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Abstract
For all n there is a DFA for {ai : i 6= n} of size n + 2; however there

is no smaller DFA. What about NFA’s? We show that there is an NFA
for {ai : i 6= n} of size

√
n + Õ(1). We also find small NFA’s for many

other cofinite unary sets. How small can we go? We show that any NFA for
{ai : i 6= n} must have at least

√
n states.

1 Introduction
Consider the language

MN(n) = {ai : i 6= n}.

(MN stands for Missing Number.)
It is easy to show that (1) there is a DFA for MN(n) with n+2 states, and (2)

any DFA for MN(n) has at least n + 2 states. What about an NFA for MN(n)?
We show that there is an NFA for MN(n) that has substantially fewer than n
states. We also obtain small NFA’s for many other cofinite unary languages.
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Notation 1.1. N is {0, 1, 2, . . .} (that is, we include 0).

Def 1.2. If A ⊆ N then
MN(A) = {ai : i /∈ A}.

We will only use this definition when A is finite. We will write MN(a, b, c) instead
of the formally correct MN({a, b, c}).

Notation 1.3. If f and g are functions then, informally, f ≤ Õ(g) means that f
is less than g if we ignore polylog factors. Formally it means that

(∃n0)(∃c)(∀n ≥ n0)[f(n) ≤ c(logn)cg(n)].

1. In Section 3 we show that (1) there is an NFA for MN(100) on 29 states,
and (2) for all n there is an NFA for MN(n) with ≤ n1/2 + Õ(1) states.

2. In Section 4 we show that (1) there is an NFA for MN(998, 999, 1000) on 104
states, (2) for any A ⊆ {998, 999, 1000} there is an NFA for MN(A) on 104
states, (3) for all n, for all 0 < δ < 1 there is an NFA for MN(n−nδ, . . . , n)
on 5nmax{1/2,δ} + Õ(1) states, and (4) for any A ⊆ {n − nδ, . . . , n} there is
an NFA for MN(A) on 5nmax{1/2,δ} + Õ(1) states.

3. In Section 5 we show that, for all n, for all 0 < α < 1 such that αn ∈ N,
there is an NFA for MN(αn, n) on 2n1/2 ln(n) + Õ(1) states.

4. In Section 6 we prove a general theorem about unary sets with big gaps.
We obtain the following corollary: for all 0 < δ < 1 there is an NFA for
MN(nδ, n) on n1/2 + nδ + Õ(1) states.

5. In Section 7 we show that any NFA for MN(n) requires at least n1/2 states.

6. In Section 8 we discuss our empirical results.

7. In Section 9 we state open problems.

Def 1.4. A set X has a small NFA if there is an NFA that accepts it that is much
smaller than any DFA for it. We do not define the term much smaller rigorously.
However, all of our results are about small NFA’s.

All of our general results are asymptotic; however, we will present empirical
evidence that indicates the results hold for small n as well.
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2 Needed Lemma

The following problem is attributed to Frobenius:

Given a set of relatively prime positive integers {a1, . . . , am} find the set
{
∑n
i=1 aixi : x1, . . . , xm ∈ N}.

It is known that this set is always cofinite. The m = 2 case was solved by
James Joseph Sylvester in 1884:

Lemma 2.1. Let c, d ∈ N be relatively prime.

1. For all i ≥ cd− c− d+ 1 there exists x, y ∈ N such that i = cx+ dy.

2. There is no x, y ∈ N such that cd− c− d = cx+ dy.

3. There is no x, y, C,D ∈ N such that cd−c−d−Cc−Dd = cx+dy. (If there
was then cd− c− d = (C + x)c+ (D + y)d.) We use this part in Section 4.

3 Small NFA’s for MN(100) and MN(n)

3.1 Small NFA for MN(100)

Theorem 3.1.

1. For all i ≥ 96 there exists x, y ∈ N such that i = 13x+ 9y.

2. There does not exist x, y ∈ N such that 95 = 13x+ 9y.

3. For all i ≥ 101 there exists x, y ∈ N such that i = 13x+ 9y + 5.

4. There does not exist x, y ∈ N such that 100 = 13x+ 9y + 5.

5. There exists an NFA M such that the following are true:

(a) For all i ≥ 101, M accepts ai.
(b) M rejects a100.
(c) We have no comment on the behavior of M on other ai.
(d) M has 13 states.

6. There exists an NFA on 29 states that accepts MN(100).
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Proof. 1,2) These follow from Lemma 2.1, though they can be proven directly by
an easy induction.
3,4) These follow from Parts 1 and 2
5) The NFA is constructed as follows: (also see Figure 1, the caption will be
explained later).

• M has states 0, . . . , 12, 0 is the start state, and 5 is the only final state. For
0 ≤ j ≤ 12, δ(j, a) = j + 1 (mod 13). (δ is not fully defined yet.)

• If we go no further then M accepts {a13x+5 : x ∈ N}.

• We put in an e-transition from state 5 to state 9. Now M accepts

{a13x+9y+5 : x, y ∈ N}.

(The 9y is not because the e-transition went to state 9. It is because the
distance from state 9 back to state 5 is 9.)

ε

Figure 1: LOOP(9,13,5) Case 1

By Parts 3,4 M satisfies 5a and 5b. M clearly has 13 states, so it satisfies 5d.

6) Let Q = {3, 5, 7}. Note that 3× 5× 7 = 105 > 100. For each p ∈ Q let Mp be
the DFA that accepts {ai : i 6≡ 100 (mod p)}.

The NFA is constructed as follows: (see also Figure 2)

1. The NFA M is part of our new NFA. We create a new start state, and then
put an e-transition from this new state to M ’s original start state. Note
that M (a) accepts all ai with i ≥ 101 (it also accepts other strings), (b)
rejects a100, and (c) has 13 states.

2. For each p ∈ Q put an e-transition from our new start state to the start
state of Mp. Note that Mp (a) accepts all ai with i 6≡ 100 (mod p), (b)
rejects a100, and (c) has p states.
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Clearly the NFA has 13 + 3 + 5 + 7 + 1 = 29 states and rejects a100. We show
that it accepts everything else.

Let ai be rejected by this NFA.

• Since the M part rejects ai, i ≤ 100 (note, hence i ≤ 3× 5× 7 = 105).

• Since the M3 part rejects ai, i ≡ 100 (mod 3)

• Since the M5 part rejects ai, i ≡ 100 (mod 5)

• Since the M7 part rejects ai, i ≡ 100 (mod 7)

By the Chinese Remainder Theorem there is a unique number 0 ≤ z ≤ 3 ×
5× 7 = 105 such that, for every p ∈ {3, 5, 7}, z ≡ 100 (mod p). Since both i and
100 satisfies these criteria, i = n.

ε
ε

ε

ε
ε

Figure 2: NFA for MN(100)

3.2 Small NFA for MN(n)
We generalize the construction of a small NFA for MN(100) to get a small NFA
for MN(n).

Def 3.2. Let c, d, e ∈ N be such that c < d and c, d are relatively prime.
LOOP(c, d, e) is the NFA defined as follows. There are two cases.
Case 1: e ≤ d− 1.

1. The NFA has states 0, . . . , d− 1, with 0 as the start state and e as the only
final state. For 0 ≤ j ≤ d− 1, δ(j, a) = j + 1 (mod d).

2. So far this NFA accepts {adx+e : x ∈ N}.

5



Gasarch, Metz, Xu, Shen, & Zbarsky

3. We put in an e-transition from state e to state e− c (mod d). Note that the
distance from state e− c (mod d) to state e is c. Now the NFA accepts

{acx+dy+e : x, y ∈ N}.

4. This NFA has d states.

Note that Figure 1 is LOOP(9, 13, 5) which is an example of a Case 1 LOOP.

Case 2: e ≥ d

1. The NFA has states s0, s1, . . . , se−d+2 such that s0 is the start state. For
0 ≤ j ≤ e− d+ 1, δ(sj , a) = sj+1.

2. The NFA has states 0, . . . , d − 1, with d − 1 as the only final state. For
0 ≤ j ≤ d− 1, δ(j, a) = j + 1 (mod d). The state 0 is identical to the state
se−d+2.

3. In total there are (e − d + 1) + (d − 1) = e transitions to get to the final
state the first time, after which each loop of length d brings you back to the
same state, so the NFA accepts {adx+e : x ∈ N}.

4. We put in an e-transition from state d− 1 to state d− c− 1. Note that the
distance from state d− c− 1 to state d− 1 is c. Now the NFA accepts

{acx+dy+e : x, y ∈ N}.

5. This NFA has e+ 1 states.

Figure 3 is LOOP(9, 13, 17) which is an example of a Case 2 LOOP.

ε

Figure 3: NFA LOOP(9,13,17) Case 2

The following is clear:
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Lemma 3.3. Let c, d, e ∈ N be such that e, c < d and c, d are relatively prime.

1. LOOP(c, d, e) accepts {ai : i ≥ cd− c− d+ e+ 1}

2. LOOP(c, d, e) rejects {acd−c−d+e}.

3. LOOP(c, d, e) rejects {acd−Cc−Dd+e : C,D ∈ N} (since if acd−Cc−Dd+e can
reach the accept state then by adding C c’s and D d’s the NFA gets back to
the accept state). We will use this part in Section 4.

4. If we used Case 1 then LOOP(c, d, e) has d states.

5. If we used Case 2 then LOOP(c, d, e) has e+ 1 states.

Note 3.4. Below, we use o(1) to denote a number that may be positive or neg-
ative, but that goes to 0 as our variable of interest (N in Lemma 3.5), goes to
infinity. This may be non-standard.

Lemma 3.5. Let N ∈ N. Let QN be the set of the first N primes.

1.
∏
p∈QN p ∼ e

((1+o(1))N logN . (This is well known.)

2.
∑
p∈QN p ∼ O(N2 logN) = Õ(N2). (For references and more precise esti-

mates see Axler [1].)

3. Let n ∈ N. The product of the first Ω(logn) primes is ≥ n. The sum of the
first O(logn) primes is ≤ O((logn)2 log logn) ≤ Õ(1). (This follows from
parts 1 and 2.)

4.
∏
p≤N , p prime p ∼ e(1+o(1))N . (This is well known.)

Theorem 3.6. Let n ∈ N.

1. There exists an NFA M such that the following are true:

(a) For all i ≥ n+ 2
⌈
n1/2

⌉
, M accepts ai.

(b) M rejects an.
(c) We have no comment on the behavior of M on other ai.
(d) M has ≤ n1/2 +O(1) states.

2. There exists an NFA on ≤ n1/2 + Õ(1) states that accepts MN(n).
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Proof. 1) Let c =
⌈
n1/2

⌉
+ 1 and e = n+ 1 (mod c). Note that e ≤ c. Let M be

LOOP(c, c+ 1, e). Note that

c(c+ 1)− c− c− 1 + e = c2 − c− 1 + e ≤ c2 − c− 1 + c = c2 − 1

By Lemma 3.3 M accepts ai where i ≥ c2 − 1 + 1 = c2 ≥ n+ 2
⌈
n1/2

⌉
.

We show thatM rejects an. Assume, by way of contradiction, thatM accepts
an. Then there exists x, y ≥ 0 such that

cx+ (c+ 1)y + e = n

Take this equation mod c. Then

0x+ 1× y + (n+ 1) ≡ n (mod c)

y + 1 ≡ 0 (mod c)

y ≡ −1 (mod c).

Since y ≥ 0, y ≥ c− 1. Hence

n = cx+ (c+ 1)y+ e ≥ (c+ 1)(c− 1) = c2− 1 = (
⌈
n1/2

⌉
+ 1)2− 1 = n+ 2n1/2− 1.

This is a contradiction.
Since e ≤ c, M has c+ 1 = n1/2 +O(1) states.

2) By Lemma 3.5.3 there is a set of primes Q such that

•
∏
p∈Q p ≥ n+ 2

⌈
n1/2

⌉
.

•
∑
p∈Q p ≤ Õ(1).

For each p ∈ Q let Mp be the DFA that accepts {ai : i 6≡ n (mod p)}.
The NFA is constructed as follows:

1. The NFA M is part of our NFA. We create a new start state, and then put
an e-transition from this new state to M ’s original start state. Note that
(1) M accepts ai for i ≥ n+ 2

⌈
n1/2

⌉
(it also accepts other strings), (2) M

rejects an, and (3) M has ≤ n1/2 +O(1) states.
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2. For each p ∈ Q there is an e-transition from our new start state to the start
state of Mp. Note that (1) Mp accepts ai if i 6≡ n (mod p), (2) Mp rejects
an, and (3) Mp has p states.

Clearly the NFA has ≤ n1/2 +
∑
p∈Q p ≤ n1/2 + Õ(1) states and rejects an. We

show that it accepts everything else.
Let ai be rejected by this NFA.

• Since the M part rejects ai, i ≤ n+ 2
⌈
n1/2

⌉
(note, hence i ≤

∏
p∈Q p).

• For each p ∈ Q, since the Mp part rejects ai, i ≡ n (mod p).

By the Chinese Remainder Theorem there is a unique number 0 ≤ z <∏
p∈Q p ≥ n + 2

⌈
n1/2

⌉
such that, for every p ∈ Q, z ≡ n (mod p). Since both i

and n satisfy the criteria, i = n.

4 Small NFA’s for MN(998, 999, 1000) and MN(A)
4.1 Small NFA for MN(998, 999, 1000) and MN(998, 1000)
Theorem 4.1.

1. There exists an NFA M such that the following are true:

(a) For all i ≥ 1067, M accepts ai.
(b) For all i ∈ {998, 999, 1000} M rejects ai.
(c) We have no comment on the behavior of M for other ai’s.
(d) M has 34 states.

2. There exists an NFA with 104 states that accepts MN(998, 999, 1000).

3. There exists an NFA with 104 states that accepts MN(A) where
A ⊆ {998, 999, 1000}. (For A = ∅ this is trivial.)

Proof. 1) Let M be LOOP(33, 34, 11). From Lemma 3.3 we know the following:

a) For all i ≥ 1067, M accepts ai.

b) For all C,D ∈ N, M rejects a1066−33C−34D which we write as
a1066−33(C+D)−D.

We set (C,D) carefully to obtain, using item b, strings that M rejects.
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• If (C,D) = (2, 0) then we get 1066− 33× 2− 0 = 1000

• If (C,D) = (1, 1) then we get 1066− 33× 2− 1 = 999

• If (C,D) = (0, 2) then we get 1066− 33× 2− 2 = 998

Clearly M has 34 states.

2) We will once again use primes and mods. We can’t use mod 2 or mod 3 since
then one of a998, a999, a1000 will be accepted.

We can use any mod from 5 up. We need another trick, as you will see.
Let Q = {5, 7, 11}. Note that 3×5×7×11 = 1155 > 1066 (That is not a typo.

We really do mean to multiply by 3. We chose 3 because |{998, 999, 1000}| = 3.
We chose {5, 7, 11} since none of them divide 3 and the product 3× 5× 7× 11 >
1066. The fact that 3 is a prime is not important.)

For each p ∈ Q let M3p be the DFA that accepts

{ai : i 6≡ 998, 999, 1000 (mod 3p)}

Note that LCM(3× 5, 3× 7, 3× 11) = 3× 5× 7× 11 = 105 > 100.
The NFA is constructed as follows:

1. The NFA M is part of our new NFA. We create a new start state, and then
put an e-transition from this new state to M ’s original start state. Note
that M (1) accepts all ai with i ≥ 1067 (it also accepts other strings), (2)
rejects any of ai with i ∈ {998, 999, 1000}, and (3) has 34 states.

2. For each p ∈ Q, there is an e-transition from our new start state to the
start state of M3p. Note that M3p (1) accepts ai when i 6≡ 998, 999, 1000
(mod 3p), (2) rejects any ai with i ∈ {998, 999, 1000}, and (3) has 3p states.

This NFA has 34 + 3(5 + 7 + 11) + 1 = 104 states and rejects any ai with
i /∈ {998, 999, 1000}. We show that it accepts everything else.

Let ai be rejected by this NFA.

• Since theM part rejects ai, i ≤ 1066 (note, hence i ≤ 3×5×7×11 = 1155).

• For all p ∈ Q, since theM3p part rejects ai, there exists x ∈ {998, 999, 1000}
such that i ≡ x (mod 3p).

We cannot use the Chinese Remainder Theorem (yet) since it is possible that,
say i ≡ 998 (mod 3× 7) but i ≡ 1000 (mod 3× 11). We need that i is equivalent
to the same x with all of those mods.
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Let i ≡ x (mod 3) where x ∈ {998, 999, 1000}. Note that x is unique. Let
p ∈ Q. Let y ∈ {998, 999, 1000} be such that i ≡ y (mod 3p). Note that y is
unique since 3 < 3p.

We show that x = y.
Since i ≡ x (mod 3) there exists a ∈ Z such that

Eq 1 i = x+ 3a.

Since i ≡ y (mod 3p) there a b ∈ Z such that

Eq 2 i = y + 3pb.

By subtracting Eq 2 from Eq 1 we get

x− y = 3pb− 3a ≡ 0 (mod 3)

Since x, y ∈ {998, 999, 1000} and x ≡ y (mod 3), x = y. To recap we now have
that there exists x ∈ {998, 999, 1000} such that, for all p ∈ Q, i ≡ x (mod 3p).

By the Chinese Remainder Theorem there is a unique number 0 ≤ z ≤
LCM(3 × 5, 3 × 7, 3 × 11) = 1155 such that, for all p ∈ Q, z ≡ x (mod 3p).
Since both i and x satisfy those criteria, i = x.

3) We look at MN(998, 1000) as an example. The construction is similar to the
one for MN(998, 1000) except that, at the end, use the DFA for {ai : i 6≡ 998, 1000
(mod 3p)} instead of {ai : i 6≡ 998, 999, 1000 (mod 3p)}. The other cases are
similar.

Theorem 4.2. Let 0 < δ < 1. Let n ∈ N. (We will assume nδ ∈ N and leave
it to the reader to adjust the statement and the proof for when nδ /∈ N.) Assume
n = c2 + f where 0 ≤ f ≤ 2c.

1. There exists an NFA M such that the following are true:

(a) For all i ≥ n+ n1/2+δ + n2δ + 1, M accepts ai.
(b) For all i ∈ {n− nδ, n− nδ + 1, . . . , n}, M rejects ai.
(c) We have no comment on the behavior of M for other ai’s.
(d) M has ≤ 5nmax{1/2,δ} +O(1) states.

2. There exists an NFA on

≤ 5nmax{1/2,δ} + Õ(1) states

that accepts MN(n− nδ, n− δ + 1, . . . , n).
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3. Let A ⊆ {n− nδ, . . . , n}. There exists an NFA on

5nmax{1/2,δ} + Õ(1) states

that accepts MN(A). (For A = ∅ this is trivial.)

Proof. 1) Let M be the NFA LOOP(c + k, c + k + 1, f + 1 + x(k)) where we
determine k and x(k) later.
Claim:

1. If M rejects an+nδ(c+k) then, for i = n− nδ, . . . , n, M rejects ai.

2. If x(k) = nδ(c+ k)− k2 − 2ck + c+ k then M rejects an+nδ(c+k).

3. If x(k) = nδ(c+ k)− k2 − 2ck+ c+ k then, for i = n− nδ, . . . , n, M rejects
ai (this follows from parts 1 and 2).

Proof of Claim:
1) Assume M rejects n+ nδ(c+ k). Then it also rejects everything of the form

n+ nδ(c+ k)− (c+ k)C − (c+ k + 1)D = n+ nδ(c+ k)− (C +D)(c+ k)−D

(since otherwise M would accept n + nδ(c + k) − (c + k)C − (c + k + 1)D +
(c+ k)C + (c+ k + 1)D = n+ nδ(c+ k)).

We set (C,D) as follows:

• If (C,D) = (nδ, 0) then we get n+ nδ(c+ k)− nδ(c+ k)− 0 = n.

• If (C,D) = (nδ − 1, 1) then we get n+ nδ(c+ k)− nδ(c+ k)− 1 = n− 1.

•
...

• If (C,D) = (0, nδ) then we get n+ nδ(c+ k)− nδ(c+ k)− nδ = n− nδ.

2) For k ∈ N we need x(k) ∈ N such that LOOP(c + k, c + k + 1, f + 1 + x(k))
rejects n+ nδ(c+ k). Note that this NFA rejects

(c+ k)(c+ k + 1)− (c+ k)− (c+ k + 1) + f + 1 + x(k)

= c2 + k2 + 2ck + c+ k − 2c− 2k − 1 + f + 1 + x(k)

= n+ k2 + 2ck − c− k + x(k)

12
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Hence we find x(k) via:

n+ k2 + 2ck − c− k + x(k) = n+ nδ(c+ k)

or equivalently
x(k) = nδ(c+ k)− k2 − 2ck + c+ k

End of Proof of Claim
We choose k such that the max of {c+ k + 1, f + 1 + x(k)} is small. We look

at what happens to x(k) for k ∈ {0, . . . , nδ}. We consider only when n ≥ 9, with
smaller n being expressed within the O(1) term. Note that

• x(0) = nδc+ c > 0.

• x(nδ) = n2δ + nδc− n2δ − 2cnδ + c+ nδ = c+ nδ − cnδ < 0 (since n ≥ 9).

• there exists ko such that x(ko) ≥ 0 and x(ko + 1) ≤ 0 (this follows from the
first two points).

Note that

x(ko) ≤ x(ko)− x(ko + 1) ≤ | − 2c+ nδ − 2ko| ≤ 2c+ nδ.

LetM = LOOP(c+ko, c+ko, f+1+x(ko)). Since c ≤ n1/2, f ≤ 2n1/2, ko ≤ nδ,
and x(ko) ≤ 2c+ nδ ≤ 3nmax{1/2,δ}. e = x(ko) + f + 1 has ≤ 5nmax{1/2,δ} +O(1)
states, while c + ko + 1 has ≤ 3nmax{1/2,δ} + O(1) states, so M must have ≤
5nmax{1/2,δ} +O(1) states overall.

M satisfies conditions of what to reject and how many states it has. We now
consider what it accepts. Note that x(k) was chosen so that the largest number
M (with k = ko) rejects is an+nδ(c+ko). We need to estimate this.

n+ nδ(c+ ko) ≤ n+ nδ(n1/2 + nδ) ≤ n+ n1/2+δ + n2δ.

By Lemma 3.3 M accepts what it should.
2) To simplify the algebra we just use that the NFA in Part 1 accepts {ai : i ≥ n2}.

By Lemma 3.5 there is a set of primes Q′ such that (1)
∏
p∈Q′ p ≥ n2, (2)∑

p∈Q′ p ≤ Õ(1). We form Q as follows: (1) remove from Q′ all of the primes that
divide nδ, (2) add in the smallest primes possible that do not divide nδ so that
nδ

∏
p∈Q p ≥ n2.
One can show that

∑
p∈Q p ≤ O(

∑
p∈Q′ p) ≤ Õ(1). Hence we have a set Q

such that (1) nδ
∏
p∈Q p ≥ n2 (2)

∑
p∈Q p ≤ Õ(1), and (3) for all p ∈ Q, p does
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not divide nδ. For each p ∈ Q let Mnδp be the DFA that accepts {ai : i 6≡ n

(mod nδp)}.
Note that the LCM{nδp : p ∈ Q} = nδ

∏
p∈Q p ≥ n.

The NFA is constructed as follows:

1. The NFA M is part of our new NFA . We create a new start state, and then
put an e-transition from this new state to M ’s original start state. Note
that M (1) accepts all ai with i ≥ n2 (it also accepts other strings), (2)
rejects any of ai with i ∈ {n−nδ, . . . , n}, and (3) has ≤ 5nmax{1/2,δ}+O(1)
states.

2. For each p ∈ Q put an e-transition from our new start state to the start state
of Mnδp. Note that Mnδp (1) accepts ai with i 6≡ n − nδ, . . . , n (mod nδp),
(2) rejects any of ai with i ∈ {n− nδ, . . . , n}, and (3) has nδp states.

This NFA has 5nmax{1/2,δ} + Õ(1) states and rejects any ai with i ∈ {n −
nδ, . . . , n}. We show that it accepts everything else.

Let ai be rejected by this NFA.

• Since the M part rejects ai, i ≤ n2 (note, hence i ≤ nδ
∏
p∈Q p).

• For each p ∈ Q, since the Mnδp part rejects ai, there exists x ∈ {n −
nδ, . . . , n} such that i ≡ x (mod nδp).

We cannot use the Chinese Remainder Theorem (yet) since it is possible that,
say i ≡ 95 (mod nδ × 7) but i ≡ 92 (mod nδ × 11). We need that ai is equivalent
to the same nδp with all those mods.

Let i ≡ x (mod nδ) where x ∈ {n − nδ, . . . , n}. Note that x is unique. Let
nδp ∈ nδQ. Let y ∈ {n−nδ, . . . , n} be such that i ≡ y (mod n)δp. Note that y is
unique since nδ < nδp. We show that x = y.

Since i ≡ x (mod nδ) there exists a ∈ Z such that:

Eq 1 i = x+ nδa.

Since i ≡ y (mod nδ) there exists a b ∈ Z such that

Eq 2 i = y + nδpb.

By subtracting Eq 2 from Eq 1 we get

x− y = nδpb− nδa ≡ 0 (mod nδ)

14
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Since x, y ∈ {n− δ, . . . , n} and x ≡ y (mod nδ), x = y. To recap we now have
that there exists x ∈ {n− δ, . . . , n} such that, for all nδp ∈ Q, i ≡ x (mod nδp).

By the Chinese Remainder Theorem there is a unique number 0 ≤ z ≤
LCM{nδp : p ∈ Q} ≥ n such that, for all p ∈ Q, z ≡ x (mod nδp). Since
both i and x satisfy those criteria, i = x.

3) This is an easy modification of Part 2 which we leave to the reader.

5 Small NFA’s for MN(αn, n)
Lemma 5.1. Let x, x′, y, y′, c ∈ N with c ≥ 1 be such that the following hold.

1. c(x− x′) + (c+ 1)(y − y′) = 0.

2. |x− x′| ≤ c.

Then x = x′ and y = y′.

Proof. Since c+ 1 divides c(x− x′) and c+ 1 is rel prime to c we have that c+ 1
divides x− x′. Since |x− x′| ≤ c, x = x′. Hence y = y′.

Theorem 5.2. Let n ∈ N and 0 < α < 1 be such that αn ∈ N.

1. There exists an NFA M such that the following are true:

(a) For all i ≥ 2n lnn, M accepts ai.
(b) For all i ∈ {αn, n}, M rejects ai.
(c) We have no comment on the behavior of M for any other ai’s.
(d) M has ≤ 2n1/2 lnn+ Õ(1) states.

2. There exists an NFA on ≤ 2n1/2 lnn+ Õ(1) states that accepts MN(αn, n).

Proof. Let c =
⌈
n1/2

⌉
+ 1 and e = n+ 1 (mod c). Note that e ≤ c.

1) Let M ′ be LOOP(c, c+ 1, e). By the proof of Theorem 3.6 we have:

1. For all i ≥ n + 2
⌈
n1/2

⌉
, M ′ accepts ai. Note that for all i ≥ 2n lnn, M ′

accepts ai.

2. M ′ rejects an.

3. We have no comment on the behavior of M ′ on other ai.
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4. M ′ has ≤ n1/2 +O(1) states.

Case 1: M ′ rejects aαn. Then take M to be M ′.
Case 2: M ′ accepts aαn. We use the very acceptance of aαn to find an NFA M
that satisfies the theorem.
Claim 1: There exists a unique x, y, such that cx+ (c+ 1)y+ e = αn. Both x, y
are ≤ c− 1 ≤ n1/2.
Proof of Claim: Since M ′ accepts aαn there is at least one such x, y such that:

Eq 1 cx+ (c+ 1)y + e = αn

x ≤ c− 1 since otherwise Eq 1 implies:

αn = cx+ (c+ 1)y + e ≥ c2 + (c+ 1)y + e ≥ c2 = n.

y ≤ c− 1 by a similar argument.
Assume that x′, y′ also works.

Eq 2 cx′ + (c+ 1)y′ + e = αn

By the same reasoning that x ≤ c− 1, we have x′ ≤ c− 1, so |x− x′| ≤ c− 1.
Subtract the second equation from the first to obtain:

c(x− x′) + (c+ 1)(y − y′) = 0

By Lemma 5.1, x = x′ and y = y′.
End of Proof of Claim 1

Let p be the least prime that does not divide yc (hence does not divide y or
c). Since y ≤ c1/2 and c =

⌈
n1/2

⌉
+ 1, yc ≤ n + n1/2 + O(1). By Lemma 3.5.3,

p ≤ (1+o(1)) ln(n+n1/2 +O(1)) ≤ 2 ln(n)+O(1). LetM be LOOP(c, p(c+1), e).
Note that M has ≤ 2n1/2 lnn + Õ(1) states. We need to show that (1) for all
i ≥ n lnn, M accepts ai, and (2) M rejects aαn and an. Note that

cp(c+ 1)− c− cp− p+ e = c2p+ cp− c− cp− p+ e = c2p− c− p+ e ≤ 2n lnn− 1

By Lemma 3.3

• For all i ≥ 2n lnn, M accepts ai.

• For all C,D, M rejects ai where i = c2p− c− p+ e−Cc−D(p(c+ 1)). (We
will not be using this.)

16
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Claim 2: M rejects aαn.
Proof of Claim 2:

Assume, by way of contradiction, that M accepts αn. Then there exists x′, y′
such that

Eq 1 αn = cx′ + (c+ 1)y′ + e

Recall that from Claim 1 there exists unique x, y such that

Eq 2 αn = cx+ (c+ 1)y + e.

Hence x = x′ and y = y′p. This contradicts that p does not divide y.
End of Proof of Claim 2
Claim 3: M rejects an.
Proof of Claim 3:

Assume, by way of contradiction, that M accepts n. Then there exists x′, y′
such that

n = cx′ + p(c+ 1)y′ + e

Then an is accepted by LOOP(c, c+ 1, e), which is a contradiction.
End of Proof of Claim 3

2) This proof is similar to that of Theorem 4.2.2.

6 Small NFA’s for MN(A) where A has large gaps
Theorem 6.1. Let A ⊆ N with maximum element n′. Let n′ < n. Then there is
an NFA for MN(A ∪ {n}) of size n1/2 + n′ + Õ(1).

Proof. By Theorem 3.6 there exists an NFAM ′ for MN(n−n′) of size (n−n′)1/2+
Õ(1) ≤ n1/2 + Õ(1). We form M as follows:

1. Add states 0, 1, . . . , n′ where state n′ is the start state of M ′.

2. 0 is the start state of M .

3. For 0 ≤ i ≤ n′ − 1 we have transitions δ(i, a) = i+ 1.

4. For all 0 ≤ i ≤ n′, make i an accept state iff i ∈ A.

Clearly M ′′ accepts A ∪ {n} and has n1/2 + n′ + Õ(1) states.

17
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Corollary 6.2.

1. For all n, for all 0 < δ < 1, there is an NFA for MN(nδ, n) of size n1/2 +
nδ + Õ(1).

2. For all n, for all β ∈ R+, there is an NFA for MN((logn)β, n) of size
n1/2 + Õ(1).

7 Every NFA for MN(n) has ≥ n1/2 States

This section is due to Jeff Shallit who shared it with us.
Chroback [2] proved the following.

Theorem 7.1. Let L be a cofinite unary regular language. If there is an NFA for
L with n states then there is an NFA for L of the following form:

• There is a sequence of ≤ n2 states from the start state to a state we will call
X. Note that there is no nondeterminism involved yet.

• From X there are e-transitions to X1, . . . , Xm. (This is nondeterministic.)

• Each Xi is part of a cycle Ci. All of the Ci are disjoint.

Theorem 7.2.

1. Let L be a cofinite unary language where the shortest string that is not in L
is of length n. Then any NFA for L requires n1/2 states

2. Any NFA for MN(n) has n1/2 states (this follows from part 1).

Proof. Assume there was an NFA with < n1/2 states for L. Then by Theorem 7.1
there would be an NFA for L with a path from the start state to a state X of
length < n and then from X a branch to many cycles. Let Xi and cycle’s Ci as
described in Theorem 7.1.

Run an through the NFA and try out all paths. For each i there will be a
point in Ci that you end up at. Let ni be the length of Ci. For every i there is a
state on Ci that rejects. Hence the strings an+Kn1n2···nm are all rejected. This is
an infinite number of strings. This is a contradiction.
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8 Empirical Results

We have written a program that, given n, tries to find the smallest NFA for
MN(n). We first set c = d

√
ne, d = c + 1, and e such that LOOP(c, d, e) (1)

rejects an and (2) for all i ≥ n + 1, accepts ai. We then looked at sets of prime
powers (these work as well as primes) so that the usual Mpb machines will accept
all ai such that i ≤ n− 1. We took the smallest NFA among all of these choices.
We ran this program for 1 ≤ n ≤ 1027. Here is what we discovered:

1. The smallest NFA for MN(n) was around n1/2 + (lnn)g where g had the
following values:

(a) For 1 ≤ n ≤ 106 g decreases from 2 to around 1.55.

(b) For 106 ≤ n ≤ 1027 g fluctuates around 1.55 but slowly increases.

The log-term is actually the inverse of Landau’s function. As such, it is known
that g is bounded by 2.

We also wrote a second program that tries to find smaller NFAs than the first
program. How? Note that, in the first program, we found a set of Mpb machines
to accept all ai such that i ≤ n− 1. However, LOOP(c, d, e) already accepts some
of those strings. Our second program finds a set of Mpb machines that accepts all
ai that LOOP(c, d, e) did not accept. We ran this program for 1 ≤ n ≤ 1700 (this
program took much longer to run then the first one). Here is what we discovered:

1. For slightly more than half of the n, we found a smaller NFA this way.

2. The most common improvement was 1. Then 2. . . . Then 6. There were no
improvements bigger than 6. There was a slight tendency of getting bigger
improvements for bigger n.

We conjecture that, for all L, there exists n, so that the second program will
produce an NFA that has at least L states fewer than the first program.

9 Open Questions

We conjecture that every cofinite unary language has a small NFA; however, this
is hard to state rigorously.

The NFA for MN(n) is optimal up to Õ(1) terms. We would like to know if
the other NFA’s we have presented are optimal up to Õ(1) terms.
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