily be con-

verted into a probability measure. The prefix complexity fixes both of these problems,
and is crucial to many of the applications that originally motivated the discovery of

5

Kolmogorov complexity, such as studying the complexity of infinite sequences and
defining a universal prior probability measure that could be used as the basis for induc-
tive reasoning. For an in-depth discussion of the tradeoffs between the plain and prefix
complexity, see [19, Chapter 3] .

1. A prefix Turing machine is a Turing machine M such that, for all x, if M(x)
halts then, for all y 6= λ, M(xy) does not halt. That is, the domain of M is a
prefix code.

2. Let M be a prefix Turing machine. Define KM (x) to be the size of the shortest
s such that M(s) = x.

3. A universal prefix Turing machine is a prefix Turing machine U such that, for
any prefix Turing machine M , there is a constant c such that for all x,KU (x) ≤
KM (x) + c.

We select some universal prefix Turing machine U and call KU (x) the prefix com-
plexity of x. As usual, we delete the subscript in this case, and let K(x) denote the
prefix complexity of x. It is known that, for some constant c, C(x) − c ≤ K(x) ≤
C(x)+c+2 log |x|, and hence the two measures are not very far apart from each other.
The arbitrary choice of U affects K(x) by at most an additive constant, and in most
instances where prefix complexity is studied, the particular choice of U is deemed to be
irrelevant. Note however, that in this paper it is important to consider KU for various
machines U .

If f is a function mapping some domain to the naturals N, then ov(f), the overgraph
of f , is {(x, y) : f(x) ≤ y}. (For instance, ov(KU) = {(x, y) : there exists an s,
|s| ≤ y, such that U(s) = x}).

The following definition was used implicitly by Muchnik and Positselsky [20]: A
Prefix Free Entropy Function f is a function from {0, 1}∗ to N such that

•
∑

x∈{0,1}∗ 2−f(x) ≤ 1 and

• ov(f) is computably enumerable (c.e.)

The canonical example of a prefix free entropy function is K(x). (That K is a
prefix free entropy function follows from the Kraft Inequality; see e.g. [19, Theorem
1.11.1].)

Note that if f is a prefix free entropy function, then 2−f is a special case of what
Li and Vitányi call a Lower Semicomputable Discrete Semimeasure [19, Definition
4.2.2]. The Coding Theorem (see [19, Theorem 4.3.3]) says that, for any lower semi-
computable discrete semimeasure 2−f there is a universal prefix machine M such that
f(x) ≤ KM (x) − 3. For the case of prefix free entropy functions, one can obtain a
tighter bound (and replace the inequality with equality):

Proposition 5. Let f be a prefix free entropy function. Given a machine accepting
ov(f), one can construct a prefix machine M such that f(x) = KM (x)− 2.2

2In preliminary versions of this work [5, 4], we incorrectly claimed that f(x) = KM (x)− 1. We do not
know how to obtain that bound.

6

Proof: Our proof is patterned on the proof of [19, Theorem 4.3.3].
Since ov(f) is c.e., there is a bijective enumeration function D : N → {(x, a) :

f(x) ≤ a}. Let D(0) = (x0, a0), D(1) = (x1, a1,), . . . be this enumeration. We have
that for each x,

∑
i≥f(x) 2−i ≤ 2 · 2−f(x) and therefore∑
i≥0

1
2
2−ai =

∑
x

∑
i≥f(x)

1
2
2−i ≤

∑
x

2−f(x) ≤ 1

We identify the set of infinite sequences S = {0, 1}∞ with the half-open real
interval [0, 1); that is, each real number r between 0 and 1 will be associated with the
sequence(s) corresponding to the infinite binary expansion of r. We will associate each
pair (xi, ai) from the enumeration D with a subinterval Ii ⊆ S as follows:

I0 = [0, 1
22−a0), and for i ≥ 1, Ii = [

∑
k<i

1
22−ak ,

∑
k≤i

1
22−ak). That is, Ii is

the half-open interval of length 1
22−ai that occurs immediately after the interval corre-

sponding to the pair (xi−1, ai−1) that appeared just prior to (xi, ai) in the enumeration
D.

Since
∑

i≥0
1
22−ai ≤ 1, each Ii ⊆ S.

Any finite string z also corresponds to a subinterval Γz ⊆ S consisting of all infinite
sequences that begin with z; Γz has length 2−|z|. Given any pair (xi, ai), one can
determine the interval Ii and find the lexicographically first string z of length ai + 2
such that Γz ⊆ Ii. Since Ii has length 2(−ai+1), it is not too difficult to see that such
a string z must exist. (Alternatively, look at the proof of [19, Lemma 4.3.3].) Call this
string zi. Observe that, since the intervals Ii are disjoint, no string zi is a prefix of any
other.

We are now ready to present our prefix machine M . Let M be a machine that,
given a string z, uses D to start an enumeration of the intervals Ii until it finds (xi, ai)
such that Γz ⊆ Ii. If it ever finds such a pair, at this point M determines if z = zi, and
if so, outputs xi. Otherwise the machine enters an infinite loop. Since no string zi is a
prefix of any other, M is a prefix machine.

Now consider the shortest string on which M will output x. Let T = {i : xi = x}.
For every j ∈ T there exists a string zj such that M(zj) = x, and the length of zj will
be aj + 2. We have that minj∈T aj = f(x), so KM (x) = f(x) + 2.

We will make use of the following easy propositions.

Proposition 6. Let M and M ′ be prefix Turing machines. Then there is a prefix ma-
chine M ′′ such that KM ′′(x) = min(KM (x),KM ′(x)) + 1.

Proof: The domain of M ′′ is {1x : x is in the domain of M} ∪ {0x : x is in the domain
of M ′}.

Proposition 7. Given any prefix machine M and constant c, there is a prefix machine
M ′ such that KM (x) + c = KM ′(x)

Proof: The domain of M ′ is {0cx : x is in the domain of M}.

In this paper we consider four types of reductions: truth table reductions, monotone
truth table reductions, anti-monotone reductions, and Turing reductions.

7

• Truth-table reductions. For a complexity classR and languages A and B, we say
that AR-truth-table-reduces to B (A ≤Rtt B) if there is a function q computable
in R, such that, on an input x ∈ {0, 1}∗, q produces an encoding of a circuit λ
and a list of queries q1, q2, . . . qm so that for a1, a2, . . . , am ∈ {0, 1} where ai =
1 if and only if qi ∈ B, it holds that x ∈ A if and only if λ(a1a2 · · · am) = 1. If
the function q is polynomial time computable, we say that A polynomial-time-
truth-table-reduces to B (A ≤p

tt B).

• Monotone truth-table reductions. In the scenario above, if the circuit λ computes
a monotone function (i.e. changing any input bit of the function from 0 to 1
cannot change the output of the function from 1 to 0), then we say that A R-
monotone-truth-table-reduces to B (A ≤Rmtt B). If the function q is polynomial
time computable, we say that A polynomial-time-monotone-truth-table-reduces
to B (A≤p

mttB).

• Anti-monotone truth-table reductions. In the scenario above, if the circuit λ
computes an anti-monotone function (i.e. ¬λ is monotone), then we say that
A R-anti-monotone-truth-table-reduces to B (A ≤Ramtt B). If the function q
is polynomial time computable, we say that A polynomial-time-anti-monotone-
truth-table-reduces to B (A≤p

amttB).

• Turing reductions. We say that A R-Turing reduces to B (A ≤RT B) if there is
an oracle Turing machine in class R that accepts A when given B as an oracle.

3. Main Results

Theorem 8. ∆0
1 ∩

⋂
U{A : A ≤p

tt RKU
} ⊆ PSPACE

Proof: The main idea of the proof can be seen as a blending of the approach of [1] with
the techniques that Muchnik and Positselsky used to prove Theorem 2.7 of [20]. (See
also [3] for an alternative exposition of this theorem of Muchnik and Positselsky.)

We will actually prove the statement

∆0
1 ∩

⋂
U

{A : A ≤p
tt ov(KU)} ⊆ PSPACE. (1)

The theorem follows, since any query “x ∈ RKU
?” can always be modified to the

equivalent query “(x, |x| − 1) 6∈ ov(KU)?”, so

∆0
1 ∩

⋂
U

{A : A ≤p
tt RKU

} ⊆ ∆0
1 ∩

⋂
U

{A : A ≤p
tt ov(KU)}.

To prove the statement (1) it suffices to show that

L ∈ ∆0
1 − PSPACE ⇒ ∃ a universal prefix machine U s.t. L 6≤p

tt ov(KU). (2)

Let L ∈ ∆0
1 − PSPACE be given. It suffices to show how to incorporate a machine

deciding membership in L into the construction of a universal prefix machine U such

8

that L 6≤p
tt ov(KU). (As part of this construction, we use a diagonalization argument

designed to foil every ≤p
tt reduction.) To do this we will use the standard prefix com-

plexity function K, together with a function F : {0, 1}∗ → N that we will construct,
to form a function H : {0, 1}∗ → N with the following properties.

1. F is a total function and ov(F) is c.e.
2. H(x) = min(K(x) + 5, F (x) + 3).
3.

∑
x∈{0,1}∗ 2−H(x) ≤ 1

8 .
4. L 6≤p

tt ov(H).

Claim 1: Given the above properties, H = KU ′ for some universal prefix machine U ′

(which by Property 4 ensures that (2) holds).

Proof of Claim 1: By Properties 2 and 3 we have that
∑

x∈{0,1}∗ 2−F (x)+3 ≤ 1
8 .

Therefore
∑

x∈{0,1}∗ 2−F (x) ≤ 1, which along with Property 1 means that F is a prefix
free entropy function. By Proposition 5 we then have that F +2 is KM for some prefix
machine M . By Proposition 7 we have that K(x)+4 is KU ′′ for some universal prefix
machine U ′′. Therefore, by Proposition 6, H(x) = min(K(x) + 5, F (x) + 3) =
min(K(x) + 4, F (x) + 2) + 1 is KU ′ for some universal prefix machine U ′.

It remains to show that for a given computable set L 6∈ PSPACE we can always
construct functions H and F with the desired properties. Let us first informally discuss
the ideas before providing the formal construction.

Our control over H comes from our freedom in constructing the function F . The
construction will occur in stages – at any given time in the construction there will be a
“current” version of F which we will denote by F ∗. Similarly, there will be a “current”
version of K denoted by K∗, which represents our knowledge of K at a given stage. At
all times, H∗, our “current” version of H , will be defined as min(K∗(x) + 5, F ∗(x) +
3).

Originally we set F ∗(x) = 2|x| + 3 and K∗ as the empty function. At each stage
of the construction we will assume that a new element (x, y) is enumerated into ov(K)
according to some fixed enumeration of ov(K). (This is possible since ov(K) is c.e.)
When this occurs K∗ is updated by setting K∗(x) = min(K∗(x), y). (Since K∗ is
a partial function, it is possible that K∗(x) was previously undefined. In this case
we set K∗(x) = y.) Similarly, during the construction at times we will modify F
by enumerating elements into ov(F). Whenever we enumerate an element (x, y) into
ov(F), F ∗ is updated by setting F ∗(x) = min(F ∗(x), y).

Let γ1, γ2, . . . be a list of all possible polynomial time truth table reductions from
L to ov(H). This is formed in the usual way: we take a list of all Turing machines and
put a clock of ni + i on the ith one and we will interpret the output as an encoding of
a Boolean circuit on atoms of the form “(z, r) ∈ ov(H)”.

We need to ensure that L 6≤p
tt ov(H). We break this requirement up into an infinite

number of requirements:

Re : γe is not a polynomial-time tt-reduction of L to ov(H).

9

At stage e of the construction we will begin to attempt to satisfy the requirement
Re. For a particular input x, let γe(x) be an encoding of a circuit λe,x. The output
of the circuit λe,x is determined by the truth values of the atoms “(z, r) ∈ ov(H)”
that label the inputs to the circuit. Define λe,x[H ′] to be the truth value obtained by
taking the circuit λe,x and for each atom “(z, r) ∈ ov(H)” using the truth value of
“(z, r) ∈ ov(H ′)” in its place. In order to satisfy the requirement Re, we would like
to find some x such that λe,x[H] 6= L(x), where L(x) is the characteristic function
of L. The problem is that at a given stage s we can “guess” at the value of λe,x[H]
by computing λe,x[H∗], but in general we cannot know the value of λe,x[H] for sure,
because as H∗ evolves the value of λe,x[H∗] may change. The main difficulty is that
the function K is out of our control and determining whether (z, r) ∈ ov(H) is in
general an uncomputable task.

We do have some influence over the situation though, due to our control of F .
Indeed, for any atom “(z, r) ∈ ov(H)”, we can ensure that the truth value of the
atom is 1 by enumerating (z, r − 3) into ov(F). (Note that for all x, the value of
H∗(x) can only decrease over time). We have to be careful about making this type
of change though; if we are too liberal in modifying F we may violate the condition∑

x∈{0,1}∗ 2−H(x) ≤ 1/8 in the process. Thus the construction becomes a balancing
act – we will try to use F to satisfy Re while at the same time maintaining the invariant
that

∑
x∈{0,1}∗ 2−H∗(x) ≤ 1/8 . (In particular, if Fs is the function F ∗ at the beginning

of stage s, for all x we will not want lims→∞ Fs(x) to be very much smaller than
K(x)).

As part of our solution, for each Re we will find a suitable witness x and set up a
game Ge,x played between us (making moves by enumerating elements into ov(F)),
and K, who makes moves by enumerating elements into ov(K). (Even though ele-
ments are obliviously enumerated into ov(K) according to some fixed enumeration we
will treat K as if it is a willful adversary). The witness x will be chosen so that we
have a winning strategy; as long as K continues to make legal moves we can respond
with changes to F (our own legal moves) that both assure that Re is satisfied and that∑

x∈{0,1}∗ 2−H∗(x) ≤ 1/8. Our ability to find such a witness x follows from our as-
sumption that the computable language L is not in PSPACE; if no such witness exists,
then membership in L reduces to finding which player has a winning strategy in one of
these games, which can be done in PSPACE.

It is possible that K will cheat by enumerating elements into ov(K) in such a way
that it plays an illegal move. In this case we will simply destroy the game Ge,x and start
all over again with a new game Ge,x′ , using a different witness x′. However we will
be able to show that if K cheats infinitely often on games associated with a particular
requirement Re, then

∑
x∈{0,1}∗ 2−K(x) diverges. This contradicts K being a prefix

complexity function. Hence K can only cheat finitely often.3

The requirements R1, R2, R3, . . . are listed in priority ordering. If during stage
s a move is played on a game Ge,x, we say that Re is “acting”. In this case for all

3This reliance on the convergence of
P

x∈{0,1}∗ 2−K(x) is the key reason why our proof does not go
through in the case where we consider the plain complexity C(x) as opposed to the prefix complexity K(x).

10

e < e′ ≤ s, if Ge′,y is the game associated with Re′ currently being played, we destroy
this game and start a new game Ge′,y′ with some new witness y′. When this happens
we say that each of the Re′ has been “injured” by Re. The reason this works in the end
is that at some point R1, R2, . . . , Re−1 have stopped acting, so Re will no longer ever
be injured by some higher priority requirement.

3.1. Description of the Game

Now let us describe one of the games Ge,x in more depth and provide some analysis
of the game. Let the inputs to the Boolean circuit λe,x (encoded by γe(x)) be labeled
by the atoms {(z1, r1), . . . , (zk, rk)}. Let Xe = {z1, . . . , zk}. Note that the queries
in this reduction are of the form: “Is H(zi) ≤ ri?”. If H∗(zi) ≤ ri then we already
know H(zi) ≤ ri, so we can replace that input to the circuit with the value TRUE and
simplify the circuit accordingly. Renumber the z’s, rename k to again be the number of
questions, and rename Xe to be the set of all z’s being asked about. When we are done
we have atoms {(z1, r1), . . . , (zk, rk)} and we know that (∀zi ∈ Xe)[H∗(zi) > ri].

We make one more change to Xe. If there exists an element zi such that zi ∈ Xe

and zi ∈ Xe′ for some e′ < e, then changing H∗ on the value zi during the game
Ge,x could affect the game associated with the requirement Re′ , which would upset
our priority ordering. Hence we will take

Xe = Xe −
⋃

e′<e

Xe′ .

This will ensure that Re cannot injure any Re′ with e′ < e.
While working on requirement Re we will need to evaluate the circuit λe,x. This

will involve answering queries of the form H(z) ≤ r. There will be two types of
queries:

• If z ∈
⋃

e′<e Xe′ then we answer FALSE, which is the correct value unless the
appropriate Re′ acts. However, if this occurs, then all of the work done on Re

will be wiped out anyway.

• If x ∈ Xe then we answer with the status of H∗(z) ≤ r. The key is that we have
some control over this if the answer is FALSE and may purposely change it.

Let H∗
e,x be the function H∗ when the game Ge,x is first constructed. Let ε =

2−e−ie−6. (How ie is determined will be explained later). The game Ge,x is played on
a labeled DAG. The label of each node of the DAG has the following two parts:

1. A function h that maps Xe to N. The function h provides conjectured values
for H restricted to Xe. The function h will be consistent with H∗

e,x in that
(∀i)[h(zi) ≤ H∗

e,x(zi)].
2. A truth value VAL, which is the value of λe,x assuming that (∀z ∈ Xe)[H(z) =

h(z)]. Note that this will be either YES or NO indicating that either, under
assumption (∀z ∈ Xe)[H(z) = h(z)], λe,x thinks x ∈ L or thinks x /∈ L.

11

There is a separate node in the DAG for every possible such function h.
Let us place an upper bound on the size of this DAG. The set Xe contains at most

|x|e queries. For any query zi, H(zi) can take at most 2|zi| + 6 values (since it is
always bounded by F ∗(zi) + 3). Note also that |zi| ≤ |x|e. Thus there are at most
(2|x|e + 6)|x|

e

possible choices for h. For all large x this is bounded by 2|x|
2e

, so note
that we can represent a particular node in the DAG with |x|2e + 1 bits.

We now describe the start node and how to determine the edges of the DAG.
1. There is a node (h, VAL) where h = H∗

e,x restricted to Xe. This is the start node
and has indegree 0.

2. There is an edge from (h, VAL) to (h′, VAL′) if for all zi ∈ Xe, h(zi) ≥ h′(zi)
(so it is possible that H∗ could at some point evolve from H∗

e,x to h, and then at
a later point evolve from h to h′.)

The game Ge,x is played between two players, the YES player and the NO player.
Each player has a score, which originally is zero, and represents how much the player
has been penalized so far in the game. (In other words a high score is bad). The game
starts with a token placed on the start node. The YES player goes first (although this
choice is arbitrary), after which the players alternate moves.

On a given turn a player can either leave the token where it is or move the token to
a new node in the DAG. Suppose a player moves the token from a node t to a node t′,
where h is the function labeling t and h′ is the function labeling t′. In this case we add∑

zi∈Xe
(2−h′(zi) − 2−h(zi)) to the player’s score.

A player can legally move the token from node t to t′ if
1. There is an edge from t to t′ in the game DAG.
2. The score of the player after making the move does not exceed ε.

The YES player wins if the token ends up on a node such that VAL = YES, and the
NO player wins if the token ends up on a node such that VAL = NO. Note that because
the game is entirely deterministic, for a given game Ge,x, either the YES player has a
winning strategy or the NO player has a winning strategy. Let val(Ge,x) = 1 if the
YES player has a winning strategy on the game Ge,x and val(Ge,x) = 0 otherwise.

During the actual construction the games will be played between us (the construc-
tion) trying to make the computation go one way, and K (which we do not control)
trying to make it go (perhaps) another way. We will always ensure that we play the
side of the player who has the winning strategy in the game. We will effect our moves
by enumerating elements into ov(F), which changes F ∗ and hence H∗. (To move the
token to a node labeled with the function h, we modify H∗ so that h equals H∗ re-
stricted to the set Xe) The K moves will occur when a new element is enumerated into
ov(K) at the beginning of each stage, which changes K∗ and hence H∗. (In this case
K is moving the token to the node in the game DAG labeled by the new H∗).

The key is that the players’ scores measure how much the sum
∑

x∈{0,1}∗ 2−H∗(x)

has gone up, which we bound by not allowing a player’s score to exceed ε. (Of course
K is oblivious to the rules of the game and will at times cheat – we take this into
account as part of our analysis.) One final note: it is possible that K will simply stop
playing a game in the middle and never make another move. This will not matter to us
in the construction; what is important is that we have a winning strategy and if K does
move we always have a winning response.

12

3.2. The Formal Construction

We now present the formal details of the stage construction.
Stage 0:

• Let F ∗ initially be defined as F ∗(x) = 2|x|+ 3.

• Let K be the standard prefix complexity function, and K∗ initially be the empty
function.

• At all times throughout the construction, we have that H∗(x) = min(K∗(x) +
5, F ∗(x) + 3). (In the case where K∗(x) is undefined, let H∗(x) = F ∗(x) + 3).
We will define Hs to be the function H∗ as it is at the beginning of stage s.

• For all e, set ie = 0. In the future ie will be the number of times Re has been
injured by the requirements Re′ , 1 ≤ e′ ≤ e− 1.

• Let HEAP be an object that enumerates strings in the normal lexicographical
order. So the first time that HEAP is called it returns the string ‘0’, the second
time it returns ‘1’, then ‘00’, ‘01’, etc.

Stage s (for s ≥ 1):
Let (x′, y′) be the sth element in the fixed enumeration of ov(K). Update K∗ by

setting K∗(x′) = min(K∗(x′), y′). (This automatically updates H∗ as well)
(**) For 1 ≤ e ≤ s we consider requirement Re.
There are two possibilities:

1. There is no game associated with Re in progress. This can occur because either
e = s or because the game associated with Re was destroyed during the last
round.
In this case we continue to get strings from HEAP until a string x is found that
has the following property:

• If we define a new game Ge,x using the current H∗, then val(Ge,x) 6= L(x),
where L(x) is the characteristic function of L.

We will later show in Claim 4 that in a finite number of steps we will always find
such an x.
Once we have found the string x, construct the game Ge,x in the way described
in the previous section and begin the game. For this game, we will play as the
YES player if val(Ge,x) = 1, and as the NO player if val(Ge,x) = 0. (That is,
we will always play as the player who has a winning strategy for the game).

2. The game associated with Re is already in progress (again call this game Ge,x).
There are a few sub-cases to consider.

(a) K has not changed on Xe at all since the last stage. We do nothing.
(b) K on Xe has changed so much that the move K plays causes his score to

exceed ε (i.e. K “cheats”). In this case we destroy the game Ge,x.

13

(c) It is our turn in Ge,x, either because the token is on the start node of the
DAG and we are the YES player, or because K on Xe has changed in a
way that his score does not exceed ε, so he has played a legal move.
In this case we play the move dictated by our winning strategy (which we
can assume we have stored or which we can recompute each time). This
may be to do nothing or it may involve moving the token to a new node,
in which case we change H∗ accordingly by enumerating elements into
ov(F).

If either case (b) or (c) occurs, we say that “Re is acting”, in which case for all
e′ such that s ≥ e′ ≥ e + 1: Set ie′ to ie′ + 1 and destroy the game associated
with Re′ . Note: ie does not change in case (b), even though Ge,x is destroyed.
If Re acts then proceed to the next stage. Otherwise return to (**) and process
the next e.

END OF CONSTRUCTION

Claim 2: For all e, each Re acts at most finitely often and is satisfied.

Proof of Claim 2:
We prove this by induction on e. Assume that the claim is true for all e′ < e. We

show that the claim holds for e. By the inductive hypothesis there exists a stage s′ such
that, for all s ≥ s′, for all e′ < e, Re′ does not act at stage s.

Let Ge,x be the game associated with Re at stage s. If Ge,x is never destroyed in a
later stage, then (by construction) Re will be satisfied (since for H = lims→∞ Hs, our
winning strategy ensures that γe,x[H] evaluates to YES if and only if x is not in L).

Suppose that Ge,x is destroyed at some point. Then, since by the inductive hypoth-
esis Re cannot be injured by higher priority requirements, by the rules of the construc-
tion it must be that the “player” K cheats on the game Ge,x. In doing this, K is adding
at least ε = 2−e−ie−6 to

∑
x∈Xe

2−K∗(x) and hence to
∑

x∈{0,1}∗ 2−K∗(x).
Once K cheats and destroys the game Ge,x, a new witness x′ is found and a new

game Ge,x′ is started during the next stage. Once again if this game is never destroyed
then Re will be satisfied. If this game is also later destroyed, this means that another
ε = 2−e−ie−6 is added to

∑
x∈{0,1}∗ 2−K∗(x). The crucial observation is that since ie

did not change, this is the same ε as before.
This process keeps repeating. If the games associated with Re continue to be de-

stroyed indefinitely, then
∑

x∈{0,1}∗ 2−K(x) ≥ ε + ε + · · · so it diverges. This contra-
dicts K being a prefix free entropy function.

Hence eventually there is some game Ge,x′′ that is played throughout all the rest of
the stages. Since the game DAG for Ge,x′′ is finite, this means that eventually Re stops
acting and is satisfied.
End of Proof of Claim 2

Claim 3:
∑

x∈{0,1}∗ 2−H(x) ≤ 1
8 .

Proof of Claim 3:

14

We have that H = lims→∞ Hs, and thus∑
x∈{0,1}∗

2−H(x) =
∑

x∈{0,1}∗
2−H0(x) +

∑
s≥1

∑
x∈{0,1}∗

(2−Hs+1(x) − 2−Hs(x)).

That is, we can bound the sum by bounding H0 and by bounding the changes that occur
to H over the lifetime of the construction (some of which are made by K, and some by
F).

Originally H∗(x) = F ∗(x) + 3 = 2|x|+ 6 for all x, so
∑

x∈{0,1}∗ 2−H0(x) = 1
32 .

The total contribution that K can make to
∑

x∈{0,1}∗ 2−H(x) is bounded by the
expression

∑
x∈{0,1}∗ 2−K(x)+5. Since K is a prefix free entropy function, this con-

tribution is at most 1/32.
Let us now consider the total contribution that F makes to

∑
x∈{0,1}∗ 2−H(x) due

to movements by F on games on which K eventually cheats. On each of these games
F contributes less to

∑
x∈{0,1}∗ 2−H(x) than K, so from the above we can say that the

total contribution that F makes to
∑

x∈{0,1}∗ 2−H(x) while playing these games is at
most 1/32.

Finally, let us consider the total contribution that F makes to
∑

x∈{0,1}∗ 2−H(x)

due to movements by F on games that are never destroyed, or are destroyed by higher
priority requirements. Consider such games associated with a particular requirement
Re. During the first such game associated with Re, ie = 0, so F can change at most
ε = 2−e−ie−6 = 2−e−6. On the second such game associated with Re, ie = 1, so F
can change at most ε = 2−e−7. Generalizing, we see that the total contribution that F
makes to

∑
x∈{0,1}∗ 2−H(x) on such games associated with Re is

∞∑
i=6

2−e−i = 2−e
∞∑

i=6

2−i = 2−e−5

Hence, the total contribution that F makes to
∑

x∈{0,1}∗ 2−H(x) on games that are
never destroyed, or are destroyed by higher priority requirements is at most

∑∞
e=1 2−e−5

= 1
32 .

Putting all this information together we have that∑
x∈{0,1}∗

2−H(x) ≤ 1
32

+
1
32

+
1
32

+
1
32

=
1
8

End of Proof of Claim 3
All that remains is to show that whenever a new game associated with Re is con-

structed, a witness x with the appropriate property can be found. Recall that we are
searching for an x such that

• If we define a new game Ge,x using the current H∗, then val(Ge,x) 6= L(x),
where L(x) is the characteristic function of L.

Claim 4: In the above situation, a witness with the desired property can always be
found in a finite number of steps

15

Proof of Claim 4:
Suppose for contradiction that during some stage s for some e we are not able

to find such an x. Let y be the last string that was taken from HEAP before this
endless search for an x began. This means that for all strings x > y (under the normal
lexicographical ordering), when we construct the game Ge,x, val(Ge,x) = L(x). But
this gives a PSPACE algorithm to decide L, which we now describe.

Hardwire in the value of L(x) for every x ≤ y. Also hardwire in the function H∗

at this moment in the construction and Xe′ for all e′ ≤ e. (It is possible to hardwire in
H∗ because at any given moment in the construction only finitely many elements have
been enumerated into ov(F) and ov(K).)

On an input x ≤ y, refer to the lookup table to decide L(x). On an input x > y, use
the stored values of H∗ and the Xe′ ’s to construct Ge,x and output val(Ge,x). As noted
previously, for all large x we can represent a particular node in the DAG of Ge,x with
|x|2e +1 bits. Despite the fact that there are exponentially many nodes in the graph, an
alternating polynomial-time Turing machine can search for winning strategies on the
DAG, as follows:

Note that the number of moves in the game is bounded by a polynomial in |x|,
since each move in the game involves lowering the value of H∗(z) for one of the
polynomially-many queries z. Thus, to determine if a player has a winning strategy
from some game position C (represented by the circuit λe,x, along with the values of
H∗ restricted to the set Xe that is used in the game Ge,x), it suffices to check if there
exists a move for this player causing the circuit λe,x to take on the desired value, and
such that for every move of the opposing player, there exists a move of this player that
again causes λe,x to take on the desired value, such that . . . until there are no more legal
moves possible for the opposing player. We can represent any state of the game (i.e.,
the node where the token currently lies, plus the scores of the players) by a number of
bits bounded by a polynomial in |x|. Given the functions h and h′ for any two nodes
in the DAG, along with the scores of each player, it is easy to determine in polynomial
time if it is legal to move from h to h′, and to compute the scores of each player after
the move. (It suffices to verify that for all z, h(z) ≤ h′(z), and to add up a polynomial
number of rationals of the form a/2b where b = nO(1).) As mentioned above, the
length of any path in the DAG is bounded by a polynomial in n (since the values of
h always decrease). Thus, determining winning strategies is possible in alternating
polynomial time.

Since alternating polynomial time is equal to PSPACE [12], this contradicts the fact
that L 6∈ PSPACE.
End of Proof of Claim 4

Theorem 9. ∆0
1 ∩

⋂
U{A : A≤p

mttRKU
} ⊆ coNP ∩ P/poly

Proof: The containment in P/Poly comes from [1].
Note that a reduction showing L≤p

mttRKU
corresponds to an anti-monotone reduc-

tion to ov(KU) (where the only queries are of the form “Is KU (z) < |z|?”) Thus this
same reduction is an anti-monotone reduction from the complement of L to the com-

16

plement of RKU
. If we replace each Boolean function in this anti-monotone reduction

with its complement, we obtain a monotone reduction of L to ov(KU).
Thus it suffices to show that any set that is≤p

mtt -reducible to the overgraph ov(KU)
for every U is in NP.

The proof of this containment is almost identical to the proof of Theorem 8. The
only difference is now we consider an arbitrary language L 6∈ NP, and must show that
when a game Ge,x is constructed corresponding to a polynomial time monotone truth
table reduction γe, determining whether val(Ge,x) = 1 can be computed in NP. Note
that in the monotone case, the NO player of the game has no incentive to ever make
a move, as doing so could only change the value of the circuit λe,x from NO to YES.
Therefore whether the YES player has a winning strategy in the game depends solely
on whether the YES player can legally move the token from the start node to a node u
in the game DAG labeled by YES. This is an NP question – the certificate is the node
u, which as we have seen can be represented by a polynomial number of bits in |x|.

Theorem 10. ∆0
1 ∩

⋂
U NPRKU ⊆ EXPSPACE

Proof: An NP-Turing reduction can be simulated by a truth-table reduction computable
in exponential time, where all queries have length bounded by a polynomial in the input
length. Carrying out the same analysis as in the proof of Theorem 8, but changing the
time bound on the truth-table reductions from polynomial to exponential, immediately
yields the EXPSPACE upper bound.

4. Encoding in the Overgraph

We conjecture that our main results can be improved in several ways. In this sec-
tion, we consider one type of improvement, and we present some reasons why a differ-
ent proof strategy will be required, in order to obtain such an improvement.

Theorem 8 shows that, for every decidable set A outside PSPACE, there is some
universal prefix machine U such that A 6≤p

tt RKU
. It is natural to ask if there is a

decidable set A such that, for every universal machine U , A 6≤p
tt RKU

. We conjecture
that this should hold for every decidable set A that is not in P/poly. (Some weaker
results in this direction have been proved. It is known that if a decidable set A has high-
enough non-uniform complexity, then for any universal machine U , any ≤p

tt reduction
from A to RCU

must make at least n/4 log n queries [1]. Related questions were also
explored by Hitchcock [15].)

However, the following theorem shows that no such improvement can carry over
to the overgraph ov(RKU

), which suggests that quite different techniques may be re-
quired than were employed in this paper. (Related observations occur in [20, Theorem
2.6].)

Theorem 11. Let A be a computable set. Then there exists a universal (prefix) machine
U such that A≤p

ttov(CU) (A≤p
ttov(KU), respectively).

17

Proof: We present the proof for ov(KU). It is clear that the proof carries over also for
the case of ov(CU).

Let M be the universal prefix machine that defines K(x).
Consider the machine U that does not halt on any input in 00{0, 1}∗, and behaves

as follows on inputs of the form 1d or 01d for any string d:
Simulate M(d), and if it halts, let the output be x (so that K(x) ≤ |d|).
Determine if x ∈ A or not.
If x ∈ A and |d| is even, then U(1d) = x and U(01d) = ↑.

If x ∈ A and |d| is odd, then U(1d) = ↑ and U(01d) = x.
If x 6∈ A and |d| is even, then U(1d) = ↑ and U(01d) = x.
If x 6∈ A and |d| is odd, then U(1d) = x and U(01d) = ↑.

Note that U is a prefix machine, and that for all x KU (x) ≤ K(x) + 2.
Clearly, x ∈ A if and only if KU (x) is odd. This can be determined by making a

linear number of truth-table queries to ov(KU).

5. Perspective and Open Problems

How should one interpret the theorems presented here?
Prior to this work, the inclusion NEXP ⊆ NPRK was just a curiosity, since it was

not clear that it was even meaningful to speak about efficient reductions to an undecid-
able set. Here, we show that if we view RK not as merely a single undecidable set,
but as a class of closely-related undecidable sets (differing only by the “insignificant”
choice of the universal Turing machine U), then the computable sets that are always in
NPRK is a complexity class sandwiched between NEXP and EXPSPACE. The obvi-
ous question is whether this class is actually equal to NEXP (or to EXPSPACE). Any
characterization of a complexity class in terms of efficient reductions to a class of un-
decidable sets would raise the possibility of applying techniques from computability
theory to questions in complexity theory, where they had seemed inapplicable previ-
ously.

One possible objection to the theorems presented here is that they make use of
universal Turing machines U that are far from “natural”. However, we see little to be
gained in trying to formulate a definition of a “natural” universal Turing machine. Even
basic questions such as whether there is a truth-table reduction from the Halting Prob-
lem to RK depend on the choice of the universal Turing machine U [20, 1], and the
only machines for which the answer is known (positive and negative) are all decidedly
“unnatural”. A detailed study of analogous questions that arise when one considers
other variants of Kolmogorov complexity (such as various types of “monotone” Kol-
mogorov complexity) has been carried out by Day [13].

All of the positive results, showing that problems are efficiently reducible to RK

hold using a quite general notion of “universal Turing machine”, and we believe that the
approach used here and in [1] to “factor out” the idiosyncrasies of individual universal
machines is a more productive route to follow.

18

Alternatively, one can view our results as placing limits on what sets can be proved
to be reducible to RK , using only an “axiomatic” approach to Kolmogorov complexity.
Let us expand on this view. The theory of Kolmogorov complexity (for instance, as
developed in [19]) relies on the existence of universal machines U , in order to develop
the measures K and C, but no properties are required of such machines U , other than
that, for any other (prefix) machine M , ∃cM∀xCU (x) ≤ CM (x) + cM (or KU (x) ≤
KM (x) + cM , respectively). The rest of the theory can proceed, using just this axiom
about the machine U that defines C or K.

Our results show that, for any decidable set A outside of EXPSPACE, A cannot
be proven to lie in NPRK without introducing additional axioms describing additional
properties of the universal machine that defines K. One could pursue the same types
of questions that we do in this paper using a more stringent definition of what consti-
tutes a universal machine, but at the cost of adding additional axioms to the study of
Kolmogorov complexity that in some sense are not strictly necessary.

It is natural to conjecture that our main theorems hold, even if “∆0
1∩” is erased

from the statement of the theorems. For instance, if A is in
⋂

U NPRKU , we conjecture
that A is computable.

We also conjecture that all of our main theorems hold if the prefix complexity
function K(x) is replaced everywhere by C(x), although the techniques that we use
do not seem sufficient to prove this. Let us expand on this point. Our techniques build
on the techniques that Muchnik and Positselsky [20] used, in order to show that, for
some U , there is no truth-table reduction from the halting problem to ov(KU). It is
impossible to generalize their result to the plain Kolmogorov complexity C, because
Kummer showed [18] that there is a truth-table reduction from the halting problem
to RC (no matter which universal machine one uses to define C). Kummer actually
presents a disjunctive truth-table reduction from the complement of the halting problem
to RC ; it is known [1] that any such disjunctive truth-table reduction must require at
least exponential time, but nothing is known for general truth-table reductions. That
is, it remains unknown whether there is a c.e. set A and a universal machine U such
that A 6≤p

tt RCU
, and it is also unknown whether there is a universal machine U such

that RCU
is hard for the c.e. sets under ≤p

tt reductions. We conjecture that the halting
problem is not ≤p

tt reducible to RC or RK (no matter which universal machine is used
to define C and K).

The theorems presented here all relativize. For instance, for any computable oracle
B, if A 6∈ PSPACEB , then there is a universal prefix Turing machine U such that
A 6≤PB

tt RKU
. (Note that, for computable oracles B, there is no need to “relativize”

RKU
. A similar restatement is possible for noncomputable oracles B, too.) However,

it seems quite possible to us that, say, if it were possible to characterize NEXP in
terms of NPRK , that this might proceed via nonrelativizable techniques. The types of
characterizations of complexity classes that we are investigating are quite different than
those that have been studied in the past, and we hope that new insights will result as
new connections are explored.

19

Acknowledgments

We thank Adam Day, Bruno Loff, Russell Impagliazzo, and Danny Gutfreund, Ken
Regan, Sam Hopkins, Salil Vadhan, and the anonymous ICALP reviewers for helpful
comments. The first two authors were supported in part by NSF Grants CCF-0830133,
CCF-0832787, and CCF-1064785.

References

[1] E. Allender, H. Buhrman, and M. Koucký. What can be efficiently reduced to
the Kolmogorov-random strings? Annals of Pure and Applied Logic, 138:2–19,
2006.

[2] E. Allender, H. Buhrman, M. Koucký, D. van Melkebeek, and D. Ronneburger.
Power from random strings. SIAM Journal on Computing, 35:1467–1493, 2006.

[3] E. Allender, L. Friedman, and W. Gasarch. Exposition of the muchnik-positselsky
construction of a prefix free entropy function that is not complete under truth-
table reductions. Technical Report TR10-138, Electronic Colloquium on Com-
putational Complexity, 2010.

[4] E. Allender, L. Friedman, and W. Gasarch. Limits on the computational power of
random strings. Technical Report TR10-139, Electronic Colloquium on Compu-
tational Complexity, 2010.

[5] E. Allender, L. Friedman, and W. Gasarch. Limits on the computational power of
random strings. In Proc. of International Conference on Automata, Languages,
and Programming (ICALP), volume 6755 of Lecture Notes in Computer Science,
pages 293–304. Springer, 2011.

[6] E. Allender, M. Koucký, D. Ronneburger, and S. Roy. The pervasive reach of
resource-bounded Kolmogorov complexity in computational complexity theory.
Journal of Computer and System Sciences, 77:14–40, 2010.

[7] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP has subexponential time
simulations unless EXPTIME has publishable proofs. Computational Complex-
ity, 3:307–318, 1993.

[8] R. V. Book. On languages reducible to algorithmically random languages. SIAM
Journal on Computing, 23(6):1275–1282, 1994.

[9] R. V. Book, J. Lutz, and K. W. Wagner. An observation on probability versus ran-
domness with applications to complexity classes. Mathematical Systems Theory,
27(3):201–209, 1994.

[10] R. V. Book and E. Mayordomo. On the robustness of ALMOST-r. RAIRO Infor-
matique Théorique et Applications, 30(2):123–133, 1996.

20

[11] H. Buhrman, L. Fortnow, M. Koucký, and B. Loff. Derandomizing from random
strings. In 25th IEEE Conference on Computational Complexity (CCC), pages
58–63. IEEE Computer Society Press, 2010.

[12] Ashok K. Chandra, Dexter Kozen, and Larry J. Stockmeyer. Alternation. Journal
of the ACM, 28(1):114–133, 1981.

[13] A. Day. On the computational power of random strings. Annals of Pure and
Applied Logic, 160:214–228, 2009.

[14] D. Gutfreund and S. P. Vadhan. Limitations of hardness vs. randomness under
uniform reductions. In APPROX-RANDOM, volume 5171 of Lecture Notes in
Computer Science, pages 469–482. Springer, 2008.

[15] John M. Hitchcock. Lower bounds for reducibility to the Kolmogorov random
strings. In Proc. Computability in Europe (CiE), volume 6158 of Lecture Notes
in Computer Science, pages 195–200. Springer, 2010.

[16] R. Impagliazzo and A. Wigderson. Randomness vs. time: de-randomization un-
der a uniform assumption. J. Comput. Syst. Sci., 63(4):672–688, 2001.

[17] V. Kabanets and J.-Y. Cai. Circuit minimization problem. In Proc. ACM Symp.
on Theory of Computing (STOC), pages 73–79, 2000.

[18] M. Kummer. On the complexity of random strings. In Proc. of Symp. on Theo. As-
pects of Comp. Sci. (STACS), volume 1046 of Lecture Notes in Computer Science,
pages 25–36. Springer, 1996.

[19] M. Li and P. Vitanyi. Introduction to Kolmogorov Complexity and its Applica-
tions. Springer, third edition, 2008.

[20] A. A. Muchnik and S. Positselsky. Kolmogorov entropy in the context of com-
putability theory. Theoretical Computer Science, 271:15–35, 2002.

[21] N. Nisan and A. Wigderson. Hardness vs. randomness. Journal of Computer and
System Sciences, 49:149–167, 1994.

[22] O. Reingold, L. Trevisan, and S. P. Vadhan. Notions of reducibility between
cryptographic primitives. In Theory of Cryptography (TCC), volume 2951 of
Lecture Notes in Computer Science, pages 1–20. Springer, 2004.

[23] Luca Trevisan and Salil P. Vadhan. Pseudorandomness and average-case com-
plexity via uniform reductions. Computational Complexity, 16(4):331–364, 2007.

21

