
The Complexity of Finding SUBSEQ(A)

Stephen Fenner ∗

Univ. of South Carolina
William Gasarch †

Univ. of MD at College Park
Brian Postow ‡

Union College

Abstract

Higman showed that if A is any language then SUBSEQ(A) is regular. His proof was
nonconstructive. We show that the result cannot be made constructive. In particular we show
that if f takes as input an index e of a total Turing Machine Me, and outputs a DFA for
SUBSEQ(L(Me)), then ∅′′ ≤T f (f is Σ2-hard). We also study the complexity of going from A
to SUBSEQ(A) for several representations of A and SUBSEQ(A).

Keywords: Computability, computable function, recursive function, computably bounded,
automata theory, subsequence, Higman, bounded queries

1 Introduction

Consider the string x = aaba. The string x has many subsequences, namely,
a, b, aa, ab, ba, aaa, aab, aba, and aaba.
Given a language A, the language SUBSEQ(A) is the set of all subsequences of strings in A.

How do the complexity of A and SUBSEQ(A) compare?
The following are easy exercises for a course in automata theory.

1. Show that if A is regular then SUBSEQ(A) is regular.

2. Show that if A is context free then SUBSEQ(A) is context free.

3. Show that if A is c.e.1 then SUBSEQ(A) is c.e.

What happens if A is decidable? Clearly if A is decidable then SUBSEQ(A) is c.e. But is
SUBSEQ(A) decidable? A corollary of a theorem of Higman ([19] but also see the appendix for his
proof and a new proof) supplies far more information:

If A is any language whatsoever, then SUBSEQ(A) is regular.
∗University of South Carolina, Department of Computer Science and Engineering, Columbia, SC 29208.

fenner@cse.sc.edu, Partially supported by NSF grant CCF-05-15269.
†University of Maryland, Dept. of Computer Science and Institute for Advanced Computer Studies, College Park,

MD 20742. gasarch@cs.umd.edu, Partially supported by NSF grant CCR-01-05413
‡Union College, Department of Computer Science, Schenectady, NY 12308. postow@acm.org.
1The notation “c.e.” means “computably enumerable” and is used in this paper to denote what are otherwise

called r.e. (recursively enumerable) sets. Our notation follows a suggestion of Soare [27].

1

Higman did not state or prove his theorem in these terms; nonetheless, we refer to it as Higman’s
theorem.

Could we assign a student in automata theory the following problems?

1. Show that if A is decidable then SUBSEQ(A) is decidable.

2. Show that if A is in P then SUBSEQ(A) is in P.

We will show that these are hard problems. Higman’s original proof was noneffective. That is,
you cannot use the proof to tell you how to write a program that would, given (say) the index for
a Turing Machine recognizing (or even deciding) A, output the index of a DFA for SUBSEQ(A).
But the question arises as to whether an effective proof is possible. We show that it is not.
More precisely, we show that there is no computable function that will take an index for a Turing
machine (polynomial time Turing Machine) deciding A and output even a Turing Machine deciding
SUBSEQ(A) (polynomial time Turing Machine for SUBSEQ(A)).

What if we give a stronger hypothesis on A and will settle for weaker information about
SUBSEQ(A):

1. Show that if A is in P then SUBSEQ(A) is decidable.

2. Show that if A is in coNTIME(log n) then SUBSEQ(A) is decidable.

We will show that these are hard problems in that the proofs that they are true cannot be made
effective.

How weak can we make the hypothesis on A and still have that the proof that SUBSEQ(A)
is decidable is non-effective? When can the proof be effective? In this paper we will prove the
following (terms defined more formally in Section 2):

1. There exists a function computable in ∅′′ that does the following: Given a c.e. index for a
language A, outputs a DFA for SUBSEQ(A) (Corollary 3.3).

2. Let F be any function that, given a nondeterministic 1-counter machine for a language B,
outputs the index of a total Turing machine deciding SUBSEQ(B) (or equivalently, a c.e. index
for SUBSEQ(B)). Let G be any function such that F (x) ≤ G(x) for all x. Then ∅′′ ≤T G
(Theorem 4.5, Corollary 4.6). The same goes for a nondeterministic log-time machine for B.

3. There exists a computable function that does the following: Given a context-free grammar
for a language A, outputs a DFA for SUBSEQ(A). This is not our result; however, we present
the proof for completeness (Theorem 7.1).

4. There exists a computable function that does the following: Given a c.e. index for a language
A, outputs a c.e. index for SUBSEQ(A). (This is trivial but we include the statement of it,
though not the proof, for completeness.)

From these results one can determine, for virtually any classes of computing devices D1 and
D2, whether or not the following function is computable: given a device in D1 for a language A,
output a device in D2 for SUBSEQ(A). Moreover, these results allow us to determine exactly the
minimum Turing degree of such a function. It is usually either ∅ (i.e., computable) or ∅′′, although
we say more about this in Section 8.

2

There is a sharp contrast between Items 2 and 3, above. The latter says that given a CFG
for a language A, one can effectively find a DFA for SUBSEQ(A), but it follows from Item 2 that
given a CFG for the complement of A, one cannot even find a decision procedure for SUBSEQ(A)
effectively (or equivalently by Item 4, a c.e. index for SUBSEQ(A)).

We give definitions and notation in Section 2. The first two results enumerated above are proved
in Sections 3 and 4, respectively, and a proof of the third is in Section 7. In Section 6 we look at
a different model where the Turing machine can make queries to the language A (or perhaps other
related languages like A′ or A′′) and tries to find a representation for SUBSEQ(A) in the limit.
This is similar to the Inductive Inference model of machine learning, and we explore in more depth
the problem of learning SUBSEQ(A) in a companion paper [10]. The results of Sections 3, 4, and
7 suggest that finding SUBSEQ(A) in various representations is always of complexity either ∅ or
∅′′. In Section 8 we construct, for every c.e. set X and for every Σ2 set X ≥T ∅′, a class C of c.e.
sets such that finding a DFA or CFG for SUBSEQ(A) given a C-index for A is Turing-equivalent
to X. In Section 9 we discuss our results in the context of recursive and reverse mathematics. We
discuss open problems in Section 10. In the appendices we give two proofs of Higman’s theorem.
The first essentially follows Higman’s original argument, and the second is original.

This paper was inspired by papers of Hartmanis [17] and Hay [18]. In particular, the questions
in Section 4 are similar to questions they asked.

2 Definitions

2.1 Language and Machine Conventions

We fix a finite alphabet Σ.

Definition 2.1 Let x, y ∈ Σ∗. We say that x is a subsequence of y if x = x1 · · ·xn and y ∈
Σ∗x1Σ∗x2 · · ·xn−1Σ∗xnΣ∗. We denote this by x � y.

Notation 2.2 If A is a set of strings, then SUBSEQ(A) is the set of subsequences of strings in A.

We define classes of languages by defining the sets of machines that recognize them.

Notation 2.3 Let M be any machine described below (e.g., DFA, PDA, Turing machine).

1. All input strings to M are assumed to be over the input alphabet of M , which is given as
part of the description of M . The input alphabets may vary from machine to machine within
the same class, so for the machines to be uniformly enumerable, we assume that all the input
alphabets are finite subsets of some fixed denumerable set such as N.

2. If x is some input to M , we may write M(x) = 1 to mean that M halts and accepts on input
x, and we may write M(x) = 0 to mean that M halts and rejects on input x.

3. We use M to denote both the machine and the language recognized by it, i.e., the set of
inputs accepted by M . The intended meaning will usually be clear from the context. If it is
not, we will let L(M) denote the language recognized by M .

3

Convention 2.4 Let M be a Turing machine.

1. We assume that M has exactly two possible types of halting behaviors: accepting and reject-
ing.

2. We say that M is a total machine if M halts on all inputs.

Notation 2.5

1. F1, F2, . . . is a standard enumeration of DFAs. Let REG = {F1, F2, . . .}.

2. G1, G2, . . . is a standard enumeration of nondeterministic PDAs. Let CFL = {G1, G2, . . .}.
All PDAs in the paper are assumed to be nondeterministic.

3. H1, H2, . . . is a standard enumeration of nondeterministic real-time one-counter automata
(NROCAs); see below. Let NROCA = {H1, H2, . . .}.

4. P1, P2, . . . is a standard enumeration of 0,1-valued polynomial-time Turing Machines. Let
P = {P1, P2, . . .}.

5. M1,M2, . . . is a standard enumeration of Turing Machines. Let CE = {M1,M2, . . .}.

6. Let DEC = {Mi : Mi is a total machine}.

Notation 2.6 For any class C above, we let coC be the same as C except that we take each C-device
to recognize the complement of what it would normally recognize with respect to C. By complement
we mean the complement relative to the set of all strings over the device’s input alphabet.

Note 2.7 Our definition of CE is slightly different from computability theory, in which the ith c.e.
set is usually defined to be the set of inputs on which Mi halts. Here, we define the ith c.e. set to
be the set of inputs that Mi accepts. Thus Mi may halt on (and reject) an input not in the set.
We adopt this convention in order to have a uniform language recognition criterion, regardless of
whether or not the machines are total. All the usual results of computability theory carry over to
this convention with minimal alterations.

2.2 NROCAs

Informally, a one-counter automaton (OCA) is a finite automaton that comes equipped with a
single counter that holds a nonnegative integer. Initially, the counter’s value is zero. At each step,
the counter can be incremented, decremented (if positive), or left unchanged. The only aspect
of the counter that the automaton can use in its transition function is whether or not it is zero.
Deterministic and nondeterministic versions of OCAs are defined in the usual way.

There are several variants of this model. A particularly weak variant of interest to us is that
of real-time one-counter automata (ROCAs). A ROCA must read its input from left to right,
advancing on each step (i.e., no λ-moves allowed), and either accept or reject at the end. A
nondeterministic ROCA (NROCA) is essentially equivalent to a PDA with no λ-moves, a unary

4

stack alphabet (except for a stack-empty marker), and at most one symbol pushed or popped at a
time.

Counter machines have been studied by many people. Two-counter machines were shown to be
universal by Minsky [21] (improved by Fischer [11]). Deterministic one-counter automata (DOCAs)
were first defined and their properties studied by Valiant & Paterson [28]. Real-time counter
machines were studied by Fischer, Meyer, & Rosenberg [12]. ROCAs were introduced in the
context of machine learning by Fahmy & Roos [9].

2.3 Rectangular Traces

The concepts in this section will be used for the proofs of Lemma 4.4 and Theorem 4.5.
We’ll use a standard notion of a Turing machine with a single one-way infinite tape. See

Sipser [25] for details. We do not need to assume that M1,M2,M3, . . . all share the same input
alphabet, but we will assume WLOG that 0 belongs to the input alphabets of all the Me.

Fix a deterministic Turing machine M with state set Q, input alphabet Σ, and tape alphabet
Γ disjoint from Q. We represent a configuration of M in the usual way by a string of the form
C = `qr ∈ (Q ∪ Γ)∗, where q ∈ Q and `, r ∈ Γ∗ with |r| > 0. C represents the configuration where
M is in state q, ` is the entire contents of the tape to the left of the head, and r is the contents of
the tape starting at the head and extending at least to the rightmost nonblank symbol or possibly
beyond. Note that the same configuration is represented by infinitely many strings by padding r
to the right with blanks. A string C representing a configuration is minimal if no shorter string
represents the same configuration; equivalently, C is minimal iff either its last symbol is nonblank
or its penultimate symbol is in Q. Let x ∈ Σ∗ be a string. A rectangular trace of M on input x is
a string of the form

#C0#C1# · · ·#Ck#,

where

• k ≥ 0,

• # is a symbol not in Q ∪ Γ,

• C0 represents the initial configuration of M on input x (that is, C0 = q0x, possibly padded
on the right with blank symbols, where q0 is the start state of M),

• for 0 ≤ i < k, Ci+1 represents the successor to the configuration represented by Ci, according
to the transition function of M , and

• |C0| = |C1| = · · · = |Ck| = n for some n (n must be large enough so that this is possible).

We say that k and n are the depth and width of the trace, respectively, and that # is the separator
for the trace. If Ck represents a halting configuration of M , then we say that the trace is accepting
or rejecting according to the type of halting configuration; otherwise, we say that the trace is
incomplete. The trace has minimum width if at least one of the Ci is minimal.

Note 2.8 Let M be a machine, x an input string, and # some appropriate separator symbol. The
minimum-width accepting rectangular trace of M on x with separator # is unique if it exists, and
there exists such a trace iff M accepts x.

5

2.4 Function Classes and Computability

Definition 2.9 Let C = {C1, C2, . . .} and D = {D1, D2, . . .} be sets of machines with known
interpretations. Then FC,D is the class of all functions that take an index i for a machine in C and
produce an index j for a machine in D such that L(Dj) = SUBSEQ(L(Ci)).

We use the notion of Muchnik reducibility (also known as weak reducibility) [22] to measure
the complexity of the various FC,D.

Definition 2.10 (after Muchnik [22]) Let F and G be classes of functions N→ N. We say that
F Muchnik reduces to G (denoted F ≤w G)2 if (∀g ∈ G)(∃f ∈ F)[f ≤T g]. F and G are Muchnik
equivalent (F ≡w G) if F ≤w G and G ≤w F . Equivalence classes under ≡w are Muchnik degrees.

The following note is crucial for the definition of FC,D.

Note 2.11

1. IfA ⊆ N is a set, we informally write FC,D ≤w A to mean FC,D ≤w {χA}, where χA : N→ {0, 1}
denotes the characteristic function of A. This means that there is some function f ∈ FC,D
such that f ≤T A. Likewise, we write A ≤w FC,D to mean {χA} ≤w FC,D. This means
that, for any f ∈ FC,D, A ≤T f . We also write FC,D ≡w A to mean that both of the above
statements hold.

2. “FC,D is computable” means that FC,D ≤w ∅ in the sense of the previous item, i.e., FC,D
contains a computable function.

3. Muchnik reducibility is defined in terms of Turing reducibility. For other reductions r we can
define A ≤r FC,D, etc. in analogy with Muchnik reducibility by replacing ≤T with ≤r in the
definition.

Notation 2.12 For C as above, we let FC,DEC be the subclass of FC,CE consisting of the functions
f ∈ FC,CE that always output indices of total machines. (We will never use DEC as the first
superscript in FC,D.)

The following theorem is an exercise we leave to the reader.

Theorem 2.13

1. FCE,CE is computable.

2. FREG,REG is computable.

Definition 2.14 If f and g are functions N → N, then g bounds f if (∀e)[f(e) ≤ g(e)]. If F is a
class of functions, then we say g bounds F to mean that g bounds some function in F . A function
f is computably bounded if there is a computable g that bounds f . Likewise, a function class F is
computably bounded if there is a computable g that bounds F .

2This should not be confused with weak truth-table reducibility (wtt-reducibility), which is sometimes also denoted
by ≤w.

6

Note that this definition is nonstandard. For example, a class of functions is typically regarded
as computably bounded if there is a single computable function g that bounds every function in
the class. Here, g only needs to bound at least one function in the class.

Definition 2.15 If C,D are sets of machines, we use the notation C v D to mean that there exists
a computable function h such that L(Ci) = L(Dh(i)) for every i.

It is well-known that REG v NROCA v CFL v P v DEC v CE and that REG v coNROCA v
coCFL v P v DEC v coCE.

Notation 2.16 If f and g are functions N → N, we say that f ≤1-tt g if f ≤T g via a machine
that halts on every input and every oracle, making at most one oracle query.

The following lemma is obvious.

Lemma 2.17 Let C1, C2,D1,D2, C,D be sets of machines.

1. If C1 v C2, then FC1,D ≤1-tt FC2,D.

2. If C1 v C2, then for every function g bounding FC2,D there is a function f ≤1-tt g bounding
FC1,D. In particular, if FC2,D is computably bounded, then FC1,D is computably bounded.

3. If D1 v D2, then FC,D2 ≤1-tt FC,D1.

4. If D1 v D2, then for every function g bounding FC,D1 there is a function f ≤T g bounding
FC,D2. In particular, if FC,D1 is computably bounded, then FC,D2 is computably bounded.

Corollary 2.18

1. If C ∈ {REG,NROCA, coNROCA,CFL, coCFL,P,CE}, then FC,CE is computable.

2. If D ∈ {REG,NROCA, coNROCA,CFL, coCFL,P,DEC,CE}, then FREG,D is computable.

The notation below is standard. For the notation that relates to computability theory, our
reference is [26].

Notation 2.19 Let e, s ∈ N and x ∈ Σ∗.

1. The empty string is denoted by λ.

2. Me,s(x) is the result of running Me on x for s steps.

3. We = L(Me) = {x : Me(x) = 1}. Note that {W1,W2, . . .} = CE is the set of all c.e. sets.

4. We,s = {x : |x| ≤ s ∧Me,s(x) = 1}.

5. Σ0,Π0,∆0,Σ1,Π1,∆1,Σ2,Π2,∆2, . . . are defined in the usual way in the context of com-
putability theory.

6. Let M ()
1 ,M

()
2 , . . . be a standard list of all oracle Turing machines. A′ = {e : MA

e (e) = 1}.
This is pronounced, “A jump.”

7

7. ∅ is the empty set.

8. ∅′ is defined using the jump operator and is actually equivalent to the halting set.

9. ∅′′ is defined using the jump operator and is known to be Σ2-complete.

10. EMPTY is {e : We = ∅}. EMPTY is known to be Π1-complete.

11. FIN is {e : We is finite}. FIN is known to be Σ2-complete.

12. If A and B are sets, then A⊕B = {2x : x ∈ A} ∪ {2x+ 1 : x ∈ B}. Note that A ≤m A⊕B
and B ≤m A⊕B. One can generalize the ⊕ operator to functions as well.

Definition 2.20 Let C = {C1, C2, . . .} be a set of devices.

1. EMPTYC is {e : L(Ce) = ∅}.

2. FINC is {e : L(Ce) is finite}.

3 A General Upper Bound on the Muchnik Degree of FC,D

Throughout this section C = {C1, C2, . . .} and D = {D1, D2, . . .} are sets of devices, and REG v D.

Theorem 3.1 If
{(e, x) : Ce(x) = 1} ∈ Σ1

and
{(i, y) : Di(y) = 1} ∈ ∆2

then FC,D ≤w ∅′′.

Proof: To obtain FC,D ≤w ∅′′ we construct the following sentence parameterized by e and i.
The sentence is asking if Di decides SUBSEQ(Ce). The sentence, which we denote α(e, i), is

(∀x)
[
Di(x) = 1 ⇐⇒ (∃y)[x � y ∧ Ce(y) = 1]

]
.

Since {(i, x)|Di(x) = 1} ∈ ∆2 and {(e, y) : Ce(y) = 1} ∈ Σ1 the sentence α(e, i) can be written
as a Π2 statement, and hence its truth is computable in ∅′′.

We can compute an f ∈ FC,D as follows. Given e, ask α(e, 0), α(e, 1), . . . until you get an
answer of YES on some α(e, i), then output i. Each question is computable in ∅′′. The algorithm
must halt since some Di works.

Note 3.2 The algorithm in Theorem 3.1 is a Turing reduction to ∅′′. We will see in Corollary 4.9
that in many cases the algorithm cannot be improved to be a truth-table reduction. This will hold
no matter what oracle is used.

Corollary 3.3 FCE,REG ≤w ∅′′.

8

Corollary 3.4 Assume

1. C ∈ {REG,NROCA, coNROCA,CFL, coCFL,P,CE}, and

2. D ∈ {REG,NROCA, coNROCA,CFL, coCFL,P}.

Then FC,D ≤w ∅′′.

Proof: By Corollary 3.3 and Lemma 2.17.

Corollary 3.5 If C ∈ {REG,NROCA, coNROCA,CFL, coCFL,P,CE}, then FC,DEC ≤w ∅′′.

Proof: We have FC,REG ≤w ∅′′ by Corollary 3.4. Since REG v DEC, we have FC,DEC ≤1-tt
FC,REG by (3) of Lemma 2.17.

4 The Growth Rate of FC,D: A Lower Bound

In Section 3 we gave a general upper bound of ∅′′ for the Muchnik degree of FC,D for many C
and D. In this section, we show that this bound is tight by showing that ∅′′ is computable in any
function bounding some member of FC,D. It follows that for many C and D, FC,D is not computably
bounded, i.e., no function in FC,D is computably bounded.

The minimum complexity of FC,D is easy to determine in some special cases. For example,
note that for any c.e. language A: (i) A is finite iff SUBSEQ(A) is finite; (ii) given a DFA for
SUBSEQ(A), one can tell effectively whether or not SUBSEQ(A) is finite; (iii) it requires ∅′′ to
decide, given a c.e. index for A, whether or not A is finite. Thus any function that translates a c.e.
index for A into a DFA for SUBSEQ(A) can be used to solve the finiteness problem for c.e. sets
and hence compute ∅′′. It remains ∅′′-hard, however, to find other types of devices for SUBSEQ(A),
even though the finiteness problem for these other devices is undecidable (see Corollary 4.10).

Throughout this section C = {C1, C2, . . .} and D = {D1, D2, . . .}. In addition we assume that
there is a notion of running Di(x) for s steps, which we denote Di,s(x), and that REG v D.

Lemma 4.1 There is a computable function F that takes as input an index e for a c.e. set We

and a bound m on indices for machines from D, and outputs the index of a Turing machine M
that behaves as follows: If at least one of D1, . . . , Dm decides We (i.e., at least one of D1, . . . , Dm

recognizes We and is total), then M is total and decides a finite variant of We.

Proof: On input (e,m) the function F outputs a machine M that implements the following:

ALGORITHM

1. Input x. Let n = |x|.

2. Find We,n.

3. Run Di,n(z) for 1 ≤ i ≤ m and 0 ≤ |z| ≤ n. For each i:

(a) If there is a z ∈We,n such that Di,n(z) = 0, then declare Di to be invalid. Note that in
this case, |z| ≤ n by definition, and we absolutely know that Di does not decide We.

9

(b) If there is a z /∈ We,n and some i with 1 ≤ i ≤ n such that Di,n(z) = 1 then declare Di

to be invalid. Note that in this case we do not know for sure that Di does not decide
We. It may be the case that (∃t > n)[z ∈ We,t]. Hence, although we declare Di invalid
for now, we may declare it valid later in the computation of F (x).

4. Dovetail the following computations.

(a) Run Di(x) for all valid Di. If any of them halt then output the first answer given.

(b) Enumerate We looking for z ∈ We such that some machine Di was declared invalid
because Di,n(z) = 1 ∧ z /∈We,n. If such a z is found (and there are no other reasons for
Di to be invalid), then

i. Declare Di valid and have the dovetail procedure of Step 4a use it.
ii. Keep looking for more z and hence more machines to declare valid.

END OF ALGORITHM

For any e and m, assume that at least one of D1, . . . , Dm decides We. By renumbering we
assume that D1 is one of the machines that decides We.

We first show that M always halts. Let x be an input and n = |x|. There are two cases.

• D1 is not declared invalid. Then since D1(x) ↓ we find some Di halting on x in Step 4a.

• D1 is declared invalid via z. Since D1 decides We it must be the case that z ∈ We −We,n ∧
D1,n(z) = 1. Because this can happen for only a fixed finite set of possible z’s (recall that
|z| ≤ n), it must be that if the computation in Step 4b goes on long enough then all such
z ∈We will be observed and D1 will be declared valid. Since D1 is total, the computation of
M(x) will halt when D1(x) halts, if it has not halted already.

We now show that M decides a finite variant of We.
Fix i, 1 ≤ i ≤ m. We show that if (∃z)[Di(z) = 1 ∧ z /∈ We] or (∃z)[Di(z) = 0 ∧ z ∈ We], then

there exists ni such that for all x, |x| ≥ ni, machine Di will be declared invalid and stay invalid
during the computation of M(x). There are two cases.

• There exists z ∈ We such that Di(z) = 0. Let n′ be least such that Di,n′(z) = 0, and let n′′

be least such that z ∈ We,n′′ . For all x, |x| ≥ max{|z|, n′, n′′}, Di will be declared invalid in
Step 3a and stay invalid. Let ni = max{|z|, n′, n′′}.

• There exists z /∈ We such that Di(z) = 1. Let n′ be least such that Di,n′(z) = 1. For
all x, |x| ≥ max{|z|, n′} Di will be declared invalid in Step 3b and will stay invalid. Let
ni = max{|z|, n′}.

Let nI be the max of the ni as i runs through all of the machines that converge to a wrong
answer. Let x be such that |x| ≥ nI . The valid machines used by M(x) will either converge on
x and be correct or not converge. Since at least one of the machines decides We, M(x) will be
correct.

10

Theorem 4.2 Assume that FC,CE is computable, i.e., there is a computable function h such that
SUBSEQ(Ci) = Wh(i). Let f ∈ FC,D be a function that only outputs indices for total devices, and
let g be any function bounding f . Then FINC ≤T g ⊕ ∅′.

Proof: For all e, one of D1, D2, . . . , Dg(e) (namely, Df(e)) is a total device which decides
SUBSEQ(Ce). By the premise we know SUBSEQ(Ce) = Wh(e). By Lemma 4.1 we can obtain
from e and g(e) a total Turing machine M that recognizes a finite variant of Wh(e). Let A = L(M).

Note that:

• e ∈ FINC ⇒ L(Ce) finite ⇒ SUBSEQ(L(Ce)) finite ⇒ Wh(e) finite ⇒ A finite ⇒ (∀∞n)[A ∩
Σn = ∅].

• e /∈ FINC ⇒ L(Ce) infinite ⇒ (∀n)[SUBSEQ(L(Ce)) ∩ Σn 6= ∅] ⇒ (∀n)[Wh(e) ∩ Σn 6= ∅] ⇒
(∀∞n)[A ∩ Σn 6= ∅].

Recalling that A is decidable (uniformly in e and g(e)), we can determine which of these two holds
of A by asking queries to ∅′. Keep asking:

• (∀n ≥ 0)[A ∩ {0, 1}n = ∅]

• (∀n ≥ 0)[A ∩ {0, 1}n 6= ∅]

• (∀n ≥ 1)[A ∩ {0, 1}n = ∅]

• (∀n ≥ 1)[A ∩ {0, 1}n 6= ∅]

• (∀n ≥ 2)[A ∩ {0, 1}n = ∅]

• (∀n ≥ 2)[A ∩ {0, 1}n 6= ∅]

• etc.

until you get a YES. If the YES answer was to a query of the form, “. . . = ∅,” then e ∈ FINC . If
the YES answer was to a query of the form, “. . . 6= ∅,” then e /∈ FINC .

Thus, we have FINC ≤T g ⊕ ∅′ as stated.

Lemma 4.3 Let K1 ⊆ K2 ⊆ · · · be any computable enumeration of ∅′. Suppose that there is a
computable function h such that for all e and s,

if e ∈ ∅′ −Ks and Ds is total, then L(Ds) 6= SUBSEQ(L(Ch(e))).

Then for any function f ∈ FC,D outputting indices for total devices and for any function g bounding
f , we have ∅′ ≤T g.

Proof: Let f , g, and h be as above. For any e, let m = g(h(e)). Then SUBSEQ(L(Ch(e))) =
L(Ds) for some total device Ds where s = f(h(e)) and 1 ≤ s ≤ m. Then by assumption, e /∈ ∅′−Ks,
and so either e ∈ Ks or e /∈ ∅′.

The following g-computable algorithm thus decides whether e ∈ ∅′:

1. Compute m = g(h(e)).

11

2. If e ∈ Km then output YES, else output NO.

The next lemma, used to prove Theorem 4.5 below, relates to nondeterministic real-time one-
counter automata (NROCAs—see Section 2.2). The proof technique (also used in the proof of
Theorem 4.5) is a routine adaptation of a standard technique of Hartmanis [16], who showed
that the set of invalid Turing machine computations is context-free, yielding the undecidability of
EMPTYcoCFL. Lemma 4.4 improves this to one-counter machines. Although a result of this sort
may easily have been proved decades ago, we are unable to find a reference, and so we will consider
it folklore.

To avoid confusion, we will always let L(H) denote the language recognized by an NROCA H
in the standard way, i.e., with respect to NROCA rather than coNROCA.

Lemma 4.4 ∅′ ≤T EMPTYcoNROCA and ∅′′ ≤T FINcoNROCA.

Proof: Given an input e, we effectively construct an NROCA Hg(e) such that |L(Me)| =
|L(Hg(e))|. This suffices, as it gives us reductions EMPTY ≤m EMPTYcoNROCA and FIN ≤m

FINcoNROCA, both via g.
Fix a symbol # not in the state set or input alphabet of any Me. Given any e, let Ye be the

language of all minimum-width accepting rectangular traces of Me (on any inputs) with separator
(see Section 2.3). By Note 2.8, |Ye| = |L(Me)|. Given e, we will effectively construct an NROCA
Hg(e) such that Ye = L(Hg(e)), which suffices for the lemma.

The input alphabet of Hg(e) is Σe = Qe ∪ Γe ∪ {#}, where Qe and Γe are the state set and
tape alphabet of Me, respectively. Given input string w ∈ Σ∗e , the NROCA Hg(e) first branches
nondeterministically into seven branches, each branch checking one of the conditions below and
accepting iff the condition is violated :

1. w = #C0#C1# · · ·#Ck# for some k ≥ 0 and some strings C0, . . . , Ck ∈ (Qe ∪ Γe)∗. (This
condition is regular, so the counter is not needed for this branch.)

2. C0, . . . , Ck all represent configurations of Me. (This condition is also regular.)

3. |C0| = |C1| = · · · = |Ck|. (The branch nondeterministcally chooses two adjacent Ci and Ci+1,
increments the counter while reading Ci, decrements it while reading Ci+1, then accepts iff
|Ci| 6= |Ci+1|.

4. C0 represents the initial configuration of Me on some input. (This condition is regular.)

5. Ck represents some accepting configuration of Me. (This condition is regular.)

6. For all 0 ≤ i < k, Ci+1 represents the successor of Ci according to Me’s transition function.
(On this branch, Hg(e) first nondeterministically chooses some Ci. It then starts incrementing
the counter while reading Ci up to some nondeterministically chosen position j, where it
records in its state the (j − 1)st, jth, (j + 1)st, and (j + 2)nd symbols of Ci (if they exist).
This gives it enough information to determine what the jth symbol of Ci+1 should be, based
on the transition function of Me, which is hard-coded into Hg(e). Upon reaching Ci+1 it
decrements the counter to find the jth symbol of Ci+1, then accepts iff the symbol is wrong.
(If it is discovered that Ci is the last configuration, then this branch rejects.))

12

7. w has minimum width. (This condition is regular.)

The string w is in Ye iff all these conditions hold. Furthermore, the description of Hg(e) above
shows that it accepts w iff at least one of these conditions does not hold. Thus Ye = L(Hg(e)).

Theorem 4.5 ∅′′ is computable in any function bounding FcoNROCA,DEC.

Proof: Let g be any function bounding FcoNROCA,DEC. (Recall that a function f in the class
FcoNROCA,DEC takes an NROCA recognizing a language A and outputs a total Turing machine
deciding SUBSEQ(A).) We will show that C = coNROCA and D = CE satisfy the hypotheses of
Lemma 4.3 (for a particular computable enumeration of ∅′), whence ∅′ ≤T g. Combining this with
Theorem 4.2 and Lemma 4.4, we get

∅′′ ≤T FINcoNROCA ≤T g ⊕ ∅′ ≡T g,

which proves the theorem.
Fix a Turing machine U such that L(U) = ∅′. We can assume that U never rejects any input,

i.e., U either accepts or runs forever. We may also assume that for all e, U(e) runs for at least e
steps. Define a computable enumeration K1 ⊆ K2 ⊆ · · · of ∅′ by letting

Ks = {e : U accepts e in at most s steps}.

We can fix another Turing machine V such that, for every i > 0 and m ≥ 0, V (0i10m) simulates
Mi(0m), i.e., V accepts 0i10m if and only if Mi accepts 0m, and V rejects 0i10m if and only if Mi

rejects 0m.
Fix three distinct symbols #, $,% that are not in the tape alphabets of either U or V . For each

e we define Ze to be the language of all strings of the form

$nT%T0%T1% · · ·%T`,

where

1. n > 0 and ` ≥ 0,

2. T is an incomplete rectangular trace of U on input e with separator # and width n (let s be
the depth of T),

3. T` is a rejecting rectangular trace of V on input 0s10` with separator # and width n,

4. for all 0 ≤ j < `, Tj is an accepting rectangular trace of V on input 0s10j with separator #
and width n, and

5. n is such that at least one of the traces T, T0, . . . , T` has minimum width.

We have Ze ⊆ Σ∗, where Σ = QU ∪ ΓU ∪ QV ∪ ΓV ∪ {#, $,%}. Here, U has state set QU and
tape alphabet ΓU , and V has state set QV and tape alphabet ΓV . We can assume as before that
QU ∩ ΓU = QV ∩ ΓV = ∅.

Given e we will effectively construct an NROCA Hh(e) such that Ze = L(Hh(e)). But first, to
see that this h satisfies the hypotheses of Lemma 4.3, note the following:

13

1. If e ∈ ∅′, then Ze is finite.

(If k is least such that e ∈ Kk, then all incomplete rectangular traces of U on input e have
depth less than k. For each possible s < k, if $nT%T0%T1% · · ·%T` is a string in Ze and T
has depth s, then clearly, n, `, and T0, . . . , T` are all uniquely determined—partially owing
to the minimum-width condition, which is essential here. (For example, ` must be least such
that V rejects 0s10`, i.e., 0` /∈ L(Ms).) Hence for each s < k there is at most one such string.
So we have |Ze| ≤ k.)

2. If s is such that e /∈ Ks, Ms is a total machine, and L(Ms) is finite, then there exist strings
x and y such that

(a) x � y,
(b) x /∈ L(Ms), and
(c) y ∈ Ze.

(Since L(Ms) is finite and Ms is total, there is an ` ≥ 0 such that Ms rejects 0` but accepts 0j

for all 0 ≤ j < `. Equivalently, V rejects 0s10` and accepts 0s10j for all j < `. Thus there is a
string y = $nT%T0%T1% · · ·%T` ∈ Ze where T has depth s. Setting x = 0`, we see that (2b)
and (2c) are satisfied. For (2a), note that 0` appears in y as part of the initial configuration
in T`, and so x � y.)

Suppose e ∈ ∅′ − Ks and Ms is total. Then since Ze is finite, so is SUBSEQ(Ze). If L(Ms) is
infinite, then obviously L(Ms) 6= SUBSEQ(Ze). If L(Ms) is finite, then by the second item above,
there exist x � y with x /∈ L(Ms) but y ∈ Ze, making x ∈ SUBSEQ(Ze) − L(Ms). In either
case, L(Ms) 6= SUBSEQ(Ze). The machine Hh(e) we construct below recognizes Ze, and thus
SUBSEQ(Ze) = SUBSEQ(L(Hh(e))), which establishes the hypothesis of Lemma 4.3.

It remains to describe Hh(e). The construction of Hh(e) is straightforward and mirrors that of
Hg(e) previously in Lemma 4.4. Hh(e) first splits into a number of branches, each branch checking
some condition of the input string and accepting iff the condition is violated. The previous discus-
sion suggests how different branches of an NROCA computation can check that T is a rectangular
trace of U and that each Tj is a rectangular trace of V , all with separator #. We can check that
e is the input string for T since we have e hard-coded into Hh(e). Checking that each trace has
the required type (accepting, rejecting, or incomplete) is also straightforward. The widths can be
checked easily enough by first counting the number of $’s then nondeterministically choosing a
configuration string and verifying that it has the same number of symbols. Minimality of the width
of at least one of the traces can also be easily checked by finding some minimal configuration string.

The only remaining check is that each Tj is a trace of V on input 0s10j , where s is the depth of
T . We can store s in the counter by counting the number of # symbols in T except the first and
last ones. Then we nondeterministically choose some j with 0 ≤ j ≤ ` and check (by decrementing
the counter) that the first configuration of Tj corresponds to an input string of the form 0s10t

for some t ≥ 0. Finally, we need to check that t = j in each case. On a separate branch we
nondeterministically choose some Tj with 0 ≤ j ≤ `, counting the number of %’s preceding it (j+1
of them). We then use the counter to check that there are exactly j many 0’s to the right of the 1
on Tj ’s input string.

This concludes the informal description of Hh(e). Proving that Hh(e) has all the requisite
properties is routine.

14

Remark. NROCAs can be simulated in nondeterministic 1-way log space. Further, the nonde-
terminism in each Hh(e) above is limited so that it can be simulated in DSPACE(log n).

Remark. coNROCA is not the only weak model of computation that satisfies Theorem 4.5. Given
e, we can effectively construct a nondeterministic log-time machine3 that recognizes Z ′e, where Z ′e
is just like the Ze of the above proof except that we replace Condition 5 with

5′. n is the least power of 2 such that Conditions 2–4 are possible.

We leave the details of the proof as an exercise to the reader. (The rectangularity of the traces is
useful here, and the fact that n is a power of 2 makes it easier to find the depth s of the trace T .)
Thus we have that ∅′′ is computable in any function bounding FcoNTIME(log n),DEC. On the other
hand, we cannot improve Theorem 4.5 to use deterministic ROCAs (DROCAs). This follows from
Theorem 7.1 and the fact that coDROCA v DROCA v CFL.

Corollary 4.6 If g bounds FcoNROCA,coCE or FcoNTIME(log n),coCE, then ∅′′ ≤T g.

Proof: By (1) of Corollary 2.18, there is a computable function f1 ∈ FcoNROCA,CE. A standard
result in computability theory says that there is a computable function s such that, for all e and
i, if L(Me) = L(Mi), then Ms(e,i) is a total machine deciding L(Me). Let f2 be any function in
FcoNROCA,coCE. Then for each e, Ms(f1(e),f2(e)) is a total machine recognizing SUBSEQ(L(He)),
and so the function f defined by f(e) = s(f1(e), f2(e)) is in FcoNROCA,DEC. Now suppose that g
bounds f2. Defining the function ĝ by ĝ(e) = maxz≤g(e) s(f1(e), z), we get ĝ(e) ≥ s(f1(e), f2(e)) =
f(e) for all e, and so ĝ bounds f . Thus by Theorem 4.5, we get ∅′′ ≤T ĝ ≤T g. The case of
FcoNTIME(log n),coCE is similar.

The following corollary to Corollary 4.6 is far weaker; however, we use it to motivate the next
section.

Corollary 4.7 If g bounds FP,REG, then ∅′′ ≤T g.

Corollary 4.8 ∅′′ ≤w FcoNROCA,coCE and ∅′′ ≤w FcoNTIME(log n),coCE.

Corollary 4.9 If X is any oracle, then FcoNROCA,coCE 6≤tt X.

Proof: Assume, by way of contradiction, that there exists a set X and an f ∈ FcoNROCA,coCE

such that f ≤tt X via M (). We show that f is computably bounded. Given e one can simulate all
possible paths of M ()(e). (This technique is folklore.) This gives a finite number of candidates for
f(e). The largest answer is a bound on f(e).

Corollary 4.10 If coNROCA v C v CE and REG v D v coCE then FC,D ≡w ∅′′.

Proof: This follows from Corollaries 3.3 and 4.8 using Lemma 2.17.

3The kind of log-time machine we have in mind here is equipped with an address tape used to read symbols on
the read-only input in a random access fashion. To read the jth symbol, j is written on the address tape in binary,
a special query state is entered, and in one step the address tape is erased and the symbol is recorded in the state of
the machine. Erasing the address tape each time restricts the machine to making only O(1) many input reads along
any path.

15

5 How Hard Is It to Find the Size?

Consider the function that takes (say) a polynomial-time Turing machine M and outputs the
number of states in the minimal DFA for SUBSEQ(L(M)). Or the number of nonterminals in
the smallest CFG in Chomsky Normal Form (CNF) for SUBSEQ(L(M)). By Corollary 4.7 these
functions grow faster than any computable-in-∅′ function. What if we are given a polynomial-time
Turing MachineM and promised that the number of states in the minimal DFA for SUBSEQ(L(M))
is ≤ c? We still cannot compute the number of states but how many queries does it take to compute
it? What if we are not given a bound? We can still see how many queries it takes as a function of
the answer.

In this section we try to pin down the complexity of these functions by their Turing degree and
the number of queries (to some oracle) needed to compute them. The number of queries itself may
be a function of the output. The final upshot will be that this problem has the exact same results
as the unbounded search problem.

5.1 Unbounded Search

The material in this subsection is taken from [5, 2]. The base of the log function is 2 throughout.

Definition 5.1 The Unbounded Search Problem is as follows. Alice has a natural number n (there
are no bounds on n). Bob is trying to determine what n is. He can ask questions of the form “Is
n ≤ a?” How many questions does Bob need to determine n? The number of questions will be a
function of n.

Definition 5.2 The function h : N→ N satisfies Kraft’s Inequality if
∑∞

i=1 2−h(i) ≤ 1. We denote
this sum by Kr(h).

Note 5.3 If h satisfies Kraft’s inequality, then there is a prefix-free code for N where n is coded
by a string of length h(n).

Example 5.4

1. h(n) = (1 + ε) log n+O(1) satisfies Kraft’s inequality for any fixed ε > 0.

2. h(n) = log n+ log log n+ log log log n+ · · ·+ log(log∗ n) n+O(1) satisfies Kraft’s inequality [2].

3. h(n) = log n− c violates Kraft’s inequality for any constant c.

Definition 5.5 A real number α is computable if the function that maps i to the ith bit of α is
computable.

Lemma 5.6 ([2]) Let h be a monotone increasing, computable function such that Kr(h) is com-
putable. The unbounded search problem can be solved with h(n) queries iff h satisfies Kraft’s in-
equality.

16

5.2 Definitions, Notation, and Lemmas from Bounded Queries

The Definitions and Notations in this section are originally from [1, 4], but are also in [14]. We only
touch on the parts of bounded queries that we need; there are many variants on these definitions.

Definition 5.7 Let A be a set, and let n ≥ 1.

1. CA
n : Nn → {0, 1}n is defined by CA

n (x1, . . . , xn) = A(x1)A(x2) · · ·A(xn).

2. #A
n : Nn → {0, . . . , n} is defined by #A

n (x1, . . . , xn) = |A ∩ {x1, . . . , xn}|.

Convention: K is the set of all i such that Mi(0) halts. (K is m-equivalent to ∅′.)

Definition 5.8 Let f, g be functions from N to N, A ⊆ N, and n ∈ N. (An input to f may be
a tuple of numbers; however, we code it as a number.) We say that f ∈ FQ(g(x), A) if f ≤T A
via an algorithm that, on input x, makes at most g(x) queries to A. In particular, we say that
f ∈ FQ(g(f(x)), A) if f ≤T A via an algorithm that, on input x, makes at most g(f(x)) queries
to A. (This latter case, which we will use a lot, is unusual in that the number of queries depends
on the output of f .)

Definition 5.9 Let f be a partial function, and let m ≥ 1. f ∈ EN(m) if there is a computable
function h such that, for every x on which f is defined, f(x) ∈Wh(x) and |Wh(x)| ≤ m. Intuitively,
on input x, a process will enumerate ≤ m numbers, one of which will be f(x). It is not known
which one is f(x), nor if the process will stop.

The following lemma establishes the relationship between query complexity and enumeration
complexity.

Lemma 5.10 ([4]) Let f : N→ N and let n ∈ N.

1. (∃X)[f ∈ FQ(n,X)]⇒ f ∈ EN(2n).

2. f ∈ EN(2n)⇒ (∃X ≡T f)[f ∈ FQ(n,X)]

The following two lemmas give us upper bounds on the kind of unbounded search problems we
will be concerned with.

Lemma 5.11 Let f : N → N. Let h be a monotone increasing, computable function such that
Kr(h) is computable and Kr(h) ≤ 1. Then (∃X ≡T f)[f ∈ FQ(h(f(x)), X)].

Proof: Let X = {(n,m) : f(n) ≤ m}. The rest follows from Lemma 5.6.

Note 5.12 Lemma 5.6 does not give lower bounds on the number of queries to compute f .
Lemma 5.6 is about the general unbounded search problem. A particular function f may have
properties that allow for computing it with fewer queries. As an extreme example, f could be
computable and hence computable with 0 queries.

17

Notation 5.13 If γ : N→ N is any function, let

γn(i) =
{
γ(i) if 1 ≤ γ(i) ≤ n;
undefined otherwise.

Lemma 5.14 Let γ : N → N. Assume that there exists k ∈ N such that (∀n)[γn ∈ EN(2k)]
uniformly in n. Let h be any monotone increasing, unbounded, computable function. Then there
exists X such that γ ∈ FQ(h(γ(x)) + 1 + k,X).

Proof: Let X1 = {(n,m) : γ(n) ≤ m}. Let H be the following function:

H(y) = the least x such that h(x) ≥ y.

The following algorithm shows γ ∈ FQ(h(γ(x)) + k + 1, X) for an X defined below.

1. Input(x).

2. Using X1 ask γ(x) ≤ H(1)? γ(x) ≤ H(2)? etc. until you get a YES answer. (This takes
h(γ(x)) + 1 queries.)

3. Let n be such that we now know γ(x) ≤ n. Hence γ(x) = γn(x). Since γn(x) ∈ EN(2k)
uniformly in n, by Lemma 5.10 we have (∃X2)[γn ∈ FQ(k,X2)]. Ask X2 the relevant queries
to find γn(x).

The entire algorithm took h(γ(x)) + 1 + k queries to X = X1 ⊕X2.

The following two lemmas give us lower bounds on the number of queries needed for certain
problems. They will provide problems to reduce to in order to get lower bounds.

Lemma 5.15 ([4]) #K
n−1 6∈ EN(n− 1)

The following lemma is a modification of a similar lemma from both [3] and [13]. It will enable
us to prove lower bounds on the number of queries certain functions require to compute.

Lemma 5.16 Let X ⊆ N, and h : N → N be any function. Let γ : N → N. If γ ∈ FQ(h(γ(x)), X)
and (∀n)[γn 6∈ EN(n− 1)], then h satisfies Kraft’s inequality, namely,

∑∞
i=1 2−h(i) ≤ 1.

Definition 5.17 If f1, f2 : N → N then f1 ≤1 f2 means that there are computable functions S, T
such that, for all x, f1(x) = S(f2(T (x))). Essentially one can compute f1(x) with one query to f2.

The next lemma will be used repeatedly.

Lemma 5.18 Let γ : N → N. Assume that, for all n, #K
n−1 ≤1 γn. Let h be a monotone

increasing, computable function such that Kr(h) is computable. If there exists an X ≡T γ such
that γ ∈ FQ(h(γ(x)), X), then h satisfies Kraft’s inequality. If h satisfies Kraft’s inequality, then
(∃X ≡T γ)[γ ∈ FQ(h(γ(x)), X)].

Proof: If h satisfies Kraft’s inequality, then, by Lemma 5.11, there exists an X ≡T γ such that
γ ∈ FQ(h(γ(x)), X). (This part did not require the premise on γn.)

Assume (∀n)[#K
n−1 ≤1 γn]. By Lemma 5.15, γn /∈ EN(n− 1). By Lemma 5.16, if γ ∈

FQ(h(γ(x)), X), then h satisfies Kraft’s inequality.

18

5.3 Given a C.E. Set A, How Hard Is It to Find the Number of States in the
Minimal DFA for SUBSEQ(A)?

Convention We allow DFAs to have states q such that there exists σ ∈ Σ with δ(q, σ) undefined
(and hence any string for which this happens is rejected).4

Recall that FX,REG was defined so that its members output any appropriate DFA. In the next
definition we want to look at the minimum DFA.

Definition 5.19 Let NSX,REG(e) be the minimum number of states in an output f(e) for any
f ∈ FX,REG. Let NSX,REG

n (e) be defined by letting γ in Notation 5.13 be NSX,REG.

First we look at the Turing degree of NSX,REG for various machine classes X.

Theorem 5.20

1. NSCFL,REG is computable.

2. If coNROCA v X v CE, then NSX,REG ≡T ∅′′.

Proof: Item 1 follows immediately from Theorem 7.1 and the fact that we can effectively
minimize DFAs. Item 2 follows easily from Theorem 4.5 and Corollary 4.10. (For the lower
bound, note that from NSX,REG one can effectively compute a function bounding FX,REG, and
thus ∅′′ ≤T NSX,REG.)

Now we concentrate on the number of queries required to compute NSX,REG. We will be looking
at X ∈ {CE,P,PU}, where PU is P restricted to unary languages.

Theorem 5.21 Let h be a monotone increasing, computable function such that Kr(h) is com-
putable. There exists an X such that NSCE,REG ∈ FQ(h(NSCE,REG(x)), X) iff h satisfies Kraft’s
inequality.

Proof: By Lemma 5.18 we need T such that

#K
n−1(x1, . . . , xn−1) = NSCE,REG

n (T (x1, . . . , xn−1))− 1.

Let T (x1, . . . , xn−1) be an index for the following Turing machine M :

1. Input string s ∈ 0∗.

2. If s = λ accept.

3. If s = 0i, run all n−1 computations Mx1(0), . . . ,Mxn−1(0) until i have halted. If this happens,
accept.

Let A be the language recognized by M . Note that A = SUBSEQ(A). Also notice that, for all
i, 0 ≤ i ≤ n− 1,

#K
n−1(x1, . . . , xn−1) = i ⇒ A = Ai = {00, . . . , 0i}.

The min DFA for Ai uses i+ 1 states, so

#K
n−1(x1, . . . , xn−1) = NSCE,REG

n (T (x1, . . . , xn−1))− 1.

4This convention is only used to simplify our expressions and eliminate some minor complications with n = 2.

19

5.4 Given a C.E. Set A, How Hard is it to Find the Number of Nonterminals
in the Minimal CFG for SUBSEQ(A)?

Convention We assume that all CFGs are in Chomsky Normal Form (CNF).

Lemma 5.22 Suppose that G is a CNF CFG and Σ is a set of terminals (not necessarily all the
terminals of G) such that L(G) ∩Σ∗ is finite and contains at least one nonempty string. Let N be
the length of the longest string in L(G) ∩ Σ∗. We have the following:

1. G has at least 1 + dlogNe many nonterminals.

2. If L(G) is infinite, then G has at least 2 + dlogNe many nonterminals.

Proof: For the first part, let us look at a parse tree for a given nonempty string in L(G) ∩ Σ∗.
No nonterminal can appear twice in a path from the root to a leaf. Otherwise, it could repeat
indefinitely, and thus L(G) ∩ Σ∗ would be infinite. Since the CFG is in CNF, each internal node
in the parse tree has as children either exactly two nonterminals or only one terminal (leaf). So,
the parse tree is a binary tree. Thus, if the longest string in L(G) ∩ Σ∗ is of length N , then the
tree must have N leaves, and thus a path of length at least 1 + dlogNe. Since no nonterminal can
appear twice in any path, there must be at least 1 + dlogNe nonterminals in the grammar.

For the second part, suppose that G has at most 1 + dlogNe many nonterminals. We show
that L(G) must be finite. Consider a parse tree T for some string in L(G) ∩ Σ∗ of length N . As
in the first part, no nonterminal can be repeated on any path of T , and in order to accommodate
N terminals, there must be a path p in T of length at least 1 + dlogNe. So p contains each of
the nonterminals of G exactly once, and this implies that every nonterminal of G is capable of
generating a nonempty string in Σ∗.

We claim that this in turn implies that no nonterminal can ever be repeated on any path of
any parse tree of G whatsoever.

To prove this claim, suppose for the sake of contradiction that there is some parse tree T ′

containing a path p′ on which some nonterminal A occurs at least twice. Then we “pump” the
segment of p′ between the two A’s repeatedly (at least N + 1 times) to obtain a parse tree T ′′ with
a path p′′ containing at least N + 1 occurrences of A. Then, for every nonterminal node B not
on p′′ but whose parent is on p′′, we replace the subtree rooted at B with another one (also with
root B) that generates some nonempty string in Σ∗. (We do the same for the deepest nonterminal
node on p′′ as well.) The resulting tree T ′′′ is a parse tree for some string in Σ∗ longer than N ,
contradicting our choice of N . This proves the claim.

The claim implies that every parse tree of G has depth at most 1 + dlogNe, and so L(G) is
finite.

Definition 5.23 Let NTX,CFL(e) be the minimum number of nonterminals in f(e) for any f ∈
FX,CFL. Let NTX,CFL

n (e) be defined by letting γ in Notation 5.13 be NTX,CFL.

Theorem 5.24 NTCFL,CFL is computable, and NTX,CFL ≡T ∅′′ for all coNROCA v X v CE.

Proof: This is similar to the proof of Theorem 5.20. Note that there are only finitely many
inequivalent context-free grammars in CNF with a given number of nonterminals.

20

Theorem 5.25 Let h be a monotone increasing unbounded computable function such that Kr(h)
is computable. There exists an X such that NTCE,CFL ∈ FQ(h(NTCE,CFL(x)), X) iff h satisfies
Kraft’s inequality.

Proof: By Lemma 5.18 we need T such that

#K
n−1(x1, . . . , xn−1) = NTCE,CFL

n (T (x1, . . . , xn−1))− 1.

Let T (x1, . . . , xn−1) be an index for the following Turing machine M :

1. Input string s ∈ 0∗.

2. If s = λ accept.

3. If s = 0j with 2i−1 < j ≤ 2i, run all n − 1 computations Mx1(0), . . . ,Mxn−1(0) until i have
halted. If this happens, then accept.

Let A be the language recognized by M . Note that A = SUBSEQ(A). Also notice that, for all
i, 0 ≤ i ≤ n− 1,

#K
n−1(x1, . . . , xn−1) = i ⇒ A = Ai = {00, . . . , 02i}.

By Part 1 of Lemma 5.22 with Σ = {0}, any CFG for Ai has at least i + 1 nonterminals.
Further, a CFG for Ai can easily be constructed that has exactly i+ 1 nonterminals. Thus i+ 1 is
the minimum number of nonterminals in any CFG for Ai, and so

#K
n−1(x1, . . . , xn−1) = NTCE,CFL

n (T (x1, . . . , xn−1))− 1.

5.5 Given a Set A ∈ P, How Hard Is It to Find the Number of States in the
Minimal DFA for SUBSEQ(A)?

Theorem 5.26 Let h be a monotone increasing, computable function such that Kr(h) is com-
putable. There exists an X such that NSP,REG ∈ FQ(h(NSP,REG(x)), X) iff h satisfies Kraft’s
inequality.

Proof: By Lemma 5.18 we need T such that

#K
n−1(x1, . . . , xn−1) = NTP,REG

n (T (x1, . . . , xn−1))− 1.

Let T (x1, . . . , xn−1) be an index for the following polynomial-time Turing machine M , which refers
to the computations Mx1(0), . . . ,Mxn−1(0):

M(0s) = 1 iff at least 0 of the n− 1 computations halt in ≤ s steps
M(0s1) = 1 iff at least 1 of the n− 1 computations halt in ≤ s steps
M(0s11) = 1 iff at least 2 of the n− 1 computations halt in ≤ s steps

...
M(0s1i) = 1 iff at least i of the n− 1 computations halt in ≤ s steps

...

21

M rejects all other inputs. Let A be the language decided by M . For 0 ≤ i ≤ n − 1 note the
following:

#K
n−1(x1, . . . , xn−1) = i ⇒ SUBSEQ(A) = Ai =

i⋃
b=0

0∗1b.

The minimal DFA for Ai has i+ 1 states. Hence

#K
n−1(x1, . . . , xn−1) = NSP,REG

n (T (x1, . . . , xn−1))− 1.

Remark. Theorem 5.26 can be strengthened by replacing P with coNROCA everywhere in the
statement of theorem. This requires a routine modification of the proof, which we omit.

5.6 Given a Set A ∈ P, How Hard Is It to Find the Number of Nonterminals in
the Minimal CFL for SUBSEQ(A)?

Theorem 5.27 Let h be a monotone increasing, computable function such that Kr(h) is com-
putable. There exists an X such that NTP,CFL ∈ FQ(h(NTP,CFL(x)), X) iff h satisfies Kraft’s
inequality.

Proof: By Lemma 5.18 we need T such that

#K
n−1(x1, . . . , xn−1) = NTP,CFL

n (T (x1, . . . , xn−1))− 1.

Let T (x1, . . . , xn−1) be an index for the following polynomial-time Turing machine M , which refers
to the computations Mx1(0), . . . ,Mxn−1(0):

M(0s1) = 1 iff at least 1 of the n− 1 computations halt in ≤ s steps
M(0s11) = 1 iff at least 2 of the n− 1 computations halt in ≤ s steps

M(0s1111) = 1 iff at least 3 of the n− 1 computations halt in ≤ s steps
...

M(0s12i−1
) = 1 iff at least i of the n− 1 computations halt in ≤ s steps

...

M rejects all other inputs.
Let A be the language decided by M . If #K

n−1(x1, . . . , xn−1) = 0, then SUBSEQ(A) = ∅, which
is the language of the trivial grammar with one nonterminal (the start symbol) and no productions.

Now suppose that 1 ≤ i ≤ n − 1 and note the following: if #K
n−1(x1, . . . , xn−1) = i, then

SUBSEQ(A) = Ai =
⋃2i−1

b=0 0∗1b. By Part 1 of Lemma 5.22 with Σ = {1}, the minimal CFL for
Ai has at least i nonterminals, but this cannot be tight by Part 2 of the same lemma, since Ai is
infinite. Thus the minimal CFL for Ai has at least i+ 1 nonterminals. The following grammar Gi

for Ai has i+ 1 nonterminals:

• The nonterminals are A1, . . . , Ai and Z.

22

• The start symbol is A1.

• The productions are

– Z → 0

– A1 → λ

– A1 → ZA1

– An−1 → AnAn (for all 2 ≤ n ≤ i)
– An → 1 (for all 1 ≤ n ≤ i)

Hence the minimal CFG for Ai has exactly i+ 1 nonterminals.
In any case, we have

#K
n−1(x1, . . . , xn−1) = NTP,CFL

n (T (x1, . . . , xn−1)))− 1.

Remark. Theorem 5.27 can be strengthened by replacing P with coNROCA everywhere in the
statement of theorem. This requires a routine modification of the proof, which we omit.

5.7 Polynomial-Time Unary Languages

In the proofs of Theorems 5.21 and 5.25 we were able to get by with a unary language. In the proofs
of Theorems 5.26 and 5.27 we used a binary language. Could we have used a unary language? The
theorems in this section say no—in the unary case the complexity is substantially lower in terms
of number of queries.

Theorem 5.28 NSPU,REG
n ∈ EN(2)

Proof: Note that the subsequence language of any unary language is either all strings shorter
than a certain length, or 0∗.

Given a unary polynomial-time TM M , we run M on all strings of length up to n − 1. There
are two cases:

Case 1 M does not accept any of the strings. Then there are three possibilities, either M accepts
nothing, or it accepts an infinite number of strings longer than n, or there is a longest
string which it accepts, which has length at least n. The first two possibilities give that
SUBSEQ(L(M)) = ∅ or 0∗ respectively, which require 1-state DFAs. The third gives that
SUBSEQ(L(M)) requires a DFA that has more than n states, and so we don’t have to worry
about it. In this case we enumerate {1}.

Case 2 M accepts some longest string with length ` < n. Then there are still three possibilities,
either M accepts nothing longer than `, or it accepts an infinite number of strings longer than
n, or there is a longest string which it accepts, which has length at least n. The first possibility
creates an (`+ 1)-state DFA. The second possibility gives that SUBSEQ(L(M)) = 0∗, which
requires a 1-state DFA. The third gives that SUBSEQ(L(M)) requires a DFA that has more
than n states, and so we don’t have to worry about it. In this case we enumerate {1, `+ 1}.

23

Corollary 5.29 Let h be any monotone increasing unbounded computable function. Then there
exists X such that NSPU,REG ∈ FQ(h(NSPU,REG(x)) + 2, X).

Proof: This follows from Lemmas 5.14 and Theorem 5.28

Corollary 5.30 Let g be any monotone increasing unbounded computable function such that (∀x)[g(x) ≥
2]. Then there exists X such that NSPU,REG ∈ FQ(g(NSPU,REG(x)), X).

Proof: This follows from Corollary 5.29 with h = g − 2.

Lemma 5.31 NTPU,CFL
n ∈ EN(2)

Proof: Note again that the subsequence language of any unary language is either all strings
shorter than a certain length, or 0∗.

Given a unary polynomial-time TM M , we run M on all strings of length up to 2n−1. There
are two cases:

Case 1 M does not accept any of the strings. Then there are three possibilities, either M accepts
nothing, or it accepts an infinite number of strings longer than 2n−1, or there is a longest
string which it accepts, which is longer than 2n−1. The first two possibilities give that
SUBSEQ(L(M)) = ∅ or 0∗ respectively, which require 1-nonterminal CFGs. The third gives
that SUBSEQ(L(M)) requires a CFG which has more than n nonterminals, and so we don’t
have to worry about it. In this case we enumerate {1}.

Case 2 M accepts some longest string with length of ` ≤ 2n−1. Then there are still three possi-
bilities, either M accepts nothing longer than `, or it accepts an infinite number of strings
longer than 2n−1, or there is a longest string which it accepts, which is longer than 2n−1. The
first possibility creates a k(`)-nonterminal CFG for SUBSEQ(L(M)), where k(`) is the least
number of nonterminals in any CNF CFG for {00, . . . , 0`}. (We note that k(`) ≤ ` + 1, and
that k(`) is computable from `.) The second possibility gives that SUBSEQ(L(M)) = 0∗,
which requires a 1-nonterminal CFG. The third gives that SUBSEQ(L(M)) requires a CFG
that has more than n nonterminals, and so we don’t have to worry about it. In this case we
enumerate {1, k(`)}.

Theorem 5.32 Let h be any monotone increasing unbounded computable function. Then there
exists X such that NTPU,CFL ∈ FQ(h(NTPU,CFL(x)) + 2, X).

Proof: This follows from Lemmas 5.14 and Lemma 5.31

Corollary 5.33 Let g be any monotone increasing unbounded computable function such that (∀x)[g(x) ≥
2]. Then there exists X such that NTPU,CFL ∈ FQ(g(NTPU,CFL(x)), X).

24

5.8 Summary of this Section

In the table below the row represents the device for A we are given, the column represents the
device for SUBSEQ(A) we seek, and the entry is how many queries you need to determine the
size. Kraft means (roughly) that the function can be computed in h(n) queries—where n is the
output—iff h satisfies Kraft’s inequality. Mono means (roughly) that for any monotone increasing
unbounded function h ≥ 2 there exists X such that the function can be computed in h(n) queries.

REG CFL
CE Kraft Kraft
P Kraft Kraft

PU Mono Mono

6 The Oracle Model

In this section we look at questions along the lines of “Given oracle access to a language A (or to
A′ or to A′′), how hard is it to find a DFA for SUBSEQ(A)?”. Recall that A′ is the Turing jump of
A. Fixing some total order on Σ, we let ≤ be the usual length-first lexicographic ordering induced
on Σ∗.

In this section the Turing machines will not have an input and an output in the usual sense.
Instead, the Turing machines will be oracle Turing machines, and the oracle can be considered to
be the input; the Turing machine will output answers from time to time. This is similar to the
Inductive Inference model of learning [6, 7, 15], and we study the task of learning SUBSEQ(A)
more fully in another paper [10].

Definition 6.1 Let M () be an oracle Turing Machine and A an oracle.

1. MA ↓= e means that MA, when run, will run forever and output answers from time to time,
but eventually they will all be e.

2. MA = e means that MA, when run, will output only one value and that value is e.

Note 6.2 By standard results in computability theory, a language is uniformly computable from its
jump, i.e., there is an oracle Turing machine J () such that J is total for all oracles and A = L(JA′)
for all A. Thus oracle access to A′ provides one with access to A as well.

Theorem 6.3 There exists an oracle Turing machine M () such that, for any language A ⊆ Σ∗,
there is a DFA Fe such that L(Fe) = SUBSEQ(A), and MA′ ↓= e.

Proof: Recall from Definition 2.1 that x � y means that x is a subsequence of y.
For any languageA, the language SUBSEQ(A) is closed downward under�, and so by Lemma A.3

there is a finite set BA = {z1, . . . , zn} ⊆ Σ∗ such that

SUBSEQ(A) = {w ∈ Σ∗ : (∀z ∈ BA)[z 6� w]}. (1)

We note that for each A there is a unique �-antichain BA satisfying (1), namely, the set of �-
minimal elements of the complement of SUBSEQ(A); Higman’s result [19] insists that this antichain

25

must be finite. (A �-antichain is a set whose elements are pairwise �-incomparable.) The idea is
that M uses A′ to approximate the set BA and outputs a DFA for its approximation. Since BA is
finite, M will eventually find it.

For every n ∈ N, in order, MA′ does the following: Runs through all strings y ∈ Σ∗ of length
less than n. For each such y asks the oracle A′ whether there exists a z ∈ A with y � z. Let Y be
the set of all y for which the answer is “no,” and let BA,n be the set of all �-minimal elements of
Y . (Evidently, BA,n = BA ∩ Σ<n, and so BA,n = BA for sufficiently large n.) Finally construct a
DFA F for the language defined by

{w ∈ Σ∗ : (∀z ∈ BA,n) z 6� w} = L(F).

Then output the least index e such that L(Fe) = L(F). (Note that although there are many
possible DFAs F , MA′ must eventually output the same index each time, which is why it chooses
the least one.)

For all but a finite number of n, BA,n = BA. Hence, for all but finitely many n the same index
will be output. We denote this index e and note that L(Fe) = SUBSEQ(A) as desired.

Theorem 6.4 There exists an oracle Turing machine N () such that, for any language A ⊆ Σ∗,
there is a DFA Fe such that L(Fe) = SUBSEQ(A), and NA′′ = e.

Proof: Let M () be the machine of Theorem 6.3. The machine NA′′ does the following: run MA′

until it outputs an answer e (which may not be its final answer). Then ask A′′

(∃y)[Fe(y) = 0 ∧ y ∈ SUBSEQ(A)] ∨ (∃y)[Fe(y) = 1 ∧ y /∈ SUBSEQ(A)].

If the answer is YES then keep running MA′ and repeat. Eventually the answer will be NO, which
means that L(Fe) = SUBSEQ(A). At this point output e. Note that this final e is the only output.

Theorems 6.3 and 6.4 are tight in the sense that, as we now show, no OTM can do the same
as M () with just A as an oracle, and no machine can do the same as N () with just A′ as an oracle.
In fact, for any candidate machine M () (respectively N ()) that claims

(∀A)[MA ↓= e ∧ L(Fe) = SUBSEQ(A)]

we can effectively find (an index for) a decidable language A for which this is not the case.

Theorem 6.5 There is an effective procedure that, given as input the description of any oracle
Turing machine M (), outputs an index i of a Turing machine such that

1. Mi is total. Let A = L(Mi).

2. If there exists e with MA ↓= e, then L(Fe) 6= SUBSEQ(L(Mi)).

Proof: Fix any a ∈ Σ. Given any oracle Turing machine M (), we effectively construct Mi to
behave as follows.

1. Input x

26

2. If x /∈ a∗ then reject. (This will ensure that A ⊆ a∗.)

3. Let x = an for n ≥ 0. Run Mi recursively on all inputs aj for 0 ≤ j < n. (Formally we
use the Recursion Theorem.) Set An := {aj : 0 ≤ j < n and Mi(aj) accepts}. (Note that by
induction on n, Mi will halt on all these inputs aj , and thus we do not get stuck in this step.)

4. Run MAn for n− 1 steps. Let e be the most recent output of MAn within that time. If there
is no such e, then reject. (Note that MAn does not have time within its first n − 1 steps to
query An on any string of the form aj for j ≥ n, and so MAn behaves the same in its first
n− 1 steps as MA.)

5. If L(Fe) is finite then accept, otherwise reject.

It is evident by induction on n that Mi is total. Let A = L(Mi), the set of all strings accepted
by Mi. We show that MA does not converge to e with SUBSEQ(A) = L(Fe). There are several
cases.

Case 1: MA does not converge. Then clearly we are done.

Case 2: MA converges to e such that L(Fe) 6⊆ a∗. Then since A ⊆ a∗ we have SUBSEQ(A) ⊆ a∗,
and so L(Fe) 6= SUBSEQ(A).

Case 3: MA converges to e and L(Fe) is infinite. Then for all large enough n, Mi does not accept
an in Step 5, and so A is finite. Hence SUBSEQ(A) is finite and L(Fe) 6= SUBSEQ(A).

Case 4: MA converges to e such that L(Fe) is finite. Then for all large enough n, Mi accepts an

in Step 5, and so A is infinite. Hence SUBSEQ(A) is infinite and L(Fe) 6= SUBSEQ(A).

The conclusion of these four cases is that if MA converges to e, then L(Fe) 6= SUBSEQ(A).

Corollary 6.6 There is an effective procedure that, given as input the description of any oracle
Turing machine N (), outputs a Turing machine Mi that recognizes a language A = L(Mi) ⊆ Σ∗
such that the following hold:

1. Mi is total, and hence Mi decides A.

2. If there exists e with NA′ = e, then L(Fe) 6= SUBSEQ(A).

Proof: For any language A, let A0 ⊆ A1 ⊆ A2 ⊆ · · · ⊆ A′ be a standard A-computable
enumeration of A′. There is an oracle Turing machine that computes this enumeration relative to
any A.

Given an oracle Turing machine N () as input, first we effectively construct an oracle Turing
machine M () that, given any oracle A, merely simulates NAn for increasing values of n. More
precisely, for n = 0, 1, 2, 3, . . . , the computation MA

1. dovetails the computations NA0 , NA1 , . . . , NAn for n steps each,

2. finds the largest m ≤ n (if it exists) for which NAm has output something, then

3. outputs the first output of NAm .

27

We then apply the effective procedure of Theorem 6.5 to M () to get a machine Mi that decides
a language A.

Suppose that NA′ = e for some e. Then there is a finite `0 such that, for all ` ≥ `0, NA` outputs
e as its first output. [Here, A0 ⊆ A1 ⊆ · · · is the standard enumeration of A′ and is unrelated to
the similar notation found in the proof of Theorem 6.5.] But then clearly MA ↓= e, and so by
Theorem 6.5, L(Fe) 6= SUBSEQ(A) = SUBSEQ(L(Mi)).

Theorem 6.5 and Corollary 6.6 can be easily relativized to any oracle X. This means that extra
information independent of A is of no help in finding a DFA for SUBSEQ(A). Corollaries 6.7 and
6.8 are corollaries of the proofs of Theorem 6.5 and Corollary 6.6, respectively. The new proofs are
routine modifications of the old ones, and we omit them.

Corollary 6.7 There is an effective procedure that, given the description of any oracle Turing
machine M (), outputs the index i of an oracle Turing machine M

()
i such that for any oracle X,

MX
i recognizes a language A = L(MX

i), and the following hold:

1. M ()
i is total for all oracles, and hence A ≤tt X via M ()

i .

2. If there exists an e such that MX⊕A ↓= e, then L(Fe) 6= SUBSEQ(A).

Corollary 6.8 There is an effective procedure that, given the description of any oracle Turing
machine N (), outputs the index i of an oracle Turing machine Mi such that for any oracle X, MX

i

recognizes a language A = L(MX
i), and the following hold:

1. M ()
i is total for all oracles, and hence A ≤tt X via M ()

i .

2. If there is an e such that N (X⊕A)′ = e, then L(Fe) 6= SUBSEQ(A).

7 The Complexity of FCFL,REG

The following theorem is due to van Leeuwen [29]. For completeness, we present it here with an
altered proof.

Theorem 7.1 (van Leeuwen [29]) FCFL,REG is computable.

Proof: In this proof, as is customary, we will often identify regular expressions with their
corresponding languages. The meaning should be clear from the context.

We will be constructing a regular expression for SUBSEQ(A) by induction on the number of
nonterminals in a grammar for A. First, we need a definition.

Definition 7.2 An R-Grammar is a structure G = 〈V,Σ,P, S〉 where

1. V is an alphabet,

2. Σ is the set of terminal symbols (Σ ⊆ V),

3. S ∈ V − Σ is the start symbol, and

28

4. P is a finite set of production rules of the form B →M where B ∈ V −Σ and M is a regular
expression on the alphabet V .

An R-Grammar is just like a CFG except that instead of each production rule going to a fixed
string, it goes to a regular set of strings. In the same paper van Leeuwen shows that R-grammars
are exactly as powerful as CFGs.

In our construction of the regular expression for SUBSEQ(A) at each stage of the induction we
will create an R-grammar with one fewer nonterminals. Eventually, we will end up with a regular
expression for SUBSEQ(A).

This proof is unusual in that the base case is harder than the inductive step. To help the reader,
we do the inductive step first.

Inductive Step
Let n ≥ 2 and assume that given any R-grammar G with fewer than n nonterminals, we can

effectively find a regular expression for SUBSEQ(L(G)).
Let G = 〈V,Σ,P, S〉 be an R-grammar with n nonterminals (|V −Σ| = n). Choose a B ∈ V −Σ

(B 6= S) and define the following R-grammar GB:

1. The alphabet is V (though, as we will see, which symbols are terminals and nonterminals will
change).

2. The terminals are V −{B}. Note that all of the nonterminals of G except B are terminals in
GB.

3. The productions are all the productions of G of the form B →M . Note that, in G, M was a
regular expression over V . This is still true; however the nonterminals from V that were in
M are now terminals (except B).

4. The start nonterminal is B.

Note that GB is exactly the grammar required to produce the strings of V achievable from B.
Notice that it has only one nonterminal, namely B. We apply the inductive hypothesis for n = 1
and create the regular expression RB for SUBSEQ(L(GB)).

We now create the grammar G′. Take the grammar G. Whenever B appears on the right
hand side of a production, replace it with RB. Whenever B appears on the left hand side of a
production, remove the production. Finally, remove B from the set of nonterminals. It is clear that
L(G) ⊆ L(G′), and in fact L(G′) ⊆ SUBSEQ(L(G)). Thus SUBSEQ(L(G′)) = SUBSEQ(L(G)).
Also, G′ has one fewer nonterminals so by applying the inductive hypothesis once again, we can
find R, the regular expression for SUBSEQ(L(G)). This completes the inductive step.

Base Case
Given an R-grammar G = 〈{S} ∪ Σ,Σ, P, S〉, with only one nonterminal, we must find R—the

regular expression for SUBSEQ(L(G)). We may assume without loss of generality that G has
exactly one production

S →M

for some regular expression M over {S} ∪ Σ. (If not, combine the two or more productions S →
M1, S →M2, . . . into the single production S →M1 ∪M2 ∪ · · ·.) We have two cases:

29

1. Every string that matches M has at most one occurrence of S in it.

2. There is a string matching M that contains at least two occurrences of S.

It’s easy to test which case applies.
Case 1:

We replace S →M with the two productions

S → M1

S → M2,

where M1 is a regular expression equivalent to M ∩ Σ∗ and M2 is equivalent to M ∩ (Σ∗SΣ∗). By
assumption, the new grammar is equivalent to the old one. Obviously, no string in M1 contains an
occurrence of S, and every string in M2 contains exactly one S.

We define the following sets:

• QL = {x : ∃y[xSy ∈ M2]}. These are all strings over Σ which occur before the S in strings
matching M2. (Since M2 is a regular expression, there may be many such x.)

• QR = {y : ∃x[xSy ∈ M2]}. These are all strings over Σ which occur after the S in strings
matching M2.

Both of these sets are regular, and we can effectively find regular expressions for them. We let

C = SUBSEQ(Q∗LM1Q
∗
R)

and claim that C = SUBSEQ(A). SUBSEQ(A) ⊆ C is obvious.
To show that C ⊆ SUBSEQ(A) we consider an arbitrary u ∈ C. Let v ∈ Q∗LM1Q

∗
R be such

that u � v. The string v can be written as

v = p1p2 · · · pamq1q2 · · · qb
where

• For 1 ≤ r ≤ a, pr ∈ QL.

• For 1 ≤ r ≤ b, qr ∈ QR.

• m ∈M1.

For each pr there must be a p′r such that prSp
′
r ∈M2. Likewise, for each qr there must be a q′r

such that q′rSqr ∈M2.
Thus the following string is in A:

w = p1p2 · · · paq
′
b · · · q′1mq1q2 · · · qbp′a · · · p′1.

Since u � v � w, the original string u is in SUBSEQ(A).
Case 2:

Similarly to Case 1, we replace S →M with two productions S →M1 and S →M2, where M1

is equivalent to M ∩ Σ∗ as in Case 1, but now M2 is equivalent to M ∩ (Σ ∪ S)∗S(Σ ∪ S)∗. No
strings in M1 contain any S’s and every string in M2 contains at least one S.

If M1 = ∅ (which is easy to check), then A = SUBSEQ(A) = ∅ and we’re done, so assume there
is some string m ∈M1.

Because we might have many S in a string in M2, we need to define three sets instead of two:

30

• QL = {x ∈ Σ∗ : ∃y[xSy ∈ M2]}. These are the strings that occur before the first S in
elements of M2.

• QM = {x ∈ Σ∗ : ∃y1, y2[y1SxSy2 ∈ M2]}. These are the strings that occur in between two
adjacent S’s in strings in M2.

• QR = {x ∈ Σ∗ : ∃y[ySx ∈ M2]}. These are the strings that occur after the final S in strings
in M2.

Again, all these sets are regular, and we can effectively find regular expressions for them. Note
that QL, QM , QR are all nonempty, otherwise Case 1 would hold. Let

C = SUBSEQ((M1 ∪QL ∪QM ∪QR)∗).

Again, we claim that SUBSEQ(A) = C.
To see that SUBSEQ(A) ⊆ C, we derive an arbitrary string u ∈ A and see that each character

at a leaf came from a string in either QL, QM , QR, or M1, so each character in any u′ � u did as
well, and thus u′ ∈ C.

To show that C ⊆ SUBSEQ(A), we consider an arbitrary string u ∈ C. Given u, we can find
v � u such that

v = m1p1q1r1m2p2q2r2 · · ·mtptqtrt

with the mi ∈Mi, pi ∈ QL, qi ∈ QM , and ri ∈ QR.
For each pi there must be a p′i such that piSp

′
i ∈M2. Likewise, for each qi there must be q′i, q

′′
i

such that q′iSqiSq
′′
i ∈M2, and for each ri there must be an r′i such that r′iSri ∈M2. Note that the

primed strings may contain more copies of S.
Since we are in Case 2, there must be some string z in M2 with at least two S’s. Using z

we can expand S out enough times so that we have a string with at least 4t many S’s—an S for
each mi, pi, qi, ri in the string v. We can replace these S with mi, piSp

′
i, q
′
iSqiSq

′′
i , or r′iSri as

appropriate. Any remaining S can be replaced with the string m ∈ M1. The resulting string is
clearly in A, and thus v, which is a subsequence of this string, is in SUBSEQ(A). Finally, since
u � v we have that u ∈ SUBSEQ(A) as well.

Note that requiring two S’s in some string in M is necessary for the proof of this case to work,
because C allows for arbitrary ordering of the m, p, q, r which would not be possible in Case 1.

8 Is FC,D Ever Not Muchnik Equivalent to ∅ or ∅′′?
By Corollaries 2.18, 4.10, and Theorem 7.1, we have that for C,D ∈ {REG, coNROCA,CFL,P,CE}
either FC,D ≡w ∅ or FC,D ≡w ∅′′. Do there exist two classes C and D such that FC,D ≡w ∅′? How
about other Turing degrees? We know of no natural classes and we doubt such exist. However, we
can construct such classes.

Theorem 8.1 Let X be any c.e. set. There exists a class C of total Turing machines such that for
any D ∈ {REG,CFL}, FC,D ≡w X.

31

Proof: Let Xs be X after the first s stages of enumeration. Define Ce to be the unary Turing
machine that does the following:

Ce(0s) =
{

1 if e ∈ Xs;
0 if e /∈ Xs.

Define C = {C1, C2, . . .}.
Let f ∈ FC,D. Note that

• e ∈ X ⇒ L(Ce) 6= ∅ ⇒ λ ∈ SUBSEQ(L(Ce))⇒ Df(e)(λ) = 1.

• e /∈ X ⇒ L(Ce) = ∅ ⇒ λ /∈ SUBSEQ(L(Ce))⇒ Df(e)(λ) = 0.

Hence e ∈ X iff Df(e)(λ) = 1. Therefore X ≤T f , and so X ≤w FC,D.
To see that FC,REG ≤w X, fix indices i0 and i1 such that L(Fi0) = ∅ and L(Fi1) = 0∗. Define

f(e) =
{
i1 if e ∈ X;
i0 if e /∈ X.

Note that

• e ∈ X ⇒ |L(Ce)| =∞ ⇒ SUBSEQ(L(Ce)) = 0∗ = L(Fi1) = L(Ff(e)).

• e /∈ X ⇒ L(Ce) = ∅ ⇒ SUBSEQ(L(Ce)) = ∅ = L(Fi0) = L(Ff(e)).

Hence f ∈ FC,REG, and clearly f ≤T X. Thus FC,REG ≤w X. The fact that FC,CFL ≤w X follows
by (3) of Lemma 2.17.

Theorem 8.2 Let X be any Σ2 set such that ∅′ ≤T X. There exists a class C of Turing machines
such that for any D ∈ {REG,CFL}, FC,D ≡w X.

Proof: Let R be a computable predicate such that for all e,

e ∈ X ⇐⇒ (∃x)(∀y)R(e, x, y).

Define Ce to be the Turing machine that does the following:

Ce(x) =
{

1 if (∀x′ ≤ x)(∃y)¬R(e, x′, y);
undefined otherwise.

Define C = {C1, C2, . . .} as before. We have

e ∈ X ⇒ L(Ce) is finite,
e /∈ X ⇒ L(Ce) = Σ∗.

Let f ∈ FC,D. We have

e ∈ X ⇐⇒ L(Ce) is finite ⇐⇒ SUBSEQ(L(Ce)) is finite ⇐⇒ L(Df(e)) is finite.

Since Df(e) is a CFG or a DFA, we can decide whether or not it recognizes a finite language. Thus
X ≤1-tt f .

Conversely, here is an f ∈ FC,D such that f ≤T X: Given e, we ask X whether L(Ce) is finite
(⇐⇒ e ∈ X), and if so (since ∅′ ≤T X), we find all the elements of L(Ce) computably in X as
follows:

32

1. D := ∅.

2. For every string x in lexicographical order, do

(a) If there is no y ≥ x such that Ce(y) = 1, then halt and output D.

(b) If Ce(x) = 1, then D := D ∪ {x}.

So if e ∈ X, we let f(e) be the index of a CFG or DFA recognizing SUBSEQ(D); otherwise, we let
f(e) be the index of a CFG or DFA recognizing Σ∗.

9 Relation to Recursive and Reverse Mathematics

Nerode’s Recursive Mathematics Program [20, 8] and Simpson and Friedman’s Reverse Math Pro-
gram [23, 24] both attempt to pin down what it means for a proof to be noneffective or noncon-
structive. Corollary 3.4 yields results in both of these programs.

Recall Higman’s result, which we denote by H:

If A ⊆ Σ∗ then SUBSEQ(A) is regular.

In the Recursive Math program one asks if an effective version of a theorem is true. If it is not,
then the theorem cannot be proven effectively. Then weaker versions are suggested that may be
true. In that spirit, we suggest two effective versions of H.
Effective Version 1: Given an index for a Turing machine that decides a language A, one can
effectively produce a DFA for the language SUBSEQ(A).
Effective Version 2: Given an index for a Turing machine that decides a language A, one can
effectively produce a Turing machine that decides SUBSEQ(A).

By Corollary 4.10 we have shown that the Effective Versions 1, 2 are false. The question then
arises as to how non-effective H is. By Corollary 3.4 H is ∅′′-effective. Another question that
arises is whether there are (perhaps weaker) effective versions of H. By Theorems 2.13 and 7.1 the
following are true:
Effective Version 3: Given an index for a Turing machine that enumerates a language A, one
can produce a Turing machine that enumerates SUBSEQ(A).
Effective Version 4: Given an index for a CFG that decides a language A, one can produce a
DFA that decides SUBSEQ(A).

In the Reverse Math program the concern is what axiom system is needed to prove a theorem.
RCA0 is the axiom system that is used to denote that proofs are constructive. (For a definition of
RCA0 see [23].) It is known that if a theorem is false in the model that consists of only recursive
sets and functions, then it is not provable in RCA0. Consider the following statement:

There exists a function f that, when given as input an index of a total 0–1 valued Turing
Machine M , outputs the code for a DFA for SUBSEQ(L(M)).

Theorem 9.1 The statement above cannot be proven in RCA0.

A natural question arises: Which, if any, of the usual proof systems is this statement equivalent
to? For example, is it equivalent to the Weak König’s Lemma? An anonymous referee has pointed

33

out that the statement is not equivalent to WKL0 because any ω-model of the statement would
have to include ∅′′ by the results of Section 4, but there is an ω-model of WKL0 which does not.
In fact, the statement is not equivalent to any of the usual systems in reverse mathematics because
{X : X ≤T ∅′′} is an ω-model of the statement, but that set is not an ω-model of any standard
system other than RCA0. A more natural statement to consider from the point of view of reverse
mathematics is, “For any A, the set SUBSEQ(A) is regular,” but the results of this paper do not
appear to answer that question.

10 Open Problems

The complexity of FC,D can be either ∅ or ∅′′ for natural classes C and D. The complexity can be
either that of any c.e. degree or that of any Σ2 degree computing ∅′, for contrived C. What about
other Turing degrees?

The functions NSPU,REG and NSPU,CFL are both in FQ(g,X) where g can be any monotone
increasing unbounded computable function of the output—for example, log∗ n. However, it is open
to show that these functions cannot be computed with a constant number of queries.

Appendix

We give two proofs of the theorem, “If A is any set then SUBSEQ(A) is regular.” The first one
is the original one by Higman; however, we use modern terminology. It uses well quasi-orderings.
The second is a new one that avoids using well quasi-orderings.

A Higman’s Proof

Definition A.1 A set together with an ordering (X,�) is a well quasi-ordering (wqo) if for any
sequence x1, x2, . . . of elements of X there exist i, j such that i < j and xi � xj .

Note A.2 If (X,�) is a wqo, then it is both well-founded and has no infinite antichains.

A.1 Subsets of Well Quasi-Orders That Are Closed Downward

Lemma A.3 Let (X,�) be a wqo and let Y ⊆ X. Assume that Y is closed downward under �.
Then the following occur.

1. There exists a finite set of elements {z1, . . . , zk} ⊆ X such that

y ∈ Y iff (∀i)[zi 6� y].

2. If X = Σ∗ and � is the subsequence relation, then Y is regular. (This follows easily from (1)
and the fact that (Σ∗,�) is a wqo, which we show below in Lemma A.4.)

34

Proof: For x, y ∈ X, say that x ≡ y iff x � y and y � x. It is clear that ≡ is an equivalence
relation. Let Y = X − Y . Say that x is minimal for Y if x ∈ Y and, for all y ∈ Y , if y � x then
x � y. Clearly, if x is minimal for Y and x ≡ y, then y is minimal for Y . Let M ⊆ Y be the
set of all minimal elements of Y , and let C ⊆M be some set obtained by choosing arbitrarily one
element from each ≡-equivalence class in M . The following facts are straightforward:

• C is an antichain, hence C is finite.

• For any x ∈ X, we have x ∈ Y if and only if there is a z ∈ C with z � x.

Setting C = {z1, . . . , zk} shows Part (1) of the lemma.

We will show that (Σ∗,�) is a wqo, where � is the subsequence ordering on Σ∗. Since
SUBSEQ(A) is closed under this ordering, Lemma A.3 will yield that SUBSEQ(A) is regular.

A.2 SUBSEQ is a WQO

Lemma A.4 Let � be the subsequence ordering on Σ∗. (Σ∗,�) is a wqo.

Proof: Assume not. Then there exist (perhaps many) sequences x1, x2, . . . from Σ∗ such that
xi 6� xj for all i < j. We call these bad sequences.

We define a particular bad sequence y1, y2, . . . inductively.

1. y1 is the shortest element that appears as the first element of any bad sequence. (If there is
a tie then pick one of them arbitrarily).

2. yn+1 is the shortest element that appears as the (n+ 1)st element of any bad sequence that
began y1, . . . , yn. (If there is a tie then pick one of them arbitrarily).

Let yi = y′iσi where σi ∈ Σ. (Note that none of the yi are empty since the empty string is a
subsequence of every string.)

Let Y ′ = {y′1, y′2, . . .}.

Claim A.5 (Y ′,�) is a wqo.

Proof: Assume not. Then there is a bad sequence of elements from Y ′. Let the bad sequence
be

y′k1
, y′k2

,

By removing finitely many elements of the sequence, we can assume that

k1 < k2, k3, k4,

Consider the sequence
SEQ = y1, y2, . . . , yk1−1, y

′
k1
, y′k2

, y′k3
. . . .

We show that SEQ is a bad sequence by considering three possible cases.

Case 1: There exists i < j < k1 such that yi � yj . This cannot happen since y1, y2, . . . is a bad
sequence.

35

Case 2: There exists i < j such that y′ki
� y′kj

. This cannot happen since y′k1
, y′k2

, . . . is a bad
sequence by assumption.

Case 3: There exists i ≤ k1 − 1 and a j ≥ 1 such that yi � y′kj
. Then yi � yk′j

σkj
= ykj

. Since
i < kj this cannot happen since y1, y2, . . . is a bad sequence.

Consider the finite sequence
y1, y2, . . . , yk1−1.

yk1 is defined as the shortest string such that there is a bad sequence that begins

y1, y2, . . . , yk1−1, yk1 .

However, we just showed that

SEQ = y1, y2, . . . , yk1−1, y
′
k1
, y′k2

, y′k3
. . .

is a bad sequence. Note that SEQ begins with y1, . . . , yk1−1 but its next element is y′k1
, and that

|y′k1
| < |yk1 |. This contradicts the definition of yk1 .

So we know that Y ′ is a wqo.
Look at the sequence y1, y2,
Since Σ is finite, there exists a σ ∈ Σ such that there are an infinite number of i with yi = y′iσ.

Let them be, in order,
ym1 , ym2 , . . . which is y′m1

σ, y′m2
σ,

Now consider the sequence y′m1
, y′m2

, . . . of elements from Y ′.
Since Y ′ is a wqo there exists mi < mj such that y′mi

� y′mj
. Note that y′mi

σ � y′mj
σ, so

ymi � ymj . This contradicts y1, y2, . . . being a bad sequence.

Theorem A.6 (Higman [19]) If A ⊆ Σ∗, then SUBSEQ(A) is regular.

Proof: Let � be the subsequence ordering. The language SUBSEQ(A) is closed under �. By
Lemma A.4, � is a wqo. By Lemma A.3, there exists z1, . . . , zk ∈ Σ∗ such that

SUBSEQ(A) = {x : z1 6� x ∧ · · · ∧ zk 6� x}.

This set is clearly regular.

B A Proof Without Well Quasi-Orderings

The proof of Theorem A.6 in the last section, derived from Higman’s paper [19], makes use of the
theory of well quasi-orders. The current proof is completely different and makes no mention of well
quasi-orders. Although it is no more constructive than the previous proof, the new proof provides
a different insight into the relationships between A and SUBSEQ(A) for various A.

Clearly, SUBSEQ(SUBSEQ(A)) = SUBSEQ(A) for any A, since � is transitive. We’ll say that
A is �-closed if A = SUBSEQ(A). So Theorem A.6 is equivalent to the statement that if a language
A is �-closed then A is regular. The remainder of this appendix is to prove Theorem A.6 directly,
without recourse to well quasi-orders.

36

B.1 Intuition Behind the Proof

In this section, we fix A to be any �-closed language.
As a warm-up to the general proof, we’ll describe how it works in the special cases of unary

languages and binary languages.
The case of unary languages (where Σ = { 0 }, say) is particularly easy. If A ⊆ 0∗ is nonempty

and �-closed, then either

1. A = 0∗, or else

2. A is finite, in which case there is an n ≥ 0 such that A = (0 ∪ λ)n.

Case 1 holds if and only if A is infinite. In either case, A is obviously regular.
Now let’s look at the binary case, where Σ = { 0, 1 }. Suppose A ⊆ Σ∗ is �-closed. More

generally, suppose that A ⊆ R for some regular expression R. We reduce the problem of showing
that A is regular to the problem of showing that some set B ⊆ S is regular, where S is a regular
expression that is a “refinement” of R. We do this repeatedly, successively refining the regular
expression, until we end up with a regular expression whose language is finite, whence the language
in question is also finite and thus regular.

We start off as in the unary case. We first ask whether A = Σ∗, and, if not, what information
that gives us. If A = Σ∗, then obviously (01)i ∈ A for infinitely many i ≥ 0. A crucial observation
is that the converse of this also holds: If (01)i ∈ A for infinitely many i, then A = Σ∗. Why?
Because every string x ∈ Σ∗ is a subsequence of (01)i for all i ≥ |x|, and in addition, A is �-closed.

If A = Σ∗, then we’re done, so suppose A 6= Σ∗. Then (01)i ∈ A for only finitely many i. This
means that there is a fixed finite n such that every string in A has at most n many occurrences of
the substring 01. With a bit of thought, it can be seen that this is equivalent to

A ⊆ 1∗(0∗1∗)n0∗.

Let R = 1∗(0∗1∗)n0∗ be the regular expression on the right-hand side. R is our first refinement.
We can partition R into a finite number of pairwise disjoint regular sets

R = R0 ∪R1 ∪ · · · ∪Rn,

where for each j,
Rj = 1∗(0∗011∗)j0∗

is the set of strings x in which 01 occurs exactly j times.
It now suffices to show that the set Aj = A∩Rj is regular for each j ≤ n. Fix j. Rj is our second

refinement. Again we ask whether Aj = Rj , and if not, what information that gives us. Obviously,
if A = Rj , then for infinitely many k we have 1k(0k1k)j0k ∈ A. The converse of this is also true:
For each x ∈ Rj , there are unique natural numbers k0, k1, . . . , k2j+1 such that k1, . . . , k2j > 0 and

x = 1k00k1 · · · 1k2j 0k2j+1 .

Clearly, x � 1k(0k1k)j0k for any k ≥ max(k0, . . . , k2j+1). Thus if 1k(0k1k)j0k ∈ A for infinitely
many k, then x is a subsequence of some string in A, and hence x ∈ A. Since x is an arbitrary
element of Rj , this gives Rj ⊆ A and thus Aj = Rj .

37

Now suppose Aj 6= Rj . Then 1k(0k1k)j0k ∈ A for only finitely many k. This means that there
is some fixed finite m such that if x is any string in Aj and x = 1k00k1 · · · 1k2j 0k2j+1 as above, then
ki ≤ m for at least one i ∈ { 0, . . . , 2j + 1 }. Therefore, we have

Aj ⊆ S0 ∪ S1 ∪ · · · ∪ S2j+1,

where

S0 = Rj ∩ (1 ∪ λ)m0∗1∗ · · · 1∗0∗,
S1 = Rj ∩ 1∗(0 ∪ λ)m1∗ · · · 1∗0∗,
S2 = Rj ∩ 1∗0∗(1 ∪ λ)m · · · 1∗0∗,

...
S2j = Rj ∩ 1∗0∗1∗ · · · (1 ∪ λ)m0∗,

S2j+1 = Rj ∩ 1∗0∗1∗ · · · 1∗(0 ∪ λ)m.

That is, Si is the set of all strings x ∈ Rj where the corresponding ki is at most m.
So now it suffices to show that the set Aj,i = Aj ∩ Si is regular for each i ≤ 2j + 1. Fix i. For

example, suppose i = 2j + 1. The regular expression S2j+1 is our third refinement. Then we have

S2j+1 = 1∗00∗11∗ · · · 11∗(0 ∪ λ)m = T0 ∪ T1 ∪ · · · ∪ Tm,

where for each ` ≤ m,
T` = 1∗00∗11∗ · · · 11∗0`.

So it suffices to show that the set Aj,i,` = Aj,i ∩ T` is regular for each ` ≤ m. (The situation is
similar for values of i other than 2j + 1.)

Fix ` ≤ m. Following our routine, we ask whether Aj,i,` = T`, and, if not, what information do
we get. Now just like before, if there are infinitely many k such that 1k(0k1k)0`, then Aj,i,` = T`

and we are done. Otherwise, we proceed with Aj,i,` in the same manner as we did above with Aj ,
except that now we have one fewer ki values to worry about, so we are making progress.

If we continue on in this way, the number of ki values we need to check for boundedness will
decrease, and we will eventually get to the point where we have some set Aj,i,`,... ⊆ S, where S
is a regular expression whose language is finite, and so Aj,i,`,... must be regular. This ends the
refinement process.

The general proof for any alphabet, which we now give, uses this idea of successive refinements.
An important aspect of the proof is that the refinement relation that we define on our regular
expressions is well-founded, and so every succession of refinements must end eventually.

B.2 Preliminaries

We let N = ω = { 0, 1, 2, . . . } be the set of natural numbers. We will assume WLOG that all
symbols are elements of N and that all alphabets are finite, nonempty subsets of N. We can also
assume WLOG that all languages are nonempty.

38

Definition B.1 For any alphabet Σ = {n1 < · · · < nk }, we define the canonical string for Σ,

σΣ := n1 · · ·nk,

the concatenation of all symbols of Σ in increasing order. If w ∈ Σ∗, we define the number

`Σ(w) := max{n ∈ N : (σΣ)n � w }.

Given a string x = x1 · · ·xm ∈ Σ∗, where m ≤ n, we can map each xi into the i’th copy of σΣ

within the string (σΣ)n. Thus we have the following observation:

Observation B.2 Every string in Σ∗ of length at most n is a subsequence of (σΣ)n. Thus for any
string w and x ∈ Σ∗, if |x| ≤ `Σ(w), then x � w.

Our regular expressions (regexps) are built from the atomic regexps λ and a ∈ N using union,
concatenation, and Kleene closure in the standard way (we omit ∅ as a regexp since all our languages
are nonempty). For regexp r, we let L(r) denote the language of r. We consider regexps as syntactic
objects, distinct from their corresponding languages. So for regexps r and s, by saying that r = s
we mean that r and s are syntactically identical, not just that L(r) = L(s). For any alphabet
Σ = {n1, . . . , nk } ⊆ N, we let Σ also denote the regexp n1 ∪ · · · ∪ nk as usual, and in keeping
with our view of regexps as syntactic objects, we will hereafter be more precise and say, e.g.,
“A ⊆ L(Σ∗)” rather than “A ⊆ Σ∗.”

Definition B.3 A regexp r is primitive syntactically �-closed (PSC) if r is one of the following
two types:

Bounded: r = a ∪ λ for some a ∈ N;

Unbounded: r = Σ∗ for some alphabet Σ.

The rank of such an r is defined as

rank(r) :=

{
0 if r is bounded,
|Σ| if r = Σ∗.

Definition B.4 A regexp R is syntactically �-closed (SC) if R = r1 · · · rk, where k ≥ 0 and each
ri is PSC. For the k = 0 case, we define R := λ by convention. If w is a string, we define an
R-partition of w to be a list 〈w1, . . . , wk〉 of strings such that w1 · · ·wk = w and wi ∈ L(ri) for each
1 ≤ i ≤ k. We call wi the ith component of the R-partition.

Observation B.5 If regexp R is SC, then L(R) is �-closed.

Observation B.6 For SC R and string w, w ∈ L(R) iff some R-partition of w exists.

39

Definition B.7 Let r = Σ∗ be an unbounded PSC regexp. We define pref(r), the primitive
refinement of r, as follows: if Σ = { a } for some a ∈ N, then let pref(r) be the bounded regexp
a ∪ λ; otherwise, if Σ = {n1 < n2 < · · · < nk } for some k ≥ 2, then we let

pref(r) := (Σ− {n1 })∗(Σ− {n2 })∗ · · · (Σ− {nk })∗. (2)

In the definition above, note that pref(r) is SC although not necessarily PSC. Also note that
L((pref(r))∗) = L(r). This leads to the following definition, analogous to Definition B.1:

Definition B.8 Let r be an unbounded PSC regexp, and let w ∈ L(r) be a string. Define

mr(w) := min{n ∈ N : w ∈ L((pref(r))n) }.

There is a nice connection between Definitions B.1 and B.8, given by the following Lemma:

Lemma B.9 For any unbounded PSC regexp r = Σ∗ and any string w ∈ L(r),

mr(w) =

{
`Σ(w) if |Σ| = 1,
`Σ(w) + 1 if |Σ| ≥ 2.

Proof: First, if |Σ| = 1, then Σ = { a } for some a ∈ N, and so pref(r) = a ∪ λ, and σΣ = a.
Then clearly,

mr(w) = |w| = `Σ(w).

Second, we suppose that Σ = {n1 < · · · < nk } with k ≥ 2. We then have σΣ = n1 · · ·nk, and
pref(r) = Σ∗1 · · ·Σ∗k from (2), where we set Σi = Σ − {ni } for 1 ≤ i ≤ k. Let m = mr(w). We
want to show that m = `Σ(w) + 1. By Definition B.8, we have w ∈ L((pref(r))m), and so by
Observation B.6 there is some (pref(r))m-partition

P = 〈w11, . . . w1k, w21, . . . , w2k, . . . , wm1, . . . , wmk〉

of w. Owing to the structure of (pref(r))m, we know that each wij ∈ L(Σ∗j).
Suppose (σΣ)` � w for some ` ≥ 0. We show first by the pigeonhole principle that ` < m, and

hence m ≥ `Σ(w)+1. Since (σΣ)` � w and |(σΣ)`| = `k, there is some monotone nondecreasing map
p : { 1, . . . , `k } → { 1, . . . ,mk } such that the tth symbol of (σΣ)` occurs in the p(t)th component of
P . Now we claim that p(t) 6= t for all 1 ≤ t ≤ `k, which can be seen as follows: writing t = qk + s
for some unique q and s where 1 ≤ s ≤ k, we have that the tth symbol of (σΣ)` is ns, but the tth

component of P is w(q+1)s ∈ L(Σ∗s), and ns /∈ Σs. Thus the tth symbol in (σΣ)` does not occur in
the tth component of P , and so t 6= p(t). Now it follows from the monotonicity of p that p(t) > t
for all t. In particular, `k < p(`k) ≤ mk, and so ` < m. This shows that m ≥ `Σ(w) + 1.

We next show that m ≤ `Σ(w) + 1. We build a particular (pref(r))m-partition

Pgreedy = 〈w11, . . . , w1k, w21, . . . , w2k, . . . , wm1, . . . , wmk〉

of w by a greedy algorithm that defines each successive component of Pgreedy to be as long as
possible, given the previous components. For the purposes of the algorithm, we define, for integers
1 ≤ i ≤ m and 1 ≤ j ≤ k,

(i, j)′ =

{
(i, j + 1) if j < k,
(i+ 1, 1) otherwise.

40

This is the successor operation in the lexicographical ordering on the pairs (i, j) with 1 ≤ j ≤ k
and 1 ≤ i ≤ m:

(i1, j1) < (i2, j2) if either i1 < i2 or i1 = i2 and j1 < j2.

The idea is that we “match” the longest prefix of w that we can by the regexp Σ∗j for various j.

(i, j)← (1, 1).
While i ≤ m do

Let wij be the longest prefix of w that is in Σ∗j .
Remove prefix wij from w.
(i, j)← (i, j)′.

End while

Since some (pref(r))m-partition of w exists, this algorithm will clearly also produce a (pref(r))m-
partition of w, i.e., the while-loop terminates with w = λ. Furthermore, w does not become λ
until the end of the (m, 1)-iteration of the loop at the earliest; otherwise, the algorithm would
produce a (pref(r))m−1-partition of w, contradicting the minimality of m. Finally, for all (i, j)
lexicographically between (1, 1) and (m − 1, k) inclusive, just after we remove wij , the remaining
string w starts with nj . This follows immediately from the greediness (maximum length) of the
choice of wij . This implies that the next component after wij starts with nj . Therefore, we have
σΣ is a subsequence of each of the m− 1 strings

w12w13w14 · · ·w21, w22w23w24 · · ·w31, . . . , w(m−1)2w(m−1)3w(m−1)4 · · ·wm1,

and so (σΣ)m−1 � w, which proves that m ≤ `Σ(w) + 1.

Definition B.10 Let R = r1 · · · rk and S be two SC regexps, where each ri is PSC. We say that
S is a one-step refinement of R if S results from either

• removing some bounded ri from R, or

• replacing some unbounded ri in R by (pref(ri))n for some n ∈ N.

We say that S is a refinement of R (and write S < R) if S results from R through a sequence of
one or more one-step refinements.

One may note that if S < R, then L(S) ⊆ L(R), although it is not important to the main proof.

Lemma B.11 The relation < of Definition B.10 is a well-founded partial order on the set of SC
regexps (of height at most ωω).

Proof: Let R = r1 · · · rk be an SC regexp, and let e1 ≥ e2 ≥ · · · ≥ ek be the ranks of all the ri,
arranged in nonincreasing order, counting duplicates. Define the ordinal

ord(R) := ωe1 + ωe2 + · · ·+ ωek ,

41

which is in Cantor Normal Form and is always less than ωω. If R = λ, then ord(R) := 0 by
convention. Let S be an SC regexp. Then it is clear that S < R implies ord(S) < ord(R), because
the ord of any one-step refinement of R results from either removing some addend ω0 = 1 or
replacing some addend ωe for some positive e (the rightmost with exponent e) in the ordinal sum
of ord(R) with the ordinal ωe−1 · n, for some n < ω, resulting in a strictly smaller ordinal. From
this the lemma follows.

B.3 Main Proofs

The following lemma is key to proving Theorem A.6.

Lemma B.12 (Key Lemma) Let R = r1 · · · rk be a SC regexp where at least one of the ri is
unbounded. Suppose A ⊆ L(R) is �-closed. Then either

1. A = L(R) or

2. there exist refinements S1, . . . , Sk < R such that A ⊆
⋃k

i=1 L(Si).

Before proving Lemma B.12, we use it to prove the next lemma, from which Theorem A.6
follows immediately.

Lemma B.13 Let R = r1 · · · rk be any SC regexp. If A ⊆ L(R) and A is �-closed, then A is
regular.

Proof: We proceed by induction on the refinement relation on SC regexps. Fix R = r1 · · · rk,
and suppose that A ⊆ L(R) is �-closed. If all of the ri are bounded, then L(R) is finite, and hence
A is regular. Now assume that at least one ri is unbounded and that the statement of the lemma
holds for all S < R. If A = L(R), then A is certainly regular, since R is a regexp. If A 6= L(R),
then by Lemma B.12 there are S1, . . . , Sk < R with A ⊆

⋃k
i=1 L(Si). Each set A∩L(Si) is �-closed

(being the intersection of two �-closed languages) and hence regular by the inductive hypothesis.
But then,

A = A ∩
k⋃

i=1

L(Si) =
k⋃

i=1

(A ∩ L(Si)),

and so A is regular.

Corollary B.14 (equivalent to Theorem A.6) Let A ⊆ L(Σ∗) be any language. If A is �-
closed, then A is regular.

Proof: Apply Lemma B.13 with R = Σ∗.

Proof of Lemma B.12: Fix R = r1 · · · rk and A as in the statement of the lemma. Whether
Case 1 or Case 2 holds hinges on whether or not a certain quantity associated with each string in
L(R) is unbounded when taken over all strings in A.

For any string w ∈ L(R) and any R-partition P = 〈w1, . . . , wk〉 of w, define

Mbd
P (w) := min

i: ri is bounded
|wi|, (3)

42

and define
Munbd

P (w) := min
i: ri is unbounded

mri(wi). (4)

In (3), for any bounded ri, we have wi ∈ L(ri) and thus |wi| ∈ { 0, 1 }. (If there is no bounded ri,
we’ll take the minimum to be 1 by default.) Thus we have

Mbd
P (w) =

{
0 if (∃i)[ri is bounded and wi = λ],
1 otherwise.

Now define
M(w) := max

P : P is an R-partition of w
Mbd

P (w) ·Munbd
P (w), (5)

and note that

M(w) =

{
maxP M

unbd
P (w) if (∃P)[Mbd

P (w) = 1],
0 otherwise.

Finally, define
M(A) := {M(w) : w ∈ A }. (6)

We will show that if M(A) is infinite, then Case 1 of the lemma holds. Otherwise, Case 2 holds.
Suppose that M(A) is infinite. We already have A ⊆ L(R) by assumption, so we show that

L(R) ⊆ A. Let x ∈ L(R) be arbitrary. Then since M(A) is infinite, there is a w ∈ A such that
|x| < M(w). For this w there is an R-partition P = 〈w1, . . . , wk〉 of w such that Mbd

P (w) = 1 and
Munbd

P (w) > |x|. Let 〈x1, . . . , xk〉 be any R-partition of x. We then have the following facts:

• For each i where ri is bounded, we have |wi| = 1, since Mbd
P (w) = 1. Hence, xi � wi because

both xi and wi are in L(ri) = L(a ∪ λ) for some a ∈ N.

• For each i where ri is unbounded, we have |x| ≤ mri(wi) − 1, because |x| < Munbd
P (w).

Writing ri = Γ∗ for some alphabet Γ, we see that mri(wi) − 1 ≤ `Γ(wi) by Lemma B.9. We
then have |xi| ≤ |x| ≤ `Γ(wi), and so xi � wi by Observation B.2.

So in any case, we have xi � wi for all 1 ≤ i ≤ k. Thus x � w. Since w ∈ A and A is �-closed,
we have x ∈ A. Since x ∈ L(R) was arbitrary, this proves that A = L(R), which is Case 1 of the
lemma.

Now suppose that M(A) is finite. This means that there is a finite bound B such that M(w) ≤ B
for all w ∈ A. So for any w ∈ A and any R-partition P = 〈w1, . . . , wk〉 of w, either Mbd

P (w) = 0
or Munbd

P (w) ≤ B. Suppose first that Mbd
P (w) = 0. Then there is some i where ri is bounded

and wi = λ. Let Si be the one-step refinement of R obtained by removing ri from R. Then
clearly, w ∈ L(Si). Now suppose Munbd

P (w) ≤ B, so that there is some unbounded rj such that
mrj (wj) ≤ B. This means that wj ∈ L((pref(rj))B) by Definition B.8. Let Sj be the one-step
refinement obtained from R by replacing rj with (pref(rj))B. Then clearly again, w ∈ L(Sj). In
general, we define, for all 1 ≤ i ≤ k,

Si =

{
r1 · · · ri−1ri+1 · · · rk if ri is bounded,
r1 · · · ri−1(pref(ri))Bri+1 · · · rk if ri is unbounded.

We have shown that there is always an i for which w ∈ L(Si). Since w ∈ A was arbitrary, Case 2
of the lemma holds.

43

Remark. We know that Theorem A.6 cannot be made effective, so it is worth while to pin-
point the noncomputability in the current proof. If we are trying to find a regular expression for
SUBSEQ(A), the crucial part of the task is in determining whether or not the set M(A) of (6) is
finite, and if so, finding an upper bound B for it. (The rest of the task is effective.) The function
w 7→ M(w) depends implicitly on the underlying SC regexp R, and is computable uniformly in w
and R. This means, for example, that if we have a c.e. index for A, we can effectively find a c.e.
index for M(A), and so determining whether or not M(A) is finite can be done with a single query
to ∅′′. (If M(A) is finite, then finding B can be done by making multiple queries to ∅′.) We may
have to repeat this whole process some finite number of times to find refinements of various regular
expressions. We know from Corollary 4.10 that we cannot improve on this.

Acknowledgments

We thank Walid Gomma for proofreading and helpful comments beyond the call of duty. We also
thank two anonymous referees for suggestions that strengthened results in Sections 4, 8, and 9.

References

[1] R. Beigel. Query-Limited Reducibilities. Ph.D. thesis, Stanford University, 1987. Also available
as Report No. STAN-CS-88–1221.

[2] R. Beigel. Unbounded searching algorithms. SIAM Journal on Computing, 19(3):522–537,
June 1990.

[3] R. Beigel and W. Gasarch. On the complexity of finding the chromatic number of a recursive
graph II: The unbounded case. Annals of Pure and Applied Logic, 45(3):227–246, Dec. 1989.

[4] R. Beigel, W. Gasarch, J. Gill, and J. Owings. Terse, Superterse, and Verbose sets. Information
and Computation, 103(1):68–85, Mar. 1993.

[5] J. L. Bentley and A. C.-C. Yao. An almost optimal algorithm for unbounded searching. Inf.
Process. Lett., 5(3):82–87, Aug. 1976.

[6] L. Blum and M. Blum. Towards a mathematical theory of inductive inference. Information
and Computation, 28:125–155, 1975.

[7] J. Case and C. H. Smith. Comparison of identification criteria for machine inductive inference.
Theoretical Computer Science, 25:193–220, 1983.

[8] Y. L. Ershov, S. S. Goncharov, A. Nerode, and J. B. Remmel, editors. Handbook of Recursive
Mathematics. Elsevier North-Holland, Inc., New York, 1998. Comes in two volumes. Volume
1 is Recursive Model Theory, Volume 2 is Recursive Algebra, Analysis, and Combinatorics.

[9] A. F. Fahmy and R. Roos. Efficient learning of real time one-counter automata. In Proceedings
of the 6th International Workshop on Algorithmic Learning Theory ALT’95. LNCS 997:25–40,
Springer-Verlag, 1995.

44

[10] S. Fenner and W. Gasarch. The complexity of learning SUBSEQ(A). In Proceedings of the
17th International Conference on Algorithmic Learning Theory. LNAI 4264:109–123, Springer-
Verlag, 2006. Journal version in preparation.

[11] P. C. Fischer. Turing machines with restricted memory access. Information and Control,
9:364–379, 1966.

[12] P. C. Fischer, A. R. Meyer, and A. L. Rosenberg. Counter machines and counter languages.
Mathematical Systems Theory, 2(3):265–283, 1968.

[13] W. Gasarch and K. S. Guimarães. Binary search and recursive graph problems. Theoretical
Computer Science, 181:119–139, 1997.

[14] W. Gasarch and G. Martin. Bounded Queries in Recursion Theory. Progress in Computer
Science and Applied Logic. Birkhäuser, Boston, 1999.

[15] E. M. Gold. Language identification in the limit. Information and Computation, 10(10):447–
474, 1967.

[16] J. Hartmanis. Context-free languages and Turing machine computations. In Proceedings of
Symposia in Applied Mathematics. Mathematical aspects of computer science. (J. T. Schwartz,
ed.) 19:42–51, American Mathematical Society, Providence, RI, 1967.

[17] J. Hartmanis. On the succinctness of different representations of languages. SIAM Journal on
Computing, 9, 1980.

[18] L. Hay. On the recursion-theoretic complexity of relative succinctness of representations of
languages. Information and Control, 52, 1982.

[19] A. G. Higman. Ordering by divisibility in abstract algebras. Proc. of the London Math Society,
3:326–336, 1952.

[20] G. Metakides and A. Nerode. Effective content of field theory. Annals of Mathematical Logic,
17:289–320, 1979.

[21] M. L. Minsky. Recursive unsolvability of Post’s Problem of “Tag.” Annals of Mathematics,
74(3):437–453, 1961.

[22] A. A. Muchnik. On strong and weak reducibility of algorithmic problems. Sibirskii Matem-
aticheskii Zhurnal, 4:1328–1341, 1963. In Russian.

[23] S. G. Simpson. Subsystems of Second Order Arithmetic. Springer-Verlag, 1999. Perspectives
in mathematical logic series.

[24] S. G. Simpson, editor. Reverse Mathematics 2001. Association of Symbolic Logic, 2005.
Perspectives in mathematical logic series.

[25] M. Sipser. Introduction to the Theory of Computation (2nd Ed.). Course Technology, Inc.,
2005.

[26] R. I. Soare. Recursively Enumerable Sets and Degrees. Perspectives in Mathematical Logic.
Springer-Verlag, Berlin, 1987.

45

[27] R. I. Soare. Computability and recursion. Bulletin of Symbolic Logic, 27, 1996.

[28] L. G. Valiant and M. S. Paterson. Deterministic one-counter automata. Journal of Computer
and System Sciences, 10:340–350, 1975.

[29] J. van Leeuwen. Effective constructions in well-partially-ordered free monoids. Discrete Math-
ematics, 21:237–252, 1978.

46

