Easy Parts of Quantum Graph Coloring

William Gasarch-U of MD

Graph Coloring

Notation $[k] = \{1, ..., k\}.$

Graph Coloring

Notation $[k] = \{1, ..., k\}.$

Definition G = (V, E) is k-colorable if there exists a mapping

COL:
$$V \rightarrow [k]$$

such that $(\forall x, y \in V)[(x, y) \in E \implies COL(x) \neq COL(y)]$.

Graph Coloring

Notation $[k] = \{1, ..., k\}.$

Definition G = (V, E) is k-colorable if there exists a mapping

COL:
$$V \rightarrow [k]$$

such that $(\forall x, y \in V)[(x, y) \in E \implies COL(x) \neq COL(y)]$.

Notation The least k such that G is k-colorable is denoted $\chi(G)$.

Given G and k imagine the following game.

Given G and k imagine the following game. A&B are on one team. They can communicate before the game but not during it. E is the other team.

1. E picks $x, y \in V$ at random (can have x = y).

Given G and k imagine the following game. A&B are on one team. They can communicate before the game but not during it. E is the other team.

- 1. E picks $x, y \in V$ at random (can have x = y).
- 2. A gets x, B gets y. They do not communicate.

Given G and k imagine the following game.

- 1. E picks $x, y \in V$ at random (can have x = y).
- 2. A gets x, B gets y. They do not communicate.
- 3. A says $c_x \in [k]$; B says $c_y \in [k]$, simul. A&B are all powerful and can use random coins if they want. They can even use the same random coins.

Given G and k imagine the following game.

- 1. E picks $x, y \in V$ at random (can have x = y).
- 2. A gets x, B gets y. They do not communicate.
- 3. A says $c_x \in [k]$; B says $c_y \in [k]$, simul. A&B are all powerful and can use random coins if they want. They can even use the same random coins.
- 4. 4.1 If x = y and $c_x = c_y$, A&B win.

Given G and k imagine the following game.

- 1. E picks $x, y \in V$ at random (can have x = y).
- 2. A gets x, B gets y. They do not communicate.
- 3. A says $c_x \in [k]$; B says $c_y \in [k]$, simul. A&B are all powerful and can use random coins if they want. They can even use the same random coins.
- 4. 4.1 If x = y and $c_x = c_y$, A&B win.
 - 4.2 If $(x, y) \in E$ and $c_x \neq c_y$ then A&B win.

Given G and k imagine the following game.

- 1. E picks $x, y \in V$ at random (can have x = y).
- 2. A gets x, B gets y. They do not communicate.
- 3. A says $c_x \in [k]$; B says $c_y \in [k]$, simul. A&B are all powerful and can use random coins if they want. They can even use the same random coins.
- 4. 4.1 If x = y and $c_x = c_y$, A&B win.
 - 4.2 If $(x, y) \in E$ and $c_x \neq c_y$ then A&B win.
 - 4.3 If x = y and $c_x \neq c_y$, A&B lose.

Given G and k imagine the following game.

- 1. E picks $x, y \in V$ at random (can have x = y).
- 2. A gets x, B gets y. They do not communicate.
- 3. A says $c_x \in [k]$; B says $c_y \in [k]$, simul. A&B are all powerful and can use random coins if they want. They can even use the same random coins.
- 4. 4.1 If x = y and $c_x = c_y$, A&B win.
 - 4.2 If $(x, y) \in E$ and $c_x \neq c_y$ then A&B win.
 - 4.3 If x = y and $c_x \neq c_y$, A&B lose.
 - 4.4 If $(x, y) \in E$ and $c_x = c_y$ then A&B lose.

▶ If $\chi(G) \leq k$ then A&B can WIN

- ▶ If $\chi(G) \leq k$ then A&B can WIN
- ▶ If $\chi(G) \ge k + 1$ then the probability that A&B win is < 1.

- ▶ If $\chi(G) \leq k$ then A&B can WIN
- ▶ If $\chi(G) \ge k + 1$ then the probability that A&B win is < 1.

One could have **defined** $\chi(G)$ in terms of this game.

For any graph, A&B can get $\frac{n(n-1)}{n^2} = \frac{n-1}{n}$.

For any graph, A&B can get $\frac{n(n-1)}{n^2} = \frac{n-1}{n}$.

A always picks 1

B always picks 2

For any graph, A&B can get $\frac{n(n-1)}{n^2} = \frac{n-1}{n}$.

A always picks 1

B always picks 2

Prob A&B win is Prob that E picked two DIFF vertices which is

For any graph, A&B can get $\frac{n(n-1)}{n^2} = \frac{n-1}{n}$.

A always picks 1

B always picks 2

Prob A&B win is Prob that E picked two DIFF vertices which is

$$\frac{n(n-1)}{n^2}=\frac{n-1}{n}.$$

For any graph, A&B can get $\frac{n(n-1)}{n^2} = \frac{n-1}{n}$.

A always picks 1

B always picks 2

Prob A&B win is Prob that E picked two DIFF vertices which is

$$\frac{n(n-1)}{n^2}=\frac{n-1}{n}.$$

Are there any graphs where A&B can do better? I do not know.

▶ If A&B could communicate $\lceil \lg n \rceil$ bits then can reveal to each other which node they got, so A&B could win with prob 1, even if k = 2.

- If A&B could communicate $\lceil \lg n \rceil$ bits then can reveal to each other which node they got, so A&B could win with prob 1, even if k = 2.
- ▶ If A&B could communicate a bits then might be able to increase their chance of winning (has not been looked at).

- ▶ If A&B could communicate $\lceil \lg n \rceil$ bits then can reveal to each other which node they got, so A&B could win with prob 1, even if k = 2.
- ► If A&B could communicate a bits then might be able to increase their chance of winning (has not been looked at).
- ▶ If A&B could share **QUANTUM STUFF I DO NOT UNDERSTAND THAT INVOLVES ENTANGLEMENT** then there are graphs G with $\chi(G) = k$ such that A&B win with Prob 1 using k' < k.

Notation if $x, y \in \{0, 1\}^n$ then d(x, y) is the number of places they differ. This is also called the **Hamming Distance**.

Notation if $x, y \in \{0, 1\}^n$ then d(x, y) is the number of places they differ. This is also called the **Hamming Distance**.

Definition The **Hadamard graph** H_n is $V = \{0, 1\}^n$ (n is even) $E = \{(x, y): d(x, y) = \frac{n}{2}\}$

Notation if $x, y \in \{0, 1\}^n$ then d(x, y) is the number of places they differ. This is also called the **Hamming Distance**.

Definition The **Hadamard graph** H_n is $V = \{0,1\}^n$ (n is even) $E = \{(x,y): d(x,y) = \frac{n}{2}\}$

Theorem

Notation if $x, y \in \{0, 1\}^n$ then d(x, y) is the number of places they differ. This is also called the **Hamming Distance**.

Definition The **Hadamard graph** H_n is

$$V = \{0,1\}^n \text{ (n is even)}$$

 $F = \{(x, y): d(x, y) = \frac{n}{n}\}$

$$E = \{(x,y): d(x,y) = \frac{n}{2}\}$$

Theorem

1.
$$\chi(H_n) = \Theta(2^n)$$
. (This is an old classical result.)

Notation if $x, y \in \{0, 1\}^n$ then d(x, y) is the number of places they differ. This is also called the **Hamming Distance**.

Definition The **Hadamard graph** H_n is

$$V = \{0, 1\}^n \text{ (n is even)}$$

 $E = \{(x, y): d(x, y) = \frac{n}{2}\}$

Theorem

- 1. $\chi(H_n) = \Theta(2^n)$. (This is an old classical result.)
- 2. If A&B can share QUANTUM STUFF I DO NOT UNDERSTAND THAT INVOLVES ENTANGLEMENT then A&B can win with prob 1 the Game with H_n and k=n. So EXPONENTIAL improvement.

Easy Ramseyesque Theorem

A set is **homog** if every element has the same color. A set is **rainbow** if every element has a different color. **Known And Easy**

Easy Ramseyesque Theorem

A set is **homog** if every element has the same color.

A set is rainbow if every element has a different color.

Known And Easy

▶ There exists a finite colorings of $\{1, ..., 9\}$ with NO 4 homog and NO 4 rainbow.

1	2	3	4	5	6	7	8	9
1	2	3	1	2	3	1	2	3

Easy Ramseyesque Theorem

A set is **homog** if every element has the same color.

A set is rainbow if every element has a different color.

Known And Easy

▶ There exists a finite colorings of $\{1, ..., 9\}$ with NO 4 homog and NO 4 rainbow.

1	2	3	4	5	6	7	8	9
1	2	3	1	2	3	1	2	3

For all finite colorings of $\{1, \ldots, 10\}$ there will be either 4 homog or 4 rainbow.

1. A, B, C, D are on one team. E is on the other.

- 1. A, B, C, D are on one team. E is on the other.
- 2. E picks $a, b, c, d \in [10]$ at random and gives a to A etc. a, b, c, d are all different.

- 1. A, B, C, D are on one team. E is on the other.
- 2. E picks $a, b, c, d \in [10]$ at random and gives a to A etc. a, b, c, d are all different.
- 3. A,B,C,D each simul say a color in [4].

- 1. A, B, C, D are on one team. E is on the other.
- 2. E picks $a, b, c, d \in [10]$ at random and gives a to A etc. a, b, c, d are all different.
- 3. A,B,C,D each simul say a color in [4].
- 4. 4.1 If all colors same or all colors different then A,B,C,D loses.

- 1. A, B, C, D are on one team. E is on the other.
- 2. E picks $a, b, c, d \in [10]$ at random and gives a to A etc. a, b, c, d are all different.
- 3. A,B,C,D each simul say a color in [4].
- 4. 4.1 If all colors same or all colors different then A,B,C,D loses. 4.2 In any other case A&B win.

- 1. A, B, C, D are on one team. E is on the other.
- 2. E picks $a, b, c, d \in [10]$ at random and gives a to A etc. a, b, c, d are all different.
- 3. A,B,C,D each simul say a color in [4].
- 4. 4.1 If all colors same or all colors different then A,B,C,D loses. 4.2 In any other case A&B win.

Classically A,B,C,D have prob < 1 of winning.

- 1. A, B, C, D are on one team. E is on the other.
- 2. E picks $a, b, c, d \in [10]$ at random and gives a to A etc. a, b, c, d are all different.
- 3. A,B,C,D each simul say a color in [4].
- 4. 4.1 If all colors same or all colors different then A,B,C,D loses. 4.2 In any other case A&B win.

Classically A,B,C,D have prob < 1 of winning. What if they **DO QUANTUM STUFF I DO NOT UNDERSTAND**?

Future of Quantum Ramsey Theory

Future of Quantum Ramsey Theory

Look at other Theorems in Ramsey Theory and formulate Quantum Questions.

Future of Quantum Ramsey Theory

Look at other Theorems in Ramsey Theory and formulate Quantum Questions.

Then answer them!