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Abstract

A certain two-person infinite game (between “Robin Hood” and
the “Sheriff”) has been studied in the context of set theory. In certain
cases, it is known that for any deterministic strategy of Robin Hood’s,
if the Sheriff knows Robin Hood’s strategy, he can adapt a winning
counter-strategy. We show that in these cases, Robin Hood wins with
“probability one” if he adopts a natural random strategy. We then
characterize when this random strategy has the almost-surely-winning
property. We also explore the case of a random Sheriff versus a deter-
ministic Robin Hood.

1 Introduction

The Robin Hood game has been studied by logicians [2, 3, 4] in the
context of set theory!. The key theorems about it state “if the Sheriff
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knows Robin’s Strategy then the Sheriff can play a counter-strategy
that wins.” What if the Sheriff does not know Robin’s strategy? How
can we formalize this notion? We will have Robin play a simple ran-
domized strategy so that the Sheriff cannot know Robin’s next move.

For 2-player matrix games [5] randomized strategies are provably
better than deterministic strategies. This paper shows that for a class
of infinite games (which are not matrix games) randomized strategies
are provably better than deterministic ones. In Section 2 we show
exactly when a Random Robin Hood beats any deterministic Sheriff
strategy. In Section 3 we show some cases where a Random Sheriff
beats a particular deterministic Robin Hood strategies and speculate
on other possibilities.

Let w denote the set of positive integers, and w; denote the first
uncountable ordinal.

Def 1.1 Let r : w — w and s : w — w be two functions. Let A be
a set. The Robin Hood Game with parameters (r,s, A) (henceforth
RH(r,s,A)) goes as follows.

1. On day 4, the Sheriff of Nottingham (henceforth ‘the Sheriff’)
puts a set of < s(7) bags of gold into a cave. He labels the bags
with elements of A. No label can ever be used twice over the
course of the game.

2. On night 4, Robin Hood (henceforth “Robin”) removes < r(7)
bags of gold from the cave.

The game goes on forever. If every single bag that ever enters the cave
is eventually removed then Robin wins; otherwise the Sheriff wins.

Notation 1.2 If r or s is a constant function we can denote it by that
constant. So the phrase “RH(2,3,w;)” makes sense.

Here are some easy facts about the game.

1. If there are no limits on Robin’s strategy then he has an easy
winning strategy: always remove the bag that has been in the
cave the longest.

2. If A is countable then Robin has an easy winning strategy. Before
the game begins, Robin fixes an ordering of A which we denote
A ={ay,as,...}. During the game, if Robin is looking at a cave
with {a;,, @iy, -..,a; } (with 43 < 49 < --- < 4x) then Robin
removes a;,. More succinctly, Robin removes the least indexed
bag. Any bag that is placed into the cave will eventually be
removed since there are only a finite number of possible bags
with lower index.

3. If (Vi) [r(é) > s(7)] then Robin wins easily.



Because of these three facts the game has been studied when Robin’s
strategy is restricted, A is uncountable, and (Vi)[r(i) < s(i)].

Def 1.3 A strategy of Robin’s is memoryless if it depends only on the
set of bags of gold (and their labels) that he sees in the cave, and not
on when they came in, or how many times Robin has visited the cave.

Here are some theorems about the game from [4]. See [2, 3] for
more theorems.

1. Assume Robin has a memoryless strategy. If (r,s) lies in the
set {(1,2),(2,3),(3,4)} and if the Sheriff knows Robin’s strategy
then he can devise a counter-strategy that wins RH (r, s,w;). The
(4,5,w1) case is open.

2. Assume Robin has a memoryless strategy. There are models
of set theory where, for all constants ¢, if the Sheriff knows
Robin’s strategy then he can devise a counter-strategy that wins
RH(c,c+ 1,wy). (In these models of set theory the axiom of
choice is false.)

The key to prior results is that the Sheriff knew Robin’s strategy.
What if he did not? One way to accomplish this is to have Robin adopt
a random strategy; it is well-known that random (or mized) strategies
can be crucial in games [5]. We show in particular that for any positive
constants r and s, and for any infinite set A, Robin wins RH(r, s, A)
almost surely if he adopts a natural random strategy. (Note that this
is in contrast with the above-seen results on deterministic strategies
for Robin.) We use the simplest possible random strategy for Robin:

Def 1.4 The Random Strategy for Robin in stage ¢ is to choose r (i)
elements at random out of the cave. (If there are less than (i) elements
then he takes them all out of the cave. This cannot happen in our
discussion, since, as mentioned above, we will only deal with the case
where (i) < s(7) for all 4.)

We also characterize when this random strategy has the almost-
surely-winning property for Robin.

Clearly, if Robin adopts such a strategy, the choice of A does not
matter, as long as it is an infinite set. Also, since Robin plays randomly,
there is no advantage for the Sheriff to put in less than s(¢) bags, nor
for Robin to take out less than r(¢) bags. Hence we will assume that
in round ¢ the Sheriff puts in exactly s(i) bags and Robin takes out
exactly r (i) bags.

We cannot speak of Robin “winning” or “losing” with this strat-
egy; however, we can speak of the probability of winning or losing.
This probability is taken over Robin’s sequence of coin-tosses. Since
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we are dealing with an infinite probability space, we need some care
in defining Robin’s probability of winning. There does not appear to
be a unique definition but the following one appears natural. Basi-
cally, Robin would like to have removed all bags that arrived in the
first n days within some finite time, with high probability; this should
hold for arbitrarily large n. Guided by this notion, we define Robin’s
probability of losing (which is 1 minus his probability of winning) as
follows. Let f : w — w be an arbitrary function. Define E¢(n) to be
the event “there exists some bag that had arrived on or before day n,
which had not been removed by night n + f(n) — 1”. Then, we define
Robin’s failure probability to be
p(r,s) = inf lim Pr[E;(n)]. (1)
frw—wn—oo
It is not clear that this limit should exist, but we shall show that it
exists and is always either 0 or 1 (respectively denoting Robin succeed-
ing and failing almost surely). Let us now understand these two limit-
ing values better. Suppose p(r,s) = 0. This means that for any € > 0,
there exist f : w — w and ng such that for all n > ng, Pr[E¢(n)] < ¢
in other words, Robin succeeds almost surely (since the waiting time of
bags that arrived by day n is bounded by the finite function f(n)+n
almost surely, for any n large enough). Next, suppose p(r, s) = 1. This
means that for any € > 0, there exists ng such that for all n > ng and
for all f:w— w, Pr[Ef(n)] > 1 — ¢ ie., Robin fails with arbitrarily
large probability.

Notation 1.5 Let L(i) = Z;Zl(s(z) —7(¢)). This is the number of
bags left in the cave after the ith round.

2 When Does a Random Robin Hood Win
Beat a Determinisitc Sheriff

?
Our main result, Theorem 2.1, shows when Robin wins or loses,
almost surely: basically this is shown to depend on whether the series

Sy % converges or not. Theorem 2.1 in fact says something

stronger. If the series Zzoil % diverges, it is shown that with
arbitrarily high probability, there is some f such that E¢(n) fails si-

multaneously for all n. On the other hand, if > 77, L(ng(i) < o0,
then any bag that arrived after a certain day, will stay forever with ar-
bitrarily high probability. (We assume without loss of generality that
L(i) + r(i) > 0 for all 4, so that this series is well-defined. Indeed,

L(i) + r(#) = 0 is possible, under the condition “r(j) < s(j) for all j”,




only if s(i) = r(i) = 0. Such indices 7 clearly contribute nothing to the
game, and can be ignored.)

Theorem 2.1 Suppose r(i) < s(@) for alli. Then:

(a) If >°32, W = 00, then p(r,s) =0 (i.e., Robin wins almost
surely). In fact, in this case, for any e > 0, there exists an f
such that Pr[an: E;(n)] <e.

(b) if Yoooh T Sir(l) < 00, then p(r,s) =1 (i.e., Robin loses almost
surely). In fact, in this case, for any e¢ > 0, there exists ng
such that for any given bag b that arrived on day ng or later, the

probability that b is ever removed is at most €.

Proof: Suppose a bag b is in the cave on night i, before Robin
makes his random choices. Note that the probability that b is removed
on night 7 is

r(i) r(i)

TG—1)+s() LG +rG) @)

(a) Fix some n € w, some € € (0,1], and some bag b that arrived on
some day d < n. By (2), the probability that b is not removed by the
end of night n +m — 1 (where m is any positive integer) is

i=d i=n

_ n+m-—1 (i)
< e Yo Z+r() |

Thus, by a union bound, the probability that at least one bag that had
arrived on day n or earlier is not removed by the end of night n4+m—1
is at most

n n+m—1 (i
(3 s()) e YT (3)
j=1
Now since Y i, % i=n %
Therefore, we can choose m = m(n, €) large enough so that the expres-
sion in (3) is at most, say, 6¢/(m?n?). Thus we see that for all ¢, there
exists f such that

00, we also have > >~ 0.

Pr[3n : |1 < ZPr E;(n)] < 266/

n=1
This implies that p(r,s) = 0.
(b) In this case, we proceed as follows. Suppose we are given some

positive e. Since EZ 1 % < 00, there exists some integer ng



such that -

2 T + (D)

Now consider an arbitrary bag that arrived on some day d > ng. Then,
the probability that it is never removed is

S R0 N WS | N
H<1 L(i>+r<i>>21 L imrm 2T

i=d i=d
This easily implies that p(r,s) =1. |
We obtain some easy corollaries of interest.

Corollary 2.2 Let A be any infinite set.

1. If s € w and s > 1 then Robin almost surely wins RH(1,s, A).
(This follows from the divergence of > .- 1/i.)

2. If s(i) = [log(i + 1)] then Robin almost surely wins RH(1,s, A).
(This follows from the divergence of > i, m)

3. Let e > 0. If s(i) = [(log(i + 1))'*¢| then Robin almost surely
loses RH(1,s,A). (This follows from the convergence of the se-

ries i1 gty )
4. Let € > 0. If s(i) = i then Robin almost surely loses RH(1,s, A).
(This follows from the convergence of > ooy %.)

3 When Does a Random Sheriff Beat a
Deterministic Robin

We now study a question suggested by one of the referees: what if
Robin is deterministic and the Sheriff plays randomly? Concretely,
consider RH(1,s,[0,1]) for any integer s > 2. Suppose the Sheriff
chooses s random labels from [0, 1] on each day; with probability 1, no
two labels will ever be the same. What are some good deterministic
strategies for Robin? We are not able to answer this question. We
show in Section 3.1 that certain “natural” strategies for Robin do not
work, and present a strategy in Section 3.2 that we conjecture to work.

3.1 Negative results

Our negative result is that strategies for Robin such as “always remove
the bag with the smallest label (or largest label) currently seen” do
not work. More generally, if s > 3, any strategy that on any given day
either removes the minimum-labeled or the maximum-labeled bag, also



does not work. We start by recalling the Chernoff lower-tail bound [1].
Suppose X is a sum of a finite number of independent random variables
each of which takes values in [0,1]. Letting 1 = E[X] (the expected
value of X), the bound shows that for any ¢ € (0,1),

Pr[X < pu(l—0)] < e r/2,

Fix any s > 2 and any € € (0,1). We first show that if Robin always
removes the minimum-labeled bag, then there is a bag that will never
be removed with probability at least 1 —e. Let 0 < 6 < 1/2 be any
constant such that 2(1 — )2 > 1; thus,

s(1—6)% > 1. (4)

Also define .
T= fa% In(1/e)] (5)

for a suitably large constant ¢g. Our proof approach will be as follows.
Let the random variable ¢ be the smallest integer that is at least as
large as T, such that the Sheriff placed a bag b with label greater than
1—6 on day t; such a ¢ exists with probability 1. We aim to show that
the bag b will never be removed with high probability.

In more detail, define the following random variables:

no=1t; ny = [t-(s(1—0)%—=1)]; fori>1, njt1 = [nis(1 —0)%].

Call a bag “good” iff its label is at most 1 — 6. We propose to show
that with probability at least 1 — ¢, all of the following events happen:

e Event &: at least st(1 — 0)2 good bags are placed in days 1
through ¢;

e Event &; for ¢ > 1: at least n; 1 good bags are placed in the n;
days that belong to the interval

l4+no+ni+-+mn_1, L+no+ny+--+n.

Since Robin can only remove one bag per night, event &, implies that
at the end of night ¢ (i.e., the night of the day when the bag b arrives),
at least n; good bags will be left; these will clearly be removed by
Robin before he can remove bag b. However, event £ implies that in
the ny days that follow, at least ny good bags arrive. Thus, at the end
of night ¢ + ny, at least ny good bags will have to be removed before
bag b can be removed. & then shows that ng good bags arrive in the
next no days, etc; thus, if all these events hold, b can never be removed.
We now show using the Chernoff bound that the probability of even
one of the & not holding is at most e. From now on, let us condition
on an arbitrary but fixed value of ¢, and recall that such a value is at



least T'; all probabilities from now on will be conditional on this value
of ¢t. In particular, all values n; are deterministic from now on.

The events &; for ¢ > 1 are a bit easier to handle: consider any one
such &;. In any given interval of n; days, the expected number of good
bags placed is sn;(1 — #). Thus, the probability of the complement &;
of & can be bounded by the Chernoff bound:

Vi > 1, Pr[€;) < emsmi(1-0)0%/2, (6)
We now bound Pr[€]. Since (at least) one non-good bag has been
known to be placed on day t, we effectively have st — 1 random label
choices in the first ¢ days. Further, we know that in the days from T up
to t —1, all bags were good; on these days, we thus have s independent
random choices of labels, each of which is uniformly distributed in
[0,1 — 6]. Thus, even conditional on the value of ¢, the number X of
good bags that arrive in the first ¢ days is a sum of independent binary
random variables; also, E[X] > st(1 — 0) — 1, which is approximately
st(1 —0) in the relative sense if the constant ¢q is chosen large enough.
Thus, if ¢g is large enough, we get

Pr[&] < o st(1-0)0%/3 (7)
Therefore,
Pr[3i > 0: &) < e 00/ 37 omom 2002,
i>1

Now, we can see from (4) that for any ¢t > T, the sequence ny,ng,...
essentially increases geometrically. Thus, the sum on the r.h.s. is domi-
nated by its first term, and the r.h.s. can be made at most € by choosing
co large enough. This completes our proof.

For the more general case where on each night, Robin can choose
to remove either the minimum-labeled or the maximum-labeled bag,
we proceed as follows. Assume s > 3 now, and consider a bag b with
label in the range (1/2 — 6/2,1/2 + 0/2). By essentially the same
proof, we can show that bag b will be “swamped” by bags with labels
both smaller and larger, and hence will never be removed (with high
probability).

3.2 An approach conjectured to work

We now suggest a “maximum likelihood” type scheme that we conjec-
ture will work for Robin. Specifically, suppose we are again dealing
with RH(1,s,]0,1]) for some fixed s > 2. Also suppose that we allow
Robin to know the day ¢. Now suppose D is some known distribution
on sets of s distinct labels, each of which lies in [0,1]; furthermore,



in any countable number of independent samples from D, we should
have with probability 1 that all generated labels are distinct. Consider
the case where the Sheriff samples from D independently on each day
(for instance, in the discussion above, D is the uniform distribution
on [0, 1]%), and suppose Robin plays as follows. On each night ¢ Robin
examines the labels that he sees, and calculates for each bag b (re-
cursively knowing his strategy for nights 1 through i — 1, as well as
knowing the distribution D) its expected duration of stay so far, Y.
Then, he chooses to remove the bag with largest Y} value (breaking
ties by a uniformly random choice). We conjecture that this strategy
works for Robin in the case where D is the uniform distribution on
[0,1]5.

4 Conclusions

In prior papers on the Robin Hood game the results were of the form
“for such-and-such settings of the parameters, if Robin plays a deter-
ministic strategy, and the Sheriff knows that strategy, then the Sheriff
can win.” In this paper we have explored both the assumption that the
strategy is deterministic and that the Sheriff knows it. We have shown
that even a simple randomized strategy can beat the Sheriff. Hence
the key to prior results was that Robin used a deterministic strategy.
Hence this paper adds to the literature showing that randomization
helps. Also, Section 3 studies a question raised by one of the referees.
It will be interesting to resolve the conjecture posed therein; also, if the
conjecture is true, can we go further and characterize the distributions
D for which it holds? In addition, a study of a random Robin Hood
versus a Random Sheriff may be of interest.

Acknowledgements. We thank Marion Scheepers for writing the
paper that encouraged this one and for helpful email communication.
We thank Srinivasan Parthasarathy for proofreading and commentary.
We thank the referees for their helpful comments; we also thank one
of the referees for suggesting the problem considered in Section 3.

References

[1] H. Chernoff. A measure of asymptotic efficiency for tests of a hy-
pothesis based on the sum of observations. Annals of Math. Stat.,
23:493-509, 1952.

[2] K. Ciesielski and R. Laver. A game of D. Gale in which one of
the players has limited memory. Periodica Mathematica Hungaria,
22:153-158, 1990.



[3] M. Scheepers. Variations of a game of Gale (ii): Markov stategies.
Theoretical Comput. Sci., 129, 1994.

[4] M. Scheepers and W. Weiss. Variations of a game of Gale (iii):
Remainder stategies. Journal of Symbolic Logic, 62(4), 1997.

[5] P. Straffin. Game Theory and Strategy. MAA, 1993.

10



