
Squares in a square: An On-line question

Andris Ambainis1 and William Gasarch2

1Dept. of Comp. Sci., Univ. of CA at Berkeley, Berkeley, CA
94720, ambainis@cs.berkeley.edu
2 Dept. of Comp. Sci., Univ. of MD, College Park, MD 20742,
gasarch@cs.umd.edu

1. Introduction.

Soifer [5] conjectured that one can always place any finite

collection of squares with area 1 inside a square of area 2 (with no

overlapping). Stong [6] proved this conjecture. Stong’s solution

begins by sorting the squares by area.

We consider an on-line version of the problem. Let S be a

square. We are given squares sq1, sq2, . . . , sqn one at a time such

that
∑n

i=1 AREA(sqi) ≤ 1. As soon as you see sqi place it in S,

so that you never have two squares overlapping. How big does S

need to be in order to always be able to do this? We know that

S must be have area at least 2 (this is easily seen to be true in

the usual version of the problem). We will later show that S of

area 4 suffices.

1) How big does S have to be? As an intermediary problem,

find upper and lower bounds.

2) If the number of squares, n, is known ahead of time, then

1

how big does S have to be?

We show that area 4 suffices. Partition the 2× 2 square into

four 1×1 boxes. Hence, at the beginning, there are 4 empty boxes

that are 20 × 20. At all stages there will be (1) some number of

empty boxes of sizes 2k × 2k for a variety of k, and (2) some

number of partially filled boxes that we will never consider using.

Assume that sq1, . . . , sqn−1 have been placed.

ALGORITHM TO PLACE SQUARE sqn

1) Let k be such that the length of a side of sqn is in (1
2k , 1

2k−1].

2) Find the maximal k′ ≤ k − 1 such that there is a 1
2k′ × 1

2k′

empty box.

3) If k′ = k − 1 then place sqn in a corner of this box. (This box

is now partially filled and can never be used again.) If k′ < k− 1

then split this box into four empty 1
2k′+1 × 1

2k′+1 boxes and go to

Step 2.

END OF ALGORITHM

We show that if the algorithm is unable to place sqn then∑n
i=1 AREA(sqi) > 1. It is easy to see that after a square is

placed (1) the number of empty boxes of any given size is at most

3, and (2) if a partially filled box has been filled with a square of

area a then the box has empty space of area strictly less then 3a.

Assume, by way of contradiction, that sqn cannot be placed

2

and that
∑n

i=1 AREA(sqi) ≤ 1. Let k be such that the length of

a side of sqn is in (1
2k , 1

2k−1]. By the algorithm there are no empty

boxes of side 1
2k−1 or bigger. Hence all the empty boxes are of side

1
2k or smaller. Since there are at most three empty boxes of any

size the total area of the empty boxes is ≤ 3
∑∞

i=k(1
2k)2 = 1

4k−1 .

Since the partially filled boxes are filled with sq1, . . . , sqn−1 they

have empty space < 3
∑n−1

i=1 AREA(sqi) ≤ 3(1−AREA(sqn)) ≤

3(1 − 1
4k) = 3 − 3

4k Hence the total amount of empty space is

< 3 − 3
4k + 1

4k−1 = 3 + 1
4k . So the total amount of filled space is

greater than 4− (3+ 1
4k) = 1− 1

4k . Since sqn has area at least 1
4k

we have
∑n

i=1 AREA(sqi) > 1. This is a contradiction.

2. Motivation

This problem is motivated by the fact that in computer sci-

ence one often wants to study on-line problems. Memory alloca-

tion is typical. Suppose you have blocks of memory B1, B2,

We’ll say each block has size N .

Offline Problem: Given a sequence of requests r1, r2, . . . , rn for

memory (1 ≤ ri ≤ N), assign to each i a block Bj such that the

sum of the requests assigned to any one block does not exceed N .

Do this in a manner that minimizes the number of blocks used.

This problem is NP-complete. The main obstacle to solving it is

computational.

Online Problem: Given a sequence of requests r1, r2, . . . , rn for

3

memory, as soon as you get request ri you must assign the request

to a block. The goal is to minimize how many blocks are needed.

It is impossible to always achieve the optimal number of

blocks [2],[7]. The main obstacle to solving it is informational.

The best one can hope for is to have a solution that is within

some constant times optimal. The best known result is that one

can achieve 1.58872×OPTIMAL number of blocks [4].

For more on this particlar problem, usually called bin pack-

ing, see [3]. For more on online problems in general see [1].

References

[1] A. Borodin and R. El-Yaniv. Online Computations and Com-

petitive Analysis. Cambridge Press, 1998.

[2] G. Galambos and J. Frenk. A simple proof of Liang’s lower

bound for on-line bin packing and extensions to the paramet-

ric case. Discrete Applied Mathematics, 41:173–178, 1993.

[3] E. Coffman, M.R. Garey, and D.S. Johnson. Approxima-

tion algorithms for bin packing: a survey. Approximation

algorithms for NP-hard problems. Edited by D. Hochbaum.

PWS publishing company, 46–93, 1997.

[4] M. Richey. Improved bounds for harmonic based bin-packing

algorithms. Discrete Applied Mathematics, 34, 1991.

[5] A. Soifer. Squares in a square ii. Geombinatorics, 5(3):121,

4

1996.

[6] R. Stong. Squares inside of a square. Geombinatorics, 7(1):29–

34, 1997.

[7] A. Yao. New algorithms for bin packing. Journal of the

ACM, 27:207–227, 1980.

5

