Squares in a square: An On-line question

Andris Ambainis! and William Gasarch?

'Dept. of Comp. Sci., Univ. of CA at Berkeley, Berkeley, CA
94720, ambainis@cs.berkeley.edu

2 Dept. of Comp. Sci., Univ. of MD, College Park, MD 20742,
gasarch@cs.umd.edu

1. Introduction.

Soifer [5] conjectured that one can always place any finite
collection of squares with area 1 inside a square of area 2 (with no
overlapping). Stong [6] proved this conjecture. Stong’s solution
begins by sorting the squares by area.

We consider an on-line version of the problem. Let S be a
square. We are given squares sqi, Sqa, . . . , Sq, one at a time such
that Y)" | AREA(sq;) < 1. As soon as you see sg; place it in S,
so that you never have two squares overlapping. How big does .S
need to be in order to always be able to do this? We know that
S must be have area at least 2 (this is easily seen to be true in
the usual version of the problem). We will later show that S of

area 4 suffices.

1) How big does S have to be? As an intermediary problem,
find upper and lower bounds.

2) If the number of squares, n, is known ahead of time, then

1

how big does S have to be?

We show that area 4 suffices. Partition the 2 x 2 square into
four 1 x 1 boxes. Hence, at the beginning, there are 4 empty boxes
that are 2° x 20. At all stages there will be (1) some number of
empty boxes of sizes 2% x 2% for a variety of k, and (2) some
number of partially filled boxes that we will never consider using.

Assume that sqq, ..., sq,_1 have been placed.

ALGORITHM TO PLACE SQUARE sgq,

1) Let k be such that the length of a side of sg, is in (55, 557

2) Find the maximal k¥ < k — 1 such that there is a Lox 1

2k” 7 ok
empty box.
3) If k¥ = k — 1 then place sg, in a corner of this box. (This box

is now partially filled and can never be used again.) If ¥ < k—1

1 1
UES Uy

then split this box into four empty boxes and go to
Step 2.
END OF ALGORITHM

We show that if the algorithm is unable to place sq, then
S AREA(sq;) > 1. It is easy to see that after a square is
placed (1) the number of empty boxes of any given size is at most
3, and (2) if a partially filled box has been filled with a square of
area a then the box has empty space of area strictly less then 3a.

Assume, by way of contradiction, that sg, cannot be placed

2

and that > | AREA(sq;) < 1. Let k be such that the length of
a side of sq,, is in (g5, 7). By the algorithm there are no empty
boxes of side 2%1 or bigger. Hence all the empty boxes are of side
2% or smaller. Since there are at most three empty boxes of any
size the total area of the empty boxes is <337, (5%)? = -
Since the partially filled boxes are filled with sqq, ..., sg,_1 they
have empty space < 331" AREA(sq;) < 3(1 — AREA(sqy)) <
3(1 — 4%) =3 - 4% Hence the total amount of empty space is
<3 - 4% + 476%1 =3+ 4%. So the total amount of filled space is
greater than 4 — (3+ 55) = 1 — J5. Since sg,, has area at least ;i

we have > | AREA(sq;) > 1. This is a contradiction.
2. Motivation

This problem is motivated by the fact that in computer sci-
ence one often wants to study on-line problems. Memory alloca-
tion is typical. Suppose you have blocks of memory Bi, Bs,....
We'll say each block has size .
Offtine Problem: Given a sequence of requests r1,79,...,r, for
memory (1 <r; < N), assign to each ¢ a block B; such that the
sum of the requests assigned to any one block does not exceed N.
Do this in a manner that minimizes the number of blocks used.
This problem is NP-complete. The main obstacle to solving it is
computational.

Online Problem: Given a sequence of requests rq,79,...,r, for

3

memory, as soon as you get request r; you must assign the request

to a block. The goal is to minimize how many blocks are needed.

It is impossible to always achieve the optimal number of
blocks [2],[7]. The main obstacle to solving it is informational.
The best one can hope for is to have a solution that is within
some constant times optimal. The best known result is that one

can achieve 1.58872x OPTIMAL number of blocks [4].

For more on this particlar problem, usually called bin pack-
ing, see [3]. For more on online problems in general see [1].

References

[1] A.Borodin and R. El-Yaniv. Online Computations and Com-

petitive Analysis. Cambridge Press, 1998.

[2] G. Galambos and J. Frenk. A simple proof of Liang’s lower
bound for on-line bin packing and extensions to the paramet-

ric case. Discrete Applied Mathematics, 41:173-178, 1993.

[3] E. Coffman, M.R. Garey, and D.S. Johnson. Approxima-
tion algorithms for bin packing: a survey. Approximation
algorithms for NP-hard problems. Edited by D. Hochbaum.
PWS publishing company, 46-93, 1997.

[4] M. Richey. Improved bounds for harmonic based bin-packing
algorithms. Discrete Applied Mathematics, 34, 1991.

[5] A. Soifer. Squares in a square ii. Geombinatorics, 5(3):121,

4

1996.

[6] R.Stong. Squares inside of a square. Geombinatorics, 7(1):29-
34, 1997.

[7] A. Yao. New algorithms for bin packing. Journal of the
ACM, 27:207-227, 1980.

