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Graph Coloring

Notation [k] = {1, . . . , k}.

Definition G = (V ,E ) is k-colorable if there exists a mapping

COL : V → [k]

such that (∀x , y ∈ V )[(x , y) ∈ E =⇒ COL(x) 6= COL(y)].

Notation The least k such that G is k-colorable is denoted χ(G ).
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A Graph Coloring Game

Given G and k imagine the following game.
A&B are on one team. They can communicate before the game
but not during it. E is the other team.

1. E picks x , y ∈ V at random (can have x = y).

2. A gets x , B gets y . They do not communicate.

3. A says cx ∈ [k]; B says cy ∈ [k], simul. A&B are all powerful
and can use random coins if they want. They can even use
the same random coins.

4. 4.1 If x = y and cx = cy , A&B win.
4.2 If (x , y) ∈ E and cx 6= cy then A&B win.
4.3 If x = y and cx 6= cy , A&B lose.
4.4 If (x , y) ∈ E and cx = cy then A&B lose.
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How this Game Relates to Graph Coloring

I If χ(G ) ≤ k then A&B can WIN

I If χ(G ) ≥ k + 1 then the probability that A&B win is < 1.

One could have defined χ(G ) in terms of this game.
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Side Project

For any graph, A&B can get n(n−1)
n2

= n−1
n .

A always picks 1
B always picks 2

Prob A&B win is Prob that E picked two DIFF vertices which is

n(n − 1)

n2
=

n − 1

n
.

Are there any graphs where A&B can do better? I do not know.



Side Project

For any graph, A&B can get n(n−1)
n2

= n−1
n .

A always picks 1
B always picks 2

Prob A&B win is Prob that E picked two DIFF vertices which is

n(n − 1)

n2
=

n − 1

n
.

Are there any graphs where A&B can do better? I do not know.



Side Project

For any graph, A&B can get n(n−1)
n2

= n−1
n .

A always picks 1
B always picks 2

Prob A&B win is Prob that E picked two DIFF vertices which is

n(n − 1)

n2
=

n − 1

n
.

Are there any graphs where A&B can do better? I do not know.



Side Project

For any graph, A&B can get n(n−1)
n2

= n−1
n .

A always picks 1
B always picks 2

Prob A&B win is Prob that E picked two DIFF vertices which is

n(n − 1)

n2
=

n − 1

n
.

Are there any graphs where A&B can do better? I do not know.



Side Project

For any graph, A&B can get n(n−1)
n2

= n−1
n .

A always picks 1
B always picks 2

Prob A&B win is Prob that E picked two DIFF vertices which is

n(n − 1)

n2
=

n − 1

n
.

Are there any graphs where A&B can do better? I do not know.



What if A&B could Communicate?

I If A&B could communicate dlg ne bits then can reveal to each
other which node they got, so A&B could win with prob 1,
even if k = 2.

I If A&B could communicate a bits then might be able to
increase their chance of winning (has not been looked at).

I If A&B could share QUANTUM STUFF I DO NOT
UNDERSTAND THAT INVOLVES ENTANGLEMENT
then there are graphs G with χ(G ) = k such that A&B win
with Prob 1 using k ′ < k .
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One Case that is Known and Impressive

Notation if x , y ∈ {0, 1}n then d(x , y) is the number of places
they differ. This is also called the Hamming Distance.

Definition The Hadamard graph Hn is
V = {0, 1}n (n is even)
E = {(x , y) : d(x , y) = n

2}

Theorem

1. χ(Hn) = Θ(2n). (This is an old classical result.)

2. If A&B can share QUANTUM STUFF I DO NOT
UNDERSTAND THAT INVOLVES ENTANGLEMENT
then A&B can win with prob 1 the Game with Hn and k = n.
So EXPONENTIAL improvement.
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Easy Ramseyesque Theorem

A set is homog if every element has the same color.
A set is rainbow if every element has a different color.
Known And Easy

I There exists a finite colorings of {1, . . . , 9} with NO 4 homog
and NO 4 rainbow.

1 2 3 4 5 6 7 8 9

1 2 3 1 2 3 1 2 3

I For all finite colorings of {1, . . . , 10} there will be either 4
homog or 4 rainbow.
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First Question in Quantum Ramsey Theory

1. A, B, C, D are on one team. E is on the other.

2. E picks a, b, c , d ∈ [10] at random and gives a to A etc.
a, b, c , d are all different.

3. A,B,C,D each simul say a color in [4].

4. 4.1 If all colors same or all colors different then A,B,C,D loses.
4.2 In any other case A&B win.

Classically A,B,C,D have prob < 1 of winning.
What if they DO QUANTUM STUFF I DO NOT
UNDERSTAND?
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Future of Quantum Ramsey Theory

Look at other Theorems in Ramsey Theory and formulate
Quantum Questions.

Then answer them!
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