Squares in a square: An On-line question

Andris Ambainis¹ and William Gasarch² ¹Dept. of Comp. Sci., Univ. of CA at Berkeley, Berkeley, CA 94720, ambainis@cs.berkeley.edu ² Dept. of Comp. Sci., Univ. of MD, College Park, MD 20742, gasarch@cs.umd.edu

1. Introduction.

Soifer [5] conjectured that one can always place any finite collection of squares with area 1 inside a square of area 2 (with no overlapping). Stong [6] proved this conjecture. Stong's solution begins by sorting the squares by area.

We consider an *on-line* version of the problem. Let S be a square. We are given squares sq_1, sq_2, \ldots, sq_n one at a time such that $\sum_{i=1}^n AREA(sq_i) \leq 1$. As soon as you see sq_i place it in S, so that you never have two squares overlapping. How big does Sneed to be in order to always be able to do this? We know that S must be have area at least 2 (this is easily seen to be true in the usual version of the problem). We will later show that S of area 4 suffices.

- How big does S have to be? As an intermediary problem, find upper and lower bounds.
- 2) If the number of squares, n, is known ahead of time, then

how big does S have to be?

We show that area 4 suffices. Partition the 2×2 square into four 1×1 boxes. Hence, at the beginning, there are 4 empty boxes that are $2^0 \times 2^0$. At all stages there will be (1) some number of empty boxes of sizes $2^k \times 2^k$ for a variety of k, and (2) some number of partially filled boxes that we will never consider using. Assume that sq_1, \ldots, sq_{n-1} have been placed.

ALGORITHM TO PLACE SQUARE sq_n

1) Let k be such that the length of a side of sq_n is in $(\frac{1}{2^k}, \frac{1}{2^{k-1}}]$. 2) Find the maximal $k' \leq k-1$ such that there is a $\frac{1}{2^{k'}} \times \frac{1}{2^{k'}}$ empty box.

3) If k' = k - 1 then place sq_n in a corner of this box. (This box is now partially filled and can never be used again.) If k' < k - 1then split this box into four empty $\frac{1}{2^{k'+1}} \times \frac{1}{2^{k'+1}}$ boxes and go to Step 2.

END OF ALGORITHM

We show that if the algorithm is unable to place sq_n then $\sum_{i=1}^{n} AREA(sq_i) > 1$. It is easy to see that after a square is placed (1) the number of empty boxes of any given size is at most 3, and (2) if a partially filled box has been filled with a square of area *a* then the box has empty space of area strictly less then 3*a*.

Assume, by way of contradiction, that sq_n cannot be placed

and that $\sum_{i=1}^{n} AREA(sq_i) \leq 1$. Let k be such that the length of a side of sq_n is in $(\frac{1}{2^k}, \frac{1}{2^{k-1}}]$. By the algorithm there are no empty boxes of side $\frac{1}{2^{k-1}}$ or bigger. Hence all the empty boxes are of side $\frac{1}{2^k}$ or smaller. Since there are at most three empty boxes of any size the total area of the empty boxes is $\leq 3 \sum_{i=k}^{\infty} (\frac{1}{2^k})^2 = \frac{1}{4^{k-1}}$. Since the partially filled boxes are filled with sq_1, \ldots, sq_{n-1} they have empty space $< 3 \sum_{i=1}^{n-1} AREA(sq_i) \leq 3(1 - AREA(sq_n)) \leq$ $3(1 - \frac{1}{4^k}) = 3 - \frac{3}{4^k}$ Hence the total amount of empty space is $< 3 - \frac{3}{4^k} + \frac{1}{4^{k-1}} = 3 + \frac{1}{4^k}$. So the total amount of filled space is greater than $4 - (3 + \frac{1}{4^k}) = 1 - \frac{1}{4^k}$. Since sq_n has area at least $\frac{1}{4^k}$ we have $\sum_{i=1}^n AREA(sq_i) > 1$. This is a contradiction.

2. Motivation

This problem is motivated by the fact that in computer science one often wants to study *on-line problems*. Memory allocation is typical. Suppose you have blocks of memory B_1, B_2, \ldots We'll say each block has size N.

Offline Problem: Given a sequence of requests r_1, r_2, \ldots, r_n for memory $(1 \le r_i \le N)$, assign to each *i* a block B_j such that the sum of the requests assigned to any one block does not exceed N. Do this in a manner that minimizes the number of blocks used. This problem is NP-complete. The main obstacle to solving it is computational.

Online Problem: Given a sequence of requests r_1, r_2, \ldots, r_n for

3

memory, as soon as you get request r_i you must assign the request to a block. The goal is to minimize how many blocks are needed.

It is impossible to always achieve the optimal number of blocks [2],[7]. The main obstacle to solving it is informational. The best one can hope for is to have a solution that is within some constant times optimal. The best known result is that one can achieve 1.58872×OPTIMAL number of blocks [4].

For more on this particlar problem, usually called *bin packing*, see [3]. For more on online problems in general see [1].

References

- A. Borodin and R. El-Yaniv. Online Computations and Competitive Analysis. Cambridge Press, 1998.
- [2] G. Galambos and J. Frenk. A simple proof of Liang's lower bound for on-line bin packing and extensions to the parametric case. Discrete Applied Mathematics, 41:173–178, 1993.
- [3] E. Coffman, M.R. Garey, and D.S. Johnson. Approximation algorithms for bin packing: a survey. Approximation algorithms for NP-hard problems. Edited by D. Hochbaum. PWS publishing company, 46–93, 1997.
- [4] M. Richey. Improved bounds for harmonic based bin-packing algorithms. Discrete Applied Mathematics, 34, 1991.
- [5] A. Soifer. Squares in a square ii. Geombinatorics, 5(3):121,

1996.

- [6] R. Stong. Squares inside of a square. Geombinatorics, 7(1):29– 34, 1997.
- [7] A. Yao. New algorithms for bin packing. Journal of the ACM, 27:207–227, 1980.

5