
Implementing WS1S via Finite Automata

James Glenn∗

Univ. of Maryland
William Gasarch†

Univ. of Maryland

Abstract

It has long been known that WS1Sis decidable through the use of finite automata. However,
since the worst case running time has been proven to grow extremely quickly, few have explored
the implementation of the algorithm. In this paper we describe some of the points of interest
that have come up while coding and running the algorithm. These points include the data
structures used as wekk as the special properties of the automata, which we can exploit to
perform minimization very quickly in certain cases. We also present some data that enable us
to gain insight into how the algorithm performs in the average case, both on random inputs ans
on inputs that come from the use of Presburger Arithmetic (which can be converted to WS1S)
in compiler optimization.

1 Introduction

1.1 Definitions

1.1.1 WS1S

The language LS1S is the second-order predicate calculus ranging over the natural numbers, with
variables x1, X1, x2, X2, . . . (to represent numbers and sets of numbers), relation symbols < and ∈,
and the single function symbol s. The relation symbols will be interpreted in the natural way, and
the function symbol s will be interpreted as the successor function, with sn(x) written as x + n.
Other notable relations can be expressed in this language, for example equality (x = n becomes
¬(x < n ∨ n < x), while X = S becomes (∀z)(z ∈ X ⇐⇒ z ∈ S). We now have atomic formulas
of the following forms:

(1) c1 < c2

(2) c1 < x1 + c2

(3) x1 + c1 < c2

(4) x1 + c1 < x2 + c2

(5) c1 ∈ S

(6) x1 + c1 ∈ X1

∗Dept. of Computer Science, Univ. of MD., College Park, MD 20742, U.S.A. (email: glennj@cs.umd.edu).
†Dept. of C.S. and Inst. for Adv. Comp. Stud., Univ. of MD., College Park, MD 20742, U.S.A. Supported in

part by NSF grants CCR-8803641 and CCR-9020079 (email: gasarch@cs.umd.edu).

1

(7) x1 + c1 ∈ S

(8) x1 + c1 ∈ X1

where c1 and c2 are natural numbers, x1 and x2 are scalar variables, X1 is a finite set variable, and
S is some constant finite set.

Note that formulas of form (1) can be evaluated with no difficulty, and that those of form (5)
can be rewritten in terms of = (and hence <):

x1 ∈ {c1, . . . , cn} ⇐⇒ (x1 = c1 ∨ · · · ∨ x1 = cn),

so we will not concern ourselves with those forms; we assume, without loss of generality, that
formulas are built from atomic formulas of forms (2), (3), (5), (6), (7), and (8). Our procedure
then works on sentences such as the following:

∃x∃y(x < 4 ∧ y < 5)
∀x∀y(x + 1 < y → ∃z(x < z ∧ z < y))
∀X∃Y ∀z(¬(z ∈ X) ∨ (z + 1 ∈ Y))

∀x∃y(y < x)
∃X∃y(y ∈ X ∧ ∀z(z ∈ X → z + 1 ∈ X))

∃X∀y(y ∈ X).

The set WS1S is the set of sentences of LS1S which are true under the standard interpretation,
with quantifiers ranging over natural numbers and finite sets of natural numbers. Hence, of the
above sentences, the first three are in WS1S but the last three are not.

1.1.2 S2S

The language LS2S is the second-order predicate calculus ranging over words of {0, 1}∗, with vari-
ables as for LS1S , relations prefix, <, and ∈, and two functions s0 and s1. Now < refers to the
standard lexicographical ordering of {0, 1}∗, x1prefix x2 should be read “x1 is a prefix of x2”, and
∈ represents set membership as it did in LS1S . The two functions are thought of as concatenation
operators, with s0(w) = w0 and s1(w) = w1. S2S is the set of true sentences of LS2S , and is
decidable through the use of automata on infinite trees [6].

1.2 Motivation

Hilbert desired a procedure to decide all mathematics. In light of Gödel’s Incompleteness Theorem,
that is of course impossible. Still, we can ask whether it is reasonable to expect computers to decide
those areas of mathematics to which they can be applied. In particular there is a hierarchy (in
terms of expressibility) of theories from WS1S to S2S which are decidable through the use of
various forms of automata. S2S could have been relevant to descriptive set theory: there is a
theorem in that area that can be phrased in LS2S . As it is, humans proved that theorem over a
decade before Rabin showed that S2S is decidable, but if the order of events had been different,
we could have implemented the decision procedure (which no one has yet done), input the LS2S

sentence, and waited for the computer to tell us whether or not it was true. However, we most
likely would be waiting for the answer still: even WS1S, the weakest theory in the hierarchy, has
a provably terrible worst case running time.

2

Because the decision procedure for WS1S has such a horrible worst-case, study of its imple-
mentation has been less than aggressive. Any issues, such as performance or data structure issues,
that may be encountered during implementation have been left unknown and undealt with. We
have implemented the decision procedure, and in the process we have come across many problems
that are worth investigation. One problem that we were forced to deal with is how to keep the size
of our automata from growing too fast, and how to do so efficiently. This led us to employ two
new strategies for minimization that rely on the structure of the automata we build. One of these
methods is a new algorithm that minimizes certain automata in linear time.

We also hope to show whether or not the decision procedure is as slow in practice as the worst
case would lead us to believe. One difficulty with this hope is the notion of “in practice”. As our
“practical” input we shall use both random data and data from real world applications. The latter
is possible because we now have several inputs from the use of Presburger Arithmetic by compilers
that solve dependency problems to transform parallel loops. It can be shown that any Presburger
formula can be converted to a formula in LS1S . If we show that the running time on practical
inputs is remotely near the worst case then certainly there is no hope for a practical procedure to
decide S2S, and even a modified version of Hilbert’s program has practically no chance of success.

2 Decidability of WS1S

Büchi showed in 1960 that WS1S is decidable through the use of finite automata [1]. However, the
cost of the decision procedure can be very high. In fact, it has been proven that for all sufficiently
large n, there is a sentence of length n that requires time proportional to tε log2 n(n), where tk is the
tower function with height k [4]. We present a full proof of decidability again in order to indicate
where performance issues arise.

The decision procedure for WS1S works by associating with each n-ary formula f ∈ LS1S a
deterministic finite automaton M that operates on an n-track tape. Naturally there will be more
than one such automaton, and we will call the set of such automata DFA(f) with the idea being
that if M ∈ DFA(f) then M accepts only those tapes that are solutions to f . To make sense out
of that last sentence we must define what we mean by a tape being a solution to a formula. Since
formulas work on n-tuples, not n-track tapes, we need a way of translating from one to the other.

The encoding of a set X has a one in place n if n ∈ X and a zero otherwise. The encoding of
a natural number n is n zeros followed by a one. Note that this encoding does not assign meaning
to every tape, in particular those with digits after a one. We do, however, wish do give these tapes
meaning, and we will do so after the following definitions.

Definition 1 The empty string is denoted e.

Definition 2 The symbol on a zero track tape will be denoted ⊥.

Definition 3 Pfinite(N) is the set of finite subsets of N .

Definition 4 Σ0 = {⊥}, Σ1 = {0, 1}, and in general Σn = {0, 1}n. These are the alphabets of our
automata. We will write these symbols as stacks or column or row vectors as is convenient.

Definition 5 Zero(f) is a symbol we can add to the end of a tape without changing its meaning
(as far as f is concerned). If a track represents a natural number, we can add 1’s to it without
changing the meaning, and if a track represents a set then we can add 0’s to it safely. So if f is a

formula on triples of N then Zero(f) =
1
1
1
. If f has two varibles, the first a set variable and the

second a natural number variable, then Zero(f) = 0
1 .

3

1
1

0
0

&%
'$
&%
'$

0 0 1 1
0 1 0 1

&%
'$

&%
'$

&%
'$��

�>

Z
Z

ZZ~

@@
��

0 0 1 1
0 1 0 1

01
10

0 0 1 0

0 0 1 1 00

0 1x

y

Figure 1: An automaton in DFA(x = y) and an input it accepts.

Definition 6 Let γ, our encoding function, which maps
⋃∞

k=0(N ∪ Pfinite(N))k to
⋃∞

k=0 Σ∗
k be

defined by

(1) γ() = ⊥;

(2) γ(α) = 0α−11 if α ∈ N ;

(3) γ(α) = w0 · · ·wk where wi = 1 if i ∈ α and wi = 0 otherwise and k = maxi∈α i whenever
α ∈ Pfinite(N);

(4) for (α1, . . . , αn), n ≥ 2 write w = w1 . . . wk for γ(α1, . . . , αn−1 and u1 . . . ul for γ(αn). Extend
w or u with the approprate Zero symbol defined above so they have the same length. Then
for 1 ≤ i ≤ max{k, l} let vi =

(
wi
ui

)
(that is, vi is the element of Σn that is equal to wi in its

top n− 1 rows and has ui in its bottom row). Then let γ(α1, . . . , αn) = v1 . . . vmax{k,l}.

Definition 7 M ∈ DFA(f) if and only if

(1) M accepts w implies f(γ−1(w)) is true; and

(2) f(x̄) is true implies M accepts γ(x̄).

In the above definition of DFA(f) we must be careful since the encoding function is not onto,
and hence its inverse will not be defined for all strings w. We therefore desire an extened inverse
function defined over all of

⋃∞
k=0 Σ∗

k. This desire initially led us to a different encoding for natural
numbers. We needed to give meaning the tracks containing no 1’s. At first we decided that those
tracks would represent zero. This special case led to more complicated automata than we build
now. For example, there is a simple formula with n variables that results in an automaton with 2n

states using our original encoding. The current encoding produces a machine with only one state
(most improvements are less extreme but still substantial). Preliminary runs over a set of 1000
moderately sized, randomly generated formulas take almost two hours with the old encoding but

4

only about twenty minutes under the current encoding; we speculate that most of the improvement
is because the newer encoding leads to less nondeterminism. More motivation for extending the
inverse function will be given later.

Definition 8 Let u = u1 . . . ul ∈ {0, 1}∗. γ−1
u is defined as follows:

(1) γ−1
e (w) = () for all w ∈ Σ∗

0;

(2) γ−1
0 (w1 . . . wk) =

{
k if w1 = · · · = wk = 0
min{i− 1 | wi 6= 0} otherwise ;

(3) γ−1
1 (w1 . . . wk) = {i− 1 | wi = 1};

(4) If w1 . . . wk ∈ Σ∗
n, n ≥ 2, write wi =

 wi1

...
win

 for 1 ≤ i ≤ k and let γ−1
u (w1 . . . wk) =

(γ−1
u1

(w11 . . . wk1), . . . , γ−1
un

(w1n . . . wkn)).

Note that we had to define γ−1 as a family of functions since γ−1
0 and γ−1

1 have the same domain
but behave differently. This distinction is not important and will be omitted; we will write γ−1

whenever we mean one of the γ−1
u ’s. Finally, we offer some examples.

γ(∅) = e

γ(3) = γ({3}) = 0001
γ({4, 6}) = 0000101

γ(3, 1, {1, 2}) =
0
0

0

0
1

1

0
0

1

1
0

0

γ−1(⊥⊥⊥) = ()

γ−1
00

(
0

0

0

0

0

0

0

0

)
= (4, 4)

γ−1
10

(
0

0

0

0

0

0

0

0

)
= (∅, 4)

γ−1
110

(
0
1

1

0
0

0

1
1

1

0
1

0

)
= ({2}, {0, 2, 3}, 0)

2.1 Automata Corresponding to Atomic Formulas

We are now ready to describe how to construct an automaton corresponding to any formula f .
We will work on a formula f from inside out. That is, we will construct automata for the atomic
formulas from which f is built and combine them according to the logical connectives and quantifiers
between them.

Let n, m ∈ N and consider the formula f(x) be n < x + m. We can, without loss of generality,
assume that n ≥ m, since if n < m then f is true for all x ∈ N ; we can easily build an automaton
that accepts everything. We can also assume that m = 0 since n < x + m is equivalent to
(n−m) < x. We then build the following (nondeterministic) automaton (Figure 2) that accepts w
if and only if γ−1(w) = x and n < x.

This automaton accepts 0n+1{0, 1}∗, and it (or, more properly, its deterministic equivalent) is
in DFA(f) since if x > n then γ(x) = 0x1 = 0n+10x−n+11 which is in the language accepted by the

5

&%
'$
&%
'$

0n+1

&%
'$

-
��

0,1

Figure 2: Automaton for n < x

"!

��
��

"!

"!

"!

- - -
...

S
m

0 0 1 1
0 1 0 1

0 1
1 1

2

0 1
0 0

1 1
0 1

m ¿ 0

"!

��
��

"!

...
-

0 0 1 1
0 1 0 1

1
1

0 0
0 1

m = 0

Figure 3: Automata for y + m ∈ X

automaton. Conversely, if w is accepted by the automaton then w must begin with at least n + 1
0’s and hence γ−1(w) > n.

Now let m ∈ N and consider the formula y + m ∈ X which will be denoted f(X, y). We build
one of the following finite automata; which one depends on whether m is non-zero (Figure 3). The
first of these accepts {0

0 ∪
0
1}

∗ 1
1Σ∗

2; the second accepts {0
0 ∪

0
1}{

1
0 ∪

1
1}Σ

m
2 {

1
0 ∪

0
0}Σ

∗
2.

We could also display automata for atomic formulas of forms (3), (5), (6), (7), and (8).

2.2 Automata for Non-atomic Formulas

2.2.1 Logical Connectives

Constucting an automaton for a formula of the form f(x̄) = g(x̄) ∧ h(x̄) or f(x̄) = g(x̄) ∨ h(x̄)
is easy, but does require the use of a data structure that allows us to insert and retrieve ordered
pairs quickly. To build the automaton, we first build automata G ∈ DFA(g) and H ∈ DFA(h)
and combine them in the standard cross-product way to get an automaton F accepting either
L(G)∩L(H) or L(G)∪L(H). The proof that F ∈ DFA(f) is simple and will not be done here. Of
course, some of the states produced for F may not be reachable; it is desirable when implementing
this algorithm to ignore them altogether. By building F forward from (sG, sH) (where sG and sH

are the start states of G and H) and proceeding only to reachable states, we can achieve this goal.
This strategy requires that we are able to keep track of what states we have constructed so far; we
use an xy-tree for this purpose.

For a formula of the form f(x̄) = ¬g(x̄) we can construct G ∈ DFA(g) and make its final states
non-final and vice-versa to get F . As above, the proof that the new automaton is in DFA(f) is
simple and not expounded here.

6

2.2.2 Quantifiers

Finally, we consider formulas involving quantifiers. Let g(ᾱ, αn) be an n-ary function and let
h(ᾱ) = (∃αn)(g(ᾱ, αn)) (since we can write (∀αn)(g(ᾱ, αn)) as ¬(∃αn)(¬g(ᾱ, αn)), we can assume,
without loss of generality, that all quantifiers are existential). Let G = (K, Σn, δ, s, F) ∈ DFA(g)
and construct

H = (K, Σn−1,∆, s, F ′),

where
∆ =

{
(q, σ, q′) | δ

(
q,

σ

0

)
= q′ ∨ δ

(
q,

σ

1

)
= q′

}
and

F ′ =
{

q ∈ K | (∃w ∈ Zero(h), u ∈ Σ∗
1, f ∈ F)

((
q,

w

u

)
`∗G (f, e)

)}
(and by σ

0 we mean that symbol of Σn obtained by writing σ ∈ Σn−1 on the first n− 1 tracks and
a zero on the last; by w

u we mean that n-track tape with w on the top n − 1 tracks and u on the
last).

Claim 9 H ∈ DFA(h).

Proof. First, suppose h(ᾱ) is true. That means that there exists a αn such that g(ᾱ, αn) is true.
Since G ∈ DFA(g), G must accept γ(ᾱ, αn) = w1

u1

w2

u2
· · · wn

un
. For G to accept that string, there must

exist q0, . . . , qn ∈ K with q0 = s and qn ∈ F such that for all i, 0 < i ≤ n(
qi−1,

wi

ui

· · · wn

un

)
`G

(
qi,

wi+1
ui+1

···wn
un

)
,

from which follows (again, for 0 < i ≤ n)

δ
(
qi−1,

wi
ui

)
= qi,

(qi−1, wi, qi) ∈ ∆, and
(qi−1, wi . . . wn) `H (qi, wi+1 . . . wn)

and finally H accepts w1 . . . wn = w. But γ(ᾱ) will be some prefix of w (remember that w may have
been padded to have the same length as u). Let that prefix be w1 . . . wl; then we have wl+1, . . . , wn ∈
Zero(h). But now (q0, w1 . . . wl) `∗H (ql, e) and

(
ql,

wl+1
ul+1

)
`∗G (qn, e) where wl+1 . . . wn ∈ Zero(h)∗.

Therefore ql ∈ F ′ and hence H accepts w1 . . . wl = γ(ᾱ).
Now suppose that H accepts w = w1 . . . wn. If H accepts that string then we must have, for all

i, 0 < i ≤ n
(qi−1, wi . . . wn) `H (qi, wi+1 . . . wn)

for some states q0, . . . qn with q0 = s and qn ∈ F ′. Following this we get, for all i, 0 < i ≤ n

(qi−1, wi, qi) ∈ ∆,

(∃ui ∈ Σ1)
(
δ
(
qi+1,

wi
ui

)
= qi

)
, and(

qi−1,
wi
ui
· · · wn

un

)
`G

(
qi,

wi+1
ui+1

···wn
un

)
.

Further, since qn ∈ F ′ there must exist y ∈ Zero(h) and v ∈ Σ∗
1 such that

(
qn, y

v

)
`∗G (f, e) for

some f ∈ F . Now we have (s, w
u

y
v) `∗G (f, e), so G accepts w

u
y
v . Therefore g

(
γ−1(w

u
y
v)
)

is true.
But γ−1

(w
u

y
v

)
= (γ−1(wy), γ−1(uv)) and, since y ∈ Zero(h) γ−1(wy) = γ−1(w) it follows that

7

��
��
������

��
-.................. A B

0,1

0,1

0,1

��
��
����0 1

1 1

0 1
0 0

0 0 1 1
0 1 0 1

��
��

-.................. A B

��
��
������

��
-.................. A

0,1

0,1

AB

Figure 4: Result of Erasing a Track without Altering Final States

g(γ−1(w), γ−1(uv)) is true. So there exists an αn, namely γ−1(uv), such that g(γ−1(w), αn) is true.
In other words, h(γ−1(w)) is true.

Two things are worth noting here. First, if the domain of γ−1 had not been all of Σ∗
n we would

have run into trouble – when we do the nondeterminism modification the new automaton accepts
those strings w for which we can add a new track to get a string u accepted by G. What if the
new track had no inverse? We would be saying that f(αi1 , . . . , αin−1) is true because there is an
αin , namely garbage, such that g(αi1 , . . . , αin) is true, which is clearly not what we want. We could
have addressed this problem by generating a machine that accepts strings w such that you can add
a new track b to get a string accepted by G and b has an inverse. We chose to solve the problem
by making domain(γ−1) = Σ∗

n simply because it seemed easier to implement.
Second is the necessity of modifying the set of final states. This is best illustrated by an example

(Figure 4). The last automaton rejects e when it should accept all input. Since final state AB is
reachable from state A on input 0, we should have made A a final state too. It is easy to check
that doing so does indeed result in an automaton that accepts all input.

Now for any sentence f(x̄) we can construct the corresponding machine F . It is easy to check
whether F accepts ⊥∗ (recall that ⊥ is the symbol on tapes with zero tracks). If it does, then
f ∈ WS1S, otherwise it is not. However, it may not be easy to build the automaton corresponding
to f . For each quantifier in the formula we construct a nondeterministic automaton. Most of the
algorithms mentioned so far could be modified to work on nondeterministic automata, except for
the algorithm for ¬f . There, the input needs to be deterministic for the output to be correct. The
algorithm for converting an NFA to a DFA works in worst case O(2|K|) time, and hence for each
quantifier the size of the machine (and the time needed to create it) may increase exponentially
(this, however, should be unlikely).

3 Implementation

3.1 Internal Representation of Automata

If a formula f has n variables, our automata use an alphabet with 2n symbols. But many of the
automata we build for the subformulas of f will not use all n variables. In fact, we will often
encounter states that ignore variables that states in the same machine do not. For example, if a
machine is driven to state q by an input that has a 1 on some track representing a number, then
the transition function for q and all of q’s successors cannot depend on the symbol on that track.

8

We store the complete transition function in an array for each state, which would normally require
2n entries, but if state q ignores m tracks, then the transition function at q requires only 2n−m

units of storage.
While this space saving measure improves running time in some places (for example, if we need

to loop over all transitions from a certain state), it makes it more time consuming to compute
individual values of the transition function. When the straightforward method is used, it is easy to
find δ(q, σ) by simply treating σ as the binary representation of the index into the array holding the
transition function. With the above space improvement, we must mask out certain tracks before
converting to a number. Since the transition function is evaluated so often, it is critical that this is
done as quickly as possible, otherwise the performance of the decision procedure will be degraded
greatly. If we do the masking with elementary bitwise operations, we still end up with a number in
the range 0 to 2n−1, when what we want is a number in the range 0 to 2n−m−1. For example if σ
is 10110110 and we are interested in only the second, fourth, fifth, and eighth bits (with the most
significant bit numbered one), we mask out the neglected bits to get x0x10xx0, which we read as
simply 0100, which is the binary representation of 4, which we use as the index into our array. A
slow way to do this follows:

result := 0
value := 1
for i := 31 to 0 do

if bit i of the mask is set then
if bit i of the symbol is set then

result = result + value
end if
value := value * 2

end if
end for

We do a little precomputation and cut the number of times through the loop to four:

result := 0
value := 1
for i := 0 to 3

x := mask & 0xff // strip off the last 8 bits in the mask
y := symbol & 0xff // do the same for the symbol
add := table[x][y] * value // table[x][y] holds precomputed values for

// symbol y and mask x from the algotrithm
// above

result := result + add
value := value * 2^bits[x] // bits[x] = number of bits set in x
mask := mask / 2^8 // shift mask over to work on the next 8 bits
symbol := symbol / 2^8 // do the same for symbol

end for

Preliminary data shows that the second algorithm allows us to cut the time for our 1000 inputs
from 67 minutes to 37 minutes, an improvement of about 45 percent.

3.2 Quantifiers

In our proof of the decidability of WS1S, we mentioned the need to recompute the final states
of our machines when handling quantifiers. We actually have two options as to how to perform

9

the computation of the new final states. We can do the computation before anything else is done,
as implied above, or we can introduce the nondeterminism automaton without changing the final
states of the original machine and then carry out the alteration on the resulting machine. (This
corresponds to setting

F ′ = {q ∈ K | (∃w ∈ Zero(h), f ∈ F)((q, w) `∗H (f, e))}

in the proof above. Little of the remainder of the proof needs correction to show that this is indeed
valid.) Our preliminary data show that it is very slightly faster (the improvement is under ten
percent) to modify the set of final states before introducing the nondeterminism.

We also have the option of handling n consecutive quantifiers of the same type in one fell swoop
rather than in n discrete steps. To do so, however, one must check 2n values of the transition
function of the old machine when computing one value of the transition function at a state in the
new machine. We will present data to support the assertion that, on average, it is to our advantage
to handle quantifiers in groups (at least for the formulas we have tested so far).

Each nondeterministic machine that is created must be determinized. Profiling has confirmed
the common sense feeling that the determinization subroutine is where the algorithm spends most
of its time. We compute only those state sets that are reachable from the start state of the non-
deterministic machine, hence one of our major concerns is what Wood and Johnson call reachable-
state-set maintenance [3]. Within this problem lie at least two subproblems: that of determining
if a state set has been seen before, and that of representing the state sets.

3.2.1 Finding a state set

We have implemented two solutions to the former subproblem. State sets can be stored in either a
standard binary search tree, or in a tRIe (the latter is a binary tree structure in which the key values
are kept only in leaves; the internal structure is such that with each internal node we associate a
state of the original NFA, and all of the state sets stored below the left branch of the node will not
contain that state, while those under the right branch will). The major problem with the binary
search tree is that when we are searching for a particular set, determining which branch to take at
a certain node can easily require testing membership of several states. With a tRIe structure, we
need only test membership of one state to determine which branch to take. Our initial data show
that the tRIe is better by twenty to seventy percent, depending on which structure is used to solve
the second subproblem. (It should be noted that in practice we use a hash table to store the state
sets and only use the above structures to handle collisions.)

3.2.2 Storing a state set

The state set representation subproblem is essentially that of how to store an m-element subset of
{0, . . . , n− 1}. We have tried several approaches, summarized in the table below.

strcuture insertion membership enumeration space time
bit vector O(1) O(1) O(n) n 9.8
linked list O(1) O(m) O(m) 64m 15.2

sorted linked list O(m) O(m) O(m) 64m 10.4
binary tree O(log m) O(log m) O(m) 160m 9.6

hybrid O(log n) O(1) O(m log n) 2n to 4n 11.3 to 11.7
red-black tree O(log m) O(log m) O(m) 193m 9.9
sorted array O(log m) O(log m) O(m) 32m 9.7

10

Here space is measured in bits and times are in minutes and represent running times on our set of
1000 test inputs. Time bounds listed for insertion, membership, and enumeration are generally for
the theorectical average case (as opposed to averages we have observed in our study).

The entry labelled “hybrid” actually represents three very similar structures that are the result
of an attempt to combine the best aspects of the bit vector structure with the those of the tree
structures, and the time bounds listed are very rough. Essentially these structures consist of log n
layers of bit vectors. The bottom layer contains n bits and records for each i ∈ {0, 1, . . . , n − 1}
whether i is in the set. The next layer up contains n

2 bits recording, for i ∈ {0, 2, . . . , n − 1}, if
one of i or i + 1 is in the set. The layers proceed in this manner, with the top layer containing
one bit that records if the set is empty or not. The primary reason we constructed these structures
was to improve on the slow enumeration of the bit vector structure. However, the constant factors
asscociated with the bit vector’s enumeration procedure are apparently so small that we have not
seen improved performance on the size automata we have tested so far. We have hope that, on
larger automata, these hybrids’ performance will meet or beat that of the bit vector.

Red-black trees are an “approximately balanced” binary tree structure. We decided to imple-
ment them because we felt the performance of the standard binary tree structure may have been
degraded by the order in which the insertions are performed. We suspected that the insertions
frequently were done almost in order, which would result in long, skinny trees and near worst-case
(linear) running times. Apparently the overhead that comes with balanced trees negated any gains
they could have made.

The sorted array structure takes advantage of the fact that all the insertions are done before
either of the other two functions are utilized. In our implementation we first insert elements in
constant time into an unsorted array (using a bit vector to avoid inserting duplicates). Once the
last insertion is made we can discard the bit vector and sort the array in O(m log m) time, for an
amortized time of O(log m) time for each of the m insertions. Set membership can then be tested
by binary search, and enumeration is simple.

Our test data show the four best performing structures in a statistical tie. Further analysis of
our current data, along with test runs on larger machines, may eventually show that some of these
structures are clearly better for certain size machines.

3.3 Minimization

Common sense tells us that to keep the running time of our algorithm down, we should periodically
minimize our automata. If we keep around machines with twice as many states as necessary, not
only will we run out of memory faster, but the and/or algorithm will take four times as long to run.
The nondeterminism routine will be even worse, for a machine’s bloat will increase exponentially.
Empirical results tell us that minimization is not only desirable, but practically mandatory – it is
easy to find inputs that will run out of memory on common workstations. These studies also tell us
that we should minimize our automata at almost every opportunity. Because minimizing automata
is so important (in addition to being interesting in its own right), we have looked at three ways
of approaching the problem. One is well established in the literature, and two are new strategies
we developed during the implementation of the algorithm. Of these, one is easy to do but gives
only partial results, and the other is an algorithm that exploits an interesing property of certain
automata.

11

3.3.1 Trap State Reduction

Suppose we have a formula of the form f(x̄) = g(x̄) ∧ h(x̄) and let q be a state of H that accepts
nothing. Then our new automaton F will have a possibly large set of equivalent states {(q, q′) |
q′ ∈ G} that accept nothing. If we detect that we have generated a state (qG, qH) such that qG or
qH accepts nothing, we do not have to explore any of the possible successors of that state, and if
we generate (q′G, q′H) with the same property, we can immediately mark it as equivalent to (qG, qH).
This strategy will work in the nondeterminism algorithm as well. Empirical data show that though
this is helpful, it alone will not solve the problem of large machines.

3.3.2 Algorithms for Minimizing Arbitrary Automata

We also need to employ a general-purpose automaton minimization algorithm. We have tested three
candidates: the standard algorithm, one Hopcroft presented in 1976 which works in O(| Σ | nlogn)
time in the worst case [2], and Brzozowski’s algorithm (reverse, determinize, reverse, determinize).

Brzozowski’s algorithm has been championed by some for its excellent performance on small
automata despite its poor worst case running time [7]. However, in our tests the exponential nature
of that algorithm showed up for even small automta. For example, the automaton we construct for
the formula

x2 + 4 ∈ X0 ∨ (2 < x2 ∧ x2 + 4 6∈ X1) ∨ (x2 + 2 ∈ X1 ∧X1 ⊂ X0)

has 26 states and takes 2.35 seconds to minimize via reversal to an equivalent machine with 21
states. Hopcroft’s algorithm minimizes the same machine in less than a hundredth of a second (the
great disparity in times has also been seen when feeding our automata into other automata toolkits
such as grail).

The difference between the standard and Hopcroft’s algorithms is less marked. For smaller
machines, the standard algorithm is faster. We have yet to determine exactly where the cutoff
is, but it seems to be around 1000 states. Hopcroft’s algorithm is hurt by the fact that it needs
to compute the inverse transition relation, which is done in O(| Σ | n) time using our internal
representation of automata. We need no preprocessing to help the standard algorithm with our
current representation.

3.3.3 Layered Automata

Finally, we can exploit the special structure of some of our automata to use a new algorithm that
runs in O(| Σ | n) time. The algorithm is presented below. The special requirement is that the
automaton has no non-trivial cycles (formally, if (q0, w0) ` (q1, w1) ` · · · ` (qn, wn) ` (q0, wn+1)
then q0 = q1 = · · · = qn). All of the automata generated for atomic formulas are of this structure. It
is preserved through the operations of negation, and, and or. Unfortunately, existential quantifiers
can destroy the structure (Figure 5).

Preliminary tests show that on average, our algorithm works almost twice as fast as Hopcroft’s.
It is therefore worthwhile to use it whenever possible; that is on subformulas with no quantifiers.
If the formula has all its quantifiers in front, this is nearly every subformula.

The algorithm is as follows:

(1) For each state q, initialize votesq to | {σ | δ(q, σ) = q} |.

(2) Divide those states with votesq =| Σ | into final and non-final; mark each member of these
groups as equivalent to the others, mark them all as level 0 and let currentlevel = 1.

12

��
��
����

0 0 1 1
0 1 0 1

0 0 1 1
0 1 0 1

0
1

0 1 1
0 0 1

��
��

��
��

- -.................. A B C ��
��
������

��
��
��

- -.................. A B C

0,1

0 0,1

0,1

��
�� ��

��

��
����

��
����
����

-..................

�
��3

Z
ZZ~

A AB

ABC

AC

1

0

0

1

1

01

0

Figure 5: Layers are not Preserved by Nondeterminism

(3) For each state q in level 0 and σ ∈ Σ, if δ(q, σ) = q′ then increment votesq′ .

(4) Collect all states with votesq =| Σ | and call them elected. If elected is empty, then halt.

(5) If any state q in elected is equivalent to a node in level currentlevel − 1 mark them as
equivalent, move it from elected to level currentlevel − 1, and for each σ ∈ Σ if δ(q, σ) = q′

then increment votesq′ , adding q′ to elected if votesq′ =| Σ |.

(6) If any states were added to elected by step 5, then repeat it.

(7) Mark those states remaining in elected as in level currentlevel and check for equivalence
among them.

(8) Elect new states into elected as in steps 3 and 5, increment currentlevel, and return to step
4.

The following lemmas provide the basis of a correctness proof of the above algorithm.

Theorem 10 Suppose that levels 0 through n are minimized and currentlevel = n + 1. Then the
following hold before each execution of step 5.

(a) Any state in elected has at least one transition into level n.

(b) No state in elected has a transition to a different node in elected

(c) No state in elected is equivalent to any node in levels 0 to n− 1.

(d) If a state q in elected has delta(q, σ) = r for some σ ∈ Σ and r in level n, and s 6= r is also
in level n then q is not equivalent to s.

(e) A state q in elected is equivalent to state r in level n if and only if they are both final or both
non-final and

∀σ ∈ Σ((δ(q, σ) ≡ δ(r, σ)) ∨ (δ(q, σ) = q ∧ δ(r, σ) ≡ r))

13

Theorem 11 Suppose that levels 0 though n are minimized and currentlevel = n+1. Then before
each execution of step 7, two nodes q and q′ in elected are equivalent if and only if they are both
final or both non-final and

∀σ ∈ Σ((δ(q, σ) ≡ δ(q′, σ)) ∨ (δ(q, σ) = q ∧ δ(q′, σ) = q′))

3.4 Performance

We now present the results of running our algorithm on randomly generated formulas. We have
several sets of such formulas, each set contains 250 formulas with the same number of clauses and
quantifiers, and for which we specified the same maximum constant during the generation process.
The average times (in milliseconds) for each set are given below.

quantifiers 2 3 4
clauses 8 16 8 16 8 16

max = 2 21 36 30 53 43 88
max = 3 24 43 36 66 60 124
max = 4 28 49 48 80 86 186
max = 5 31 56 57 101 107 204
max = 6 37 66 67 123 143 348
max = 7 41 73 89 148 189 485
max = 8 x50 88 127 176 230 624

From this data we can see that adding a quantifier increases running time by a factor of about
2. Also, the effect of increasing the size of the constants is much more profound on formulas with
more quantifiers.

4 Presburger Arithmetic

Presburger Arithmetic, the first-order theory of the integers with + and <, is decidable. There is
an algorithm to determine the truth of a Presburger formula in 222pn log n

time [5] which works by
eliminating quantifiers, converting infinite searches to finite searches. At the end, all the algorithm
has to do is check the finite (but very large) number of cases. Another approach to the problem is
to convert a Presburger Formula into WS1S and run the algorithm described in the last section on
that formula. We do not expect this method to provide a faster algorithm for deciding Presburger
Arithmetic since the bound for WS1S is even worse that that for Presburger Arithmetic, but the
formulas that result provide us with a source of real-world test inputs (Presburger Formulas are
used by compilers that optimize loops for parallel execution). We hope to show that we can verify
reasonable Presburger formulas in a reasonable amount of time.

An atomic Presburger formula has the form term < term where a term is either a constant,
a variable, the sum of two terms, or a constant multiple of a term. We can assume without
loss of generality that the multipliers are powers of two (and in fact this is the way in which our
implementation treats them).

In the conversion from Presburger Arithmetic to WS1S, the integer variables become set vari-
ables with a set variable representing an integer if its characteristic function, written out as a string,
is the binary representation of the integer, with an additional bit for the sign. This system is not
as nice as one in which the two’s complement are used (we have two representations of zero, and
adding is more difficult), but since we need to encode arbitrarily large integers we would need an

14

infinite number of bits for two’s complement, and hence infinite sets which of course we cannot use.
The following formulas mean that a set X represents a term (given a free variable z to use):

f(X, z, 0) = (∀z)(z ≥ 1 → z 6∈ X)

f(X, z, c) = C0 ∨ · · · ∨ Cn

where

C0 =

0 ∈ X if c < 0
0 6∈ X if c > 0
true otherwise

and
Ci =

{
i ∈ X if the ith bit of c is set
i 6∈ X otherwise.

f(X, z1,−t) = (∀T)(f(T, z2, t) → ((∀z1)[z1 ≥ 1 → (z1 ∈ T ⇐⇒ z1 ∈ X)] ∧
[(0 ∈ X ⇐⇒ 0 ∈ T) ∨ f(T, z1, 0)]))

f(X, z, 2nt) = (∀T)(f(T, z, t) → ([(0 ∈ X ⇐⇒ 0 ∈ T) ∨ f(T, z, 0)] ∧
(∀z)(0 < z ≤ n → z 6∈ X) ∧

(∀z1)(z > n → (z ∈ T ⇐⇒ z + n ∈ X)))

f(X, z, t1 + t2) = ∀(T1, T2)([f(T1, z, t1) ∧ f(T2, z, t2)] → (
(0 6∈ T1 ∧ 0 6∈ T2 ∧ 0 6∈ X ∧ adds(T1, T2, X)) ∨
(0 ∈ T1 ∧ 0 ∈ T2 ∧ 0 ∈ X ∧ adds(T1, T2, X)) ∨

(0 ∈ T1 ∧ 0 6∈ T2 ∧ bigger(T2, T1) ∧ 0 6∈ X ∧ subtracts(T2, T1, X)) ∨
(0 ∈ T1 ∧ 0 6∈ T2 ∧ bigger(T1, T2) ∧ 0 ∈ X ∧ subtracts(T1, T2, X)) ∨

(0 ∈ T1 ∧ 0 6∈ T2 ∧ same(T1, T2) ∧ f(X, z, 0)) ∨
(0 6∈ T1 ∧ 0 ∈ T2 ∧ bigger(T1, T2) ∧ 0 6∈ X ∧ subtracts(T1, T2, X)) ∨
(0 6∈ T1 ∧ 0 ∈ T2 ∧ bigger(T2, T1) ∧ 0 ∈ X ∧ subtracts(T2, T1, X)) ∨

(0 6∈ T1 ∧ 0 ∈ T2 ∧ same(T1, T2) ∧ f(X, z, 0))))

where

bigger(X, Y) = (∃z1)(z1 > 0 ∧ z1 ∈ X ∧ z1 6∈ Y ∧ (∀z2 > z1)(z2 ∈ X → z1 ∈ Y))
same(X, Y) = (∀z > 0)(z ∈ X ⇐⇒ z ∈ Y)

adds(X, Y, Z) = (∃C)(1 6∈ C ∧ (∀z > 0)carry(X, Y, Z,C, z))
subtracts(X, Y, Z) = (∃B)(1 6∈ B ∧ (∀z > 0)borrow(X, Y, Z,B, z))

and finally carry(X, Y, Z,C, z) is a predicate that is true if and only if the carry and sum bits work
out at position z. In particular, it is true for

z ∈ X z ∈ Y z ∈ C z ∈ Z z + 1 ∈ C

T T T T T
T T F F T
T F T F T
T F F T F
F T T F T
F T F T F
F F T T F
F F F F F

15

and false for all other cases. The borrow predicate is similar.
Last, the formula t1 < t2 can be converted to a formula involving f(T1, z, 0), f(T2, z, 0), and

bigger(T2, T1).
The upshot of this is that every +, −, or ∗ in a term will generate at least one quantifier in

the WS1S formula. The total number of quantifiers, and hence exponential blowups in the WS1S
decision procedure, can get quite large. We can help ourselves out somewhat by storing the machine
generated for the formula for t1 + t2 and reusing it instead of building it from scratch each time.
Indeed, the formula above boils down to a nine state DFA. In fact, we can save the machines
generated by any size sum. In general such a machine will have O(2n) states for the sum of n
terms.

We have converted a random set of Presburger formulas to LWS1S and run the WS1S decision
procedure on them. The random formulas we generated were all of a simple form, so the raw results
below will most likely not hold for more general formulas. However, the trends shown below may
still appear in the general case.

maximum constant
quantifiers 4 8 16

2 2.21 3.21 10.85
3 10.45 28.08
4 68.03

This table (for which we are still gathering data) gives average times (in seconds) for deciding
formulas with a given number of variables and a given bound on the constants that appear in the
formula. We can see that changing either parameter has a such profound effect on the running time
that filling out this table even a few rows or columns past its current boundary will be quite time
consuming.

References

[1] J. R. Büchi. Weak second order arithmetic and finite automata. Zeitscrift fur mathematische
Logic und Grundlagen der Mathematik, 6:66–92, 1960.

[2] J. Hopcroft. An n log n algorithm for minimizing states in a finite automaton. In Z. Kohavi and
A. Paz, editors, Theory of Machines and Computation, pages 189–196. Academic Press, 1976.

[3] J. Johnson and D. Wood. Instruction computation in subset construction. In Proceedings of
the First International Workshop on Implementing Automata, pages 1–9, August 1996.

[4] A. R. Meyer. Weak monadic second order theory of succesor is not elementary-recursive. In
Logic Colloquim, number 453 in Lecture Notes in Mathematics, pages 132–154. Springer-Verlag,
1974.

[5] D. C. Oppen. Elementary bounds for Presburger arithmetic. In 5th ACM Symposium on Theory
of Computing, pages 34–37, 1973.

[6] M. O. Rabin. Decidablilty of second-order theories and automata on infinite trees. Trans. AMS,
141:1–35, July 1969.

[7] B. W. Watson. Taxonomies and Toolkits of Regular Language Algorithms. PhD thesis, Eind-
hoven University of Technology, 1995.

16

