
Visualization of Semantic Metadata and Ontologies

Paul Mutton1 and Jennifer Golbeck2

1University of Kent, Canterbury, UK
2University of Maryland, College Park, USA

pjm2@kent.ac.uk, golbeck@cs.umd.edu

Abstract

Implicit information embedded in semantic web graphs,
such as topography, clusters, and disconnected
subgraphs is difficult to extract from text files.
Visualizations of the graphs can reveal some of these
features, but existing systems for visualizing metadata
focus on aspects other than understanding the greater
structure. In this paper, we present a tool for
generating visualizations of ontologies and metadata by
using a modified spring embedder to achieve an
automatic layout. Through a case study using a mid-
sized ontology, we show that interesting information
about the data relationships can be extracted through
our visualization of the physical graph structure.

1. Introduction

The Semantic Web is based on the idea of creating
"machine understandable" data that can be used and
exchanged. Using web languages, such as RDF,
DAML+OIL, and OWL, it is possible to create
semantically rich data models. These models are made
up of triples (subject-predicate-object), where subjects
and objects are entities, and predicates indicate
relationships between those entities. Users can define
their own properties, as well as their own classes.
Classes in semantic web languages are categories or
types, similar to how classes work in programming
languages. Instances of these classes can then be created
and described with values for related properties.

Implicit in these models is more information than
can usually be found in their text representation. Each
triple forms a graph with two nodes connected by an
edge. Each instance can have several properties, and that
graph expands to have many nodes connected to the
central instance. Finally, when two instances are
connected via a property, their respective sub-graphs
become connected. The graphs produced from RDF
triples contain more information than just which entities
are related to which. Implicit information, such as the
underlying structure of a data model or which instances
are most closely connected is all contained in a graph.
This information, though, is difficult, if not impossible,
to extract from a text-based reading of the data.

Since the Semantic Web is so new and the
languages themselves are still quickly evolving, much
of the research in this area has focused on editors,
applications, tools, and languages. Tools for viewing
the data have been primarily text based. The few
graphical visualization tools have focused on other
aspects of the data and its use.

In this paper, we present a tool for generating
graphs of ontologies and instance data on the semantic
web. Using the properties that relate instances as edges,
we can apply graph layout algorithms that attempt to
place related nodes near to each other while keeping all
other nodes evenly distributed. The resulting graph
drawings give the user insight into the structure and
relationships in the data model that are hard to see in
text.

2. Background and Related Research

One of the most widely seen tools for graph
visualizations of RDF metadata is IsAViz [2], built on
AT&T's Graphviz graph visualization software. In
addition to producing the graphs for the W3C's RDF
validator, it is a stand alone application for browsing
and authoring RDF documents. Though the graphs it
generates are suited to the task, because of their layout,
they are difficult to use in seeing the overall structure of
a set of instances. In addition to showing instance data,
IsAViz shows connections from instances back to their
originating classes.

The Protégé ontology editor, produced at Stanford
University, is one of the more popular open source
semantic web tools available today. It is easily
extensible, and has two visualization components.
OntoViz [10] is an ontology visualizer that, like IsAViz,
uses Graphviz as its base. It shows classes grouped with
their properties, and information about those properties,
and instances grouped with lists of their properties.
These groups are connected by edges indicating
relationships between the objects. Jambalaya, another
Protégé based visualization tool, displays information
similarly, with instances and classes being grouped with
their respective properties. Jambalaya adds in a zooming
feature, allowing users to look at the ontology at several
levels of detail. Though Jambalaya comes closer to our
goal of providing a view of the overall structure of

ontologies, both of these tools are designed to allow the
user to browse ontologies. Because they use a visual
structure that lists all of the information related to a
specific object as nodes, the overall picture is full of
large boxes, overlapped with edges, obscuring much of
the associative structure.

The Spectacle system [1] is designed to present
instance data to users in a way that aids their navigation
of search results and ontologies. Each instance is placed
into a cluster based on its class membership. Instances
that are members of multiple classes are placed in
overlapping clusters. These visualizations provide a clear
and intuitive depiction of the relationships between
instances and classes, as well as illustrating the
connections between classes as they overlap.

In many cases, though, grouping by classes is not
ideal for understanding the underlying structure of the
data. For example, in looking at data about people,
projects, and papers produced by an organization, it is
not as useful to see people grouped together, projects
grouped together, and papers grouped together. What is
more illustrative is to see clusters of people based on
their interactions: small clusters that group people and
papers around their respective projects say much more
about how the organization is structured. Similarly, in
an ontology, concepts related to each other through the
domains and ranges of properties, through subclasses,
and through other semantic connections can be clustered
according to these properties. These properties in
instances and classes, which make up the edges in a
graph on the semantic web, are what we use to
determine the layout of our graphs.

3. Graph Drawing

Graphs are often used to visualize relationships and
patterns between entities. Graph drawing methods are
important in such visualizations for providing automatic
layout of entities and their relationships. A good layout
can ease user exploration and make it easier to detect
patterns in the data. We define a graph G = (N,E), where
N is the set of node entities and E is the set of directed
edge relationships, each between a pair of nodes.

Spring embedding [3,4] is one such graph drawing
method that is suitable for application to our data. Its
effect is to distribute nodes in a two-dimensional plane
with some separation, while attempting to keep
connected nodes reasonably close together. The spring
embedder graph drawing process considers the graph
model as a force system that must be simulated. Each
node in the graph is modeled as a charged particle,
thereby causing a repulsive force between every pair of
nodes. Each edge is modeled as a spring that exerts an
attractive force between the pair of nodes it connects.
The graph is laid out by repeated iterations of a
procedure that calculates the repulsive and attractive
forces acting on all nodes in the graph. At the end of

each iteration, all nodes are moved according to the
resultant forces acting on them.

Figure 1: Spring embedded ontology

The force models that we use for the spring
embedder are based on those of Fruchterman and
Reingold [4]. This version of the spring embedder is
effective and widely used. It is also relatively easy to
implement and requires a minimal set of parameter
values that can be adjusted to achieve good automatic
layouts. In this model, the repulsive force acting
between a pair of nodes is -k2/d and the attractive force
due to an edge is d2/k, where d is the distance between
the two nodes and k is a constant. We start our graph
drawing process by allocating each node to a random
location on a two dimensional plane and then we begin
the iterative calculation of these forces and move nodes
accordingly. This results in a layout where connected
nodes are close together, yet no pair of nodes are too
close to each other due to the repulsive forces acting
between them.

Figure 2: A disconnected graph.

When visualizing ontologies and instances, not all
graphs we encounter will be connected. With a simple
spring embedder model, this can cause the layout to
rapidly expand, as there is nothing to counter the
repulsive forces acting between each of the largest
connected subgraphs. We solve this problem by limiting
the distance over which repulsive forces may act. A pair
of nodes with separation greater than m does not exert a
repulsive force. This alteration to the force model
ensures that we do not end up with an unnecessarily
sparse graph drawing.

A simple implementation of the spring embedder
calculates the repulsive force between every pair of nodes
and so has a time complexity of O(N2) per iteration. In
practical terms, this limits the maximum size of our
drawings to several hundred nodes if we want them to
be drawn in less than one second on affordable hardware.
Various optimizations exist to make this process
quicker, such as preprocessing the initial random layout
with linear time complexity [5], speeding up the
calculation of forces between pairs of nodes [6], or
reducing the number of nodes that are paired [6,7].
Multi-level approaches [8,9] provide a heuristic method
that clusters a graph and lays out the coarsened graph,
reintroducing the other nodes in uncoarsening steps until
a final drawing is produced. These can be used to reduce
the time complexity of each spring embedder iteration to
O(NlogN) without any significant reduction in its
effectiveness, making the method suitable for
application to graphs with tens of thousands of nodes in
real-time.

Distance d

F
o

rc
e

 f Repulsive force

Attractive force
d = k

d = m

Figure 3: m-limited force model.

In this implementation, the algorithms work
well on graphs with up to several hundred nodes.
Clustering nodes and producing a hierarchical navigation
structure with an improved implementation of the spring
embedder would be useful when dealing with larger
graphs. A common observation worth noting is that the
spring embedding process as a whole requires a greater
number of iterations to reach an equilibrium with larger
graphs, so the overall time complexity is greater than
that stated for a single iteration.

4. Case Study: Zoological Information
Management System

The Zoological Information Management System
(ZIMS) is a project of the International Animal Data
Information Systems Committee (IADISC). As they
state, "Standardized data collection and animal records
are very important to the zoo and aquarium profession.
They are critical for basic animal management and for
achieving our conservation, research, and education
goals. Unfortunately, zoological facilities are currently
struggling with outdated software and inconsistent
records that hinder our ability to efficiently and
scientifically manage the animals in our care. A most
notable inadequacy of the current system is that it does
not track the history of group animals, such as fish and
invertebrates, or environmental conditions to the extent
necessary for many aquatic collections. In an effort to
solve this problem, an international, coordinated effort,
called the Zoological Information Management System
(ZIMS) Project, is underway to improve how animal
data is managed." [13]

Over a series of workshops, the ZIMS project has
produced an evolving conceptual data model (CDM).
The CDM is designed to clearly define rules and
concepts associated with a particular area from a data
management perspective. This data model contains over
two hundred concepts and relations. Concepts, also
called entities, are explicitly described in Table 1.

Entity Type Description

Animal

AnimalBusinessTransaction
TransferPhysical

Animal-Collection

AnimalEnclosure

Represents all mammals, reptiles, birds,
fish, etc that are managed by a zoo or
aquarium and includes actual or
estimated birth date which may be
postdated to capture information prior to
an animal's birth. All relationships apply
to individual animals or on a percentage
basis for group animals.

Captures all animals that are part of a
physical transfer business transaction

Captures the historical ownership of
animals at a zoo or aquarium and may
include a localized accession number.
Note: Partial ownership of animals may
be added later but is not currently
considered part of core requirements.

Captures which animals were in which
enclosure at a given point in time and
supports multi-species displays and
includes datetime.

Table 1: A sample description taken from the ZIMS
CDM.

Figure 4: The ZIMS Conceptual Data Model showing entities and relations

Figure 5: A spring embedded graph of the OWL version of the ZIMS CDM. This
graph displays the entities and relations as well as other data associated with each

entity.

Relationships between concepts are indicated by
edges in a visual diagram (Figure 4). Symbols on the
edges indicate the type of relationship. Just looking at
the CDM diagram in Figure 4 does not convey much
information about the relationships between entities. A
user could certainly follow the links along to find
relationships between entities, but the information is not
easily visually accessible. Furthermore, there is no way
to easily identify which groups of entities form closely
related clusters of information and which are just
adjacent by chance.

The CDM was converted into an OWL
representation, describing the entities as classes, and the
relationships between them as properties. This
conversion to a standardized form, understandable by
intelligent web agents, is a great step toward improving
the way zoological information at a wide range of
distributed centers is coherently managed. The
conversion also puts the data into a form where it can be
visualized by the graph drawing system described here.

Figure 5 shows the same CDM from Figure 4 as a
spring embedded graph. For visual clarity, the labels
have been removed from edges and nodes, though in
application form they can be accessed as tool tips. The
spring embedded graph reveals several details about the
general graph structure that are not clear from the CDM
diagram.

First, there is a central ring structure, made up of
connected clusters. These clusters are groups of closely
interrelated concepts. One example is a collection of
entities in the CDM describing business transactions.
Semantically, it makes sense that these terms would be
connected to one another, but the clustered relationship
is clear from neither the text of the ontology nor the
original CDM diagram.

Long chain like structures also appear extending off
around the edges of the graph. These show sequentially
linked concepts, and reveals the presence of potentially
important indirect relationships between the concepts at
the start and end of the chain. For example, one of the
longest of these chains begins with "Animal" and ends
with "AnimalParentRelationshipBiologic". Again, it is
intuitive that these two concepts should have some
semantic relation, and through one intermediate concept
and a simple string of subclasses, the two are chained
together in the graph. However, the five steps separating
the two concepts make it nearly impossible to recognize
this relationship through text. Though tracing the path
through the original CDM diagram is not difficult, there
are no visual clues that would indicate it without close
inspection.

By adjusting parameters of the layout algorithm,
we are able to generate the graph in figure 6 with data
points grouped more tightly into clusters. Though some
of the nodes obscure one another, the clustering makes
the structural features of the ontology all the more
obvious.

Figure 6: Spring embedded graph of the ZIMS CDM
with tight clustering

5. Future Work

The next step in expanding this graph drawing
system is to make it an effective tool for ontology
browsing. In its current state, users can mouse over a
node or edge, and see its URI. We identify two features
which, when added to the graph drawing system, will
increase its power to illustrate the structure of the
ontology and to provide information about the elements.

The first is to add in elements of a more traditional
ontology browser. Brownsauce [11] is one browser
which shows all of the properties and values associated
with a given instance, coupled with links to related
information. Giving the user an option to click a node
and see this information adds a lot of power to the
exploratory process. The second improvement is to add
a dynamic query interface. Dynamic queries allow the
user to rapidly adjust query parameters and see those
changes reflected in the visualization in real-time [12].
When viewing instance data, for example, users could
select specific classes and see only instances of those
classes reflected in the graph. By adding and removing
instances in this fashion and quickly seeing the results
in the graph, patterns about which instances are closely
grouped, or how instances of specific classes are
connected become clearer. This in itself is powerful and
leads the way to integrating a more robust query
interface to the visualization if it appears to be useful.

6. Conclusions

In this paper, we have presented a graph drawing
system for visualizing ontologies and collections of
instance data on the semantic web. Related entities are
drawn close to each other with a directed edge to
symbolize the relationship, and the system is also
capable of producing sensible automatic layouts of

disconnected graphs. Through a case study involving a
real, deployed ontology, we show how patterns about
the underlying structure are more easily understood
through the graph drawing than through text or other
types of visual displays.

7. References

[1] C. Fluit, M. Sabou, F. van Harmelen, "Ontology-
based Information Visualization," Proceedings of
Information Visualization '02, 2002.

[2] E. Pietriga, "IsaViz, a Visual Environment for
Browsing and Authoring RDF Models," Eleventh
International World Wide Web Conference
Developers Day, 2002.

[3] P. Eades. "A Heuristic for Graph Drawing."
Congressus Numerantium 42. pp. 149-60. 1984.

[4] T. M. J. Fruchterman, E. M. Reingold. "Graph
Drawing by Force-directed Placement." Software –
Practice and Experience Vol 21(11). pp. 1129-
1164. 1991.

[5] P.J. Mutton, P.J. Rodgers. "Spring Embedder
Preprocessing for WWW Visualization."
Proceedings of International Symposium on Web
Graphics and Visualization, IV02-WGV. 2002.

[6] D. Tunkelang. "JIGGLE: Java Interactive Graph
Layout Algorithm." GD ’98, LNCS 1547. pp. 413-
422. 1998.

[7] Quigley, P. Eades. "FADE: Graph Drawing,
Clustering, and Visual Abstraction." GD 2000,
LNCS 1984. pp. 197-210. 2001.

[8] D. Harel, Y. Koren. "A Fast Multi-scale Method for
Drawing Large Graphs." GD 2000, LNCS 1984. pp.
183-196. 2001.

[9] C. Walshaw. "A Multilevel Algorithm for Force-
Directed Graph Drawing." GD 2000, LNCS 1984.
pp. 171-182. 2001.

[10] The Ontoviz Tab: Visualizing Protégé Ontologies -
http://protege.stanford.edu/plugins/ontoviz/ontoviz.
html

[11] BrownSauce RDF Browser:
http://brownsauce.sourceforge.net/

[12] C. Ahlberg, C. Williamson, and B. Shneiderman,
"Dynamic Queries for Information Exploration: An
Implementation and Evaluation," Proc. Conf.
Human Factors in Computer Systems 1992, pp.
619-626.

[13] S. DuBois, "The ZIMS Project: Building Better
Animal Information Systems for Zoos and
Aquariums", presented at the Management and
Technology Conference, 2003, Orlando, FL, 2003.
http://www.zims.org/reports/building_better_info_s
ystems.htm

