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Abstract

A drawback of traditional default logic is that there is no general mechanism for
preferring one default rule over another. To remedy this problem, numerous default
logics augmented with priority relations have been introduced. In this paper, we
show how trust values, derived from web-based social networks, can be used to
prioritize defaults. We provide a coupling between the method for computing trust
values in social networks and the prioritized Reiter defaults of (1), where specificity
of terminological concepts is used to prioritize defaults. We compare our approach
with specificity-based prioritization, and discuss how the two can be combined.
Finally, we show how our approach can be applied to other variants of prioritized
default logic.
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1 Introduction

We are often given conflicting information from distinct sources, forcing us
into a decision about what information to accept. This problem is especially
complex on the web, where the information sources are many and varied.
Our decision in these cases is sometimes reduced to picking the more highly
trusted information source. If we think of the information given by sources as
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a set of default rules, our problem boils down to the following: given defaults
from distinct sources which support conflicting conclusions, how should these
defaults be prioritized to end up with the most reliable conclusion?

The machinery for expressing priorities between defaults is rich and well-
studied, but the question of how these priorities should be generated is fre-
quently left unanswered. Often it is assumed that the preferences are inputted
manually by the users of the knowledge base in question. When using trust to
prioritize defaults, Web-Based Social Networks (WBSNs) offer an accessible
source of trust information. We argue that WBSNs can be used to automat-
ically obtain a set of priorities which reflect the user’s levels of trust in the
information sources.

Within WBSNs, users often reveal information about their relationships with
one another. That includes quantitative values representing how much they
trust people they know. Using algorithms presented in this work, trust values
can be composed to generate recommendations about how much a user should
trust an unknown person in the social network. When default rules are asserted
on the web and provenance information is available, these trust values can be
used to rate the trustworthiness of the source of each default. That can, in
turn, be used as a measure of a default’s priority.

In this paper, we show how trust values, derived from web-based social net-
works, can be used to prioritize defaults. We provide a coupling between the
method for computing trust values in social networks given in (2) and the
prioritized terminological defaults of (1), where specificity of concepts is used
to prioritize defaults. We compare our approach with specificity-based priori-
tization, and discuss how the two can be combined. We also show that in the
resulting coupling, there are several strategies for resolving conflicts that may
arise between our own preferences and the preferences of nodes connected to
us in the social network. Finally, we discuss how our approach can apply to
other methods of prioritizing default logic.

2 Nonmonotonic Reasoning with Default Rules

When we reason, we often use “commonsense” rules that are generally but not
universally true. For example, we might infer from (P1) The flight is scheduled
to leave at 11:00 and (P2) Flights usually leave on time, that we should: (C) Be
at the airport in time for an 11:00 flight. While it’s certainly not true that every
flight leaves on time, the premise that this is typically true is what licensed
our inference. We can formalize a statement such as (P2) using default rules.
Below we briefly describe Reiter defaults and their simple extension to allow
priorities. For the sake of simplicity, we will focus on the account of prioritized
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defaults given in (1). We later show that our method for combining trust with
priorities can be applied to other ways of prioritizing default rules.

2.1 Reiter Defaults

A Reiter default (henceforth ‘default’) is of the form:

α : β

γ

where α, β and γ are formulae of first-order logic. The formula α is the pre-
requisite, β the justification and γ the consequent. A default rule can be read
intuitively as: if I can prove the prerequisite from what I believe, and the jus-
tification is consistent with what I believe, then add the consequent to my set
of beliefs.

Definition 1 (Default Theory) A default theory T is a pair 〈W ,D〉 where
W is a finite set of formulae representing the initial world description (or
initial set of beliefs), and D is a finite set {δ1, ..., δn} of defaults. T is closed
if no free variables appear in either W or D.

We will assume for simplicity that free variables in defaults only stand for
ground instances. We also, for the sake of exposition, assume that every default
has only one justification formula β, though our approach does not rely on
this restriction. On these points, we follow (1) where the reader may find a
detailed exposition.

The premise (P2) from our earlier example can be formalized as follows:

δf =
Flight(x) : OnTime(x)

OnTime(x)

Suppose thatW = {Flight(flight714)} and D = {δf}. ThenW ` Flight(flight714),
andW ∪ {OnTime(flight714)} is consistent, meaning the default δf is active.
Since δf is active, we apply it and obtain W = W ∪ {OnTime(flight714)}.
The deductive closure of this set is called an extension, which we characterize
formally below.

Definition 2 (Reiter Extension) Given a set of closed formulae E and a
closed default theory 〈W ,D〉, let E0 = W and ∀i ≥ 0 define:

Ei+1 = {γ | α : β

γ
∈ D, α ∈ Th(Ei) and ¬β 6∈ E}
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Then E is an Reiter extension of 〈W ,D〉 iff E =
⋃

i≥0 Th(Ei)

The above theory has one extension, namely Th(W ∪ {Flight(flight714)}).
Contrast this with the case where W is:

{Flight(flight714), Delayed(flight714), Delayed(x) → ¬OnTime(x)}

In this example, W ∪ {OnTime(flight714)} is inconsistent and the inference
that OnTime(flight714) is blocked. Thus, this theory has no extension where
OnTime(flight714) holds.

2.2 Cases of Conflict

Default rules can conflict. A simple abstract example is when two defaults, δ1

and δ2 are applicable (i.e. their justifications are consistent with our knowl-
edge) yet the consequent of δ1 is inconsistent with the consequent of δ2. We
then typically end up with two extensions ; one where the consequent of δ1

holds, and one where the consequent of δ2 holds. The case of two conflict-
ing defaults is illustrated below, as the “Chomsky Diamond” 1 although it is
possible to have arbitrarily many conflicting extensions with a larger set of
defaults.
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Fig. 1. Chomsky Diamond. Strict “is-a” relations are denoted using ‘→’, and defea-
sible (default) implication relations as ‘⇒’

1 The diamond is due to its shape when depicted as an inheritance network, illus-
trated in Figure 1
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Example 1 (Chomsky Diamond) Let T = 〈W ,D〉, where:

W = {Professor(chomsky), Activist(chomsky)}
D = {δ1, δ2}

δ1 =
Professor(x) : Passive(x)

Passive(x)

δ2 =
Activist(x) : ¬Passive(x)

¬Passive(x)

Note that T has two extensions, E1 and E2. In one,

Passive(chomsky) ∈ E1

while in the other,

¬Passive(chomsky) ∈ E2.

It is often desirable to resolve conflicting defaults like δ1 and δ2. This can be
done by introducing priorities, typically expressed as a partial ordering over
the set of defaults D. Given a priority relation <, we interpret δ1 < δ2 to mean
that δ2 has higher priority than δ1.

Definition 3 (Prioritized Default Theory) A prioritized default theory T
is a triple 〈W ,D, <〉, where W ,D are as usual, and < is a partial ordering on
D.

A prioritized version of T would be T = 〈W ,D, <〉. It is easy to see that if
δ1 < δ2, then E1 should not be an extension of T . The reason is that since
δ2 has higher priority, it should be applied first, which in turns blocks the
application of δ1. The definition formalizing this intuition, following (1) again,
is given below.

Definition 4 (Prioritized Extension) Let T = 〈W ,D, <〉 be a prioritized
default theory, and E a set of formulae. Let E0 = W, and ∀i ≥ 0 define:

Ei+1 = Ei ∪ {γ | d =
α : β

γ
∈ D, α ∈ Th(Ei),¬β 6∈ E ,

and every d′ > d is not active in Ei}

Then E is a prioritized extension of 〈W ,D, <〉 iff E =
⋃

i≥0 Th(Ei)

It is clear now that in the above example, if δ1 < δ2, then E1 is not an extension.
Similarly, if δ2 < δ1 were true, then E2 would not be an extension.
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There have been many other approaches to prioritized default logic, where a
priority relation is introduced in either the object or the meta language. We
refer the reader to (3) for an extensive survey.

Regardless of the specifics of a given approach, some kinds of priority relations
are undesirable. In particular, it is unrealistic to require the priority relation
to be a total ordering over the defaults, especially if we are dealing with a large
and changing collection of defaults. We follow the more common and flexible
approach which only requires the priority relation to be a partial ordering.

In previous approaches, the priority relation was usually taken as a given, and
sometimes compiled into the object language and reasoned over. In contrast,
our priorities are based on the trust rating of the sources of the defaults−i.e.
their creators−in a web-based social network. The next section introduces the
concept of trust in web-based social networks, and a corresponding algorithm
for computing trust ratings. In section 4 we apply this work to the case of
prioritizing defaults.

3 Trust in Web-based Social Networks

Web-based social networks (WBSNs) are online communities where users
maintain lists of people they know. Other users can browse those connec-
tions, and access contact and profile information about people in the network.
The popularity of WBSNs has grown dramatically over the last few years,
with hundreds of networks that have hundreds of millions of members. Within
WBSNs, a variety of features are available to allow users to annotate their
relationship; trust is one of these.

When trust is assigned on a quantitative scale, we can make computations with
trust values in the network. If we choose a specific user and look at all of the
trust ratings assigned to that person, we can see the average opinion about
the person’s trustworthiness. Trust, however, is a subjective concept where
averages are often unhelpful. Consider the simple example of asking weather
the President is trustworthy. Some people believe very strongly that he is,
and others believe very strongly that he is not. In this case, the average trust
rating is not useful to either group. However, given provenance information
about the trust annotations, we can significantly improve on the average case.
If someone (the source) wants to know how much to trust another person
(the sink), we can look at the who trusts the sink, see how much the source
trusts the intermediate people, and produce a result that weights ratings from
trusted people more highly than those from untrusted people.

In this section, we present a description of and algorithm for inferring trust
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values, and show how the results can be applied.

3.1 Background and Related Work

We present an algorithm for inferring trust relationships in social networks, but
this problem has been approached in several ways before. Here, we highlight
some of the major contributions from the literature and compare and contrast
them with our approach.

Trust has been studied extensively in peer-to-peer systems including (4), (5),
(6). There are basic differences in the meaning of trust in P2P networks and
social networks that makes these algorithms inappropriate for social use. In
P2P systems, trust is a measure of performance, and one would not expect the
performance of peera to be very different when it is interacting with peerb vs.
peerc. Thus, one global recommendation about the trustworthiness of peera

will usually be sufficient. Socially, though, two individuals can have dramat-
ically different opinions about the trustworthiness of the same person. Our
algorithms intentionally avoid using a global trust value for each individual to
preserve the personal aspects that are foundations of social trust.

There are several algorithms for computing trust in social networks specifically.
A thorough treatment can be found in (2). Our algorithm differs from most
existing algorithms in one of three major ways: we output recommendations
in the same scale that users assign trust (vs. eigenvector based approaches like
(7)), our computations are about people (vs. trust in statements as in (8)),
and we create personalized recommendations (vs. global ratings as are used
in P2P systems and (9)).

3.2 Issues for Inferring Trust

When two individuals are directly connected in the network, they can have
trust ratings for one another. Two people who are not directly connected
to not have that trust information available by default. However, the paths
connecting them in the network contain information that can be used to infer
how much they may trust one another.

For example, consider that Alice trusts Bob, and Bob trust Charlie. Although
Alice does not know Charlie, she knows and trusts Bob who, in turn, has
information about how trustworthy he believes Charlie is. Alice can use in-
formation from Bob and her own knowledge about Bob’s trustworthiness to
infer how much she may trust Charlie. This is illustrated in Figure 2.
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Fig. 2. An illustration of direct trust values between nodes A and B (tAB), and
between nodes B and C (tBC). Using a trust inference algorithm, it is possible to
compute a value to recommend how much A may trust C (tAC).

To accurately infer trust relationships within a social network, it is important
to understand the properties of trust networks. Certainly, trust inferences will
not be as accurate as a direct rating. There are two questions that arise which
will help refine the algorithm for inferring trust: how will the trust values for
intermeidate people affect the accuracy of the inferred value, and how will the
length of the path affect it.

We expect that people who the user trusts highly will tend to agree with
the user more about the trustworthiness of others than people who are less
trusted. To make this comparison, we can select triangles in the network.
Given nodes ni, nj, and nk, where there is a triangle such that we have trust
values tij, tik, and tkj, we can get a measure of how trust of an intermediate
person can affect accuracy. Call ∆ the difference between the known trust
value from ni to nk (tik) and the value from nj to nk (tik). Grouping the ∆
values by the trust value for the intermediate node (tij) indicates on average
how trust for the intermediate node affects the accuracy of the recommended
value. Several studies (10),(2) have shown a strong correlation between trust
and user similarity in several real-world networks.

It is also necessary to understand how the paths that connect the two in-
dividuals in the network affect the potential for accurately inferring trust
relationships. The length of a path is determined by the number of edges the
source must traverse before reaching the sink. Does the length of a path affect
the agreement between individuals? Specifically, should the source expect that
neighbors who are connected more closely will give more accurate information
than people who are further away in the network?

In previous work (2),(11) this question has been addresses using several real
networks. The first network is part of the Trust Project, a Semantic Web-
based network with trust values and approximately 2,000 users. The FilmTrust
network 2 , see Figure 3, is a network of approximately 700 users oriented
around a movie rating and review website. We will use FilmTrust for several
examples in this paper. Details of the analysis can be found in the referenced
work, but we present an overview of the analysis here.

2 Available at http://trust.mindswap.org/FilmTrust
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Fig. 3. This figure illustrates the social network in the FilmTrust website. There is
a large central cluster of about 450 connected users, with small, independent groups
of users scattered around the edges.).

Table 1
Minimum ∆ for paths of various lengths containing the specified trust rating.

Trust Value Path Length

2 3 4 5

10 0.953 1.52 1.92 2.44

9 1.054 1.588 1.969 2.51

8 1.251 1.698 2.048 2.52

7 1.5 1.958 2.287 2.79

6 1.702 2.076 2.369 2.92

To see the relationship between path length and trust, we performed an ex-
periment. We selected a node, ni, and then selected an adjacent node, nj. This
gave us a known trust value tij. We then ignored the edge from ni to nj and
looked for paths of varying lengths through the network that connected the
two nodes. Using the trust values along the path, and the expected error for
those trust values, as determined by the analysis of the correlation of trust and
similarity determined in (2). Call this measure of error ∆. This comparison is
repeated for all neighbors of ni, and for all ni in the network.

For each path length, Table 1 shows the minimum average∆ (∆). These are
grouped according to the minimum trust value along that path.

In Figure 4, the effect of path length can be compared to the effects of trust
ratings. For example, consider the ∆ for trust values of 7 on paths of length
2. This is approximately the same as the ∆ for trust values of 10 on paths
of length 3 (both are close to 1.5). The ∆ for trust values of 7 on paths of
length 3 is about the same as the ∆ for trust values of 9 on paths of length
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Fig. 4. Minimum ∆ from all paths of a fixed length containing a given trust value.
This relationship will be integrated into the algorithms for inferring trust presented
in the next section.

4. A precise rule cannot be derived from these values because there is not a
perfect linear relationship, and also because the points in Figure 4 are only
the minimum ∆ among paths with the given trust rating.

3.3 TidalTrust: An Algorithm for Inferring Trust

The effects of trust ratings and path length described in the previous sec-
tion guided the development of TidalTrust, an algorithm for inferring trust
in networks with continuous rating systems. The following guidelines can be
extracted from the analysis of the previous sections: 1. For a fixed trust rat-
ing, shorter paths have a lower ∆. 2. For a fixed path length, higher trust
ratings have a lower ∆. This section describes how these features are used in
the TidalTrust algorithm.

3.3.1 Incorporating Path Length

The analysis in the previous section indicates that a limit on the depth of the
search should lead to more accurate results, since the ∆ increases as depth
increases. If accuracy decreases as path length increases, as the earlier anal-
ysis suggests, then shorter paths are more desirable. However, the tradeoff is
that fewer nodes will be reachable if a limit is imposed on the path depth.
To balance these factors, the path length can vary from one computation to
another. Instead of a fixed depth, the shortest path length required to con-
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nect the source to the sink becomes the depth. This preserves the benefits of
a shorter path length without limiting the number of inferences that can be
made.

3.3.2 Incorporating Trust Values

The previous results also indicate that the most accurate information will
come from the highest trusted neighbors. As such, we may want the algorithm
to limit the information it receives so that it comes from only the most trusted
neighbors, essentially giving no weight to the information from neighbors with
low trust. If the algorithm were to take information only from neighbors with
the highest trusted neighbor, each node would look at its neighbors, select
those with the highest trust rating, and average their results. However, since
different nodes will have different maximum values, some may restrict them-
selves to returning information only from neighbors rated 10, while others
may have a maximum assigned value of 6 and be returning information from
neighbors with that lower rating. Since this mixes in various levels of trust,
it is not an ideal approach. On the other end of possibilities, the source may
find the maximum value it has assigned, and limit every node to returning in-
formation only from nodes with that rating or higher. However, if the source
has assigned a high maximum rating, it is often the case that there is no path
with that high rating to the sink. The inferences that are made may be quite
accurate, but the number of cases where no inference is made will increase.
To address this problem, we define a variable max that represents the largest
trust value that can be used as a minimum threshold such that a path can be
found from source to sink.

3.3.3 Full Algorithm for Inferring Trust

Incorporating the elements presented in the previous sections, the final Tidal-
Trust algorithm can be assembled. The name was chosen because calculations
sweep forward from source to sink in the network, and then pull back from
the sink to return the final value to the source.

tis =

∑
j ∈ adj(j) | tij ≥ max

tijtjs∑
j ∈ adj(j) | tij ≥ max

tij
(1)

TidalTrust is a modified breadth-first search. The source’s inferred trust rating
for the sink (tsource,sink) is a weighted average if the source’s neighbors’ ratings
of the sink (see Forumula 1). The source node begins a search for the sink.
It will poll each of its neighbors to obtain their rating of the sink. If the
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Table 2
∆ for TidalTrust and Simple Average recommendations in both the Trust Project
and FilmTrust networks. Numbers are absolute error on a 1-10 scale.

Algorithm

Network TidalTrust Simple Average

Trust Project 1.09 1.43

FilmTrust 1.35 1.93

neighbor has a direct rating of the sink, that value is returned. If the neighbor
does not have a direct rating for the sink, it queries all of its neighbors for
their ratings, computes the weighted average as shown in Formula 1, and
returns the result. Each neighbor repeats this process, keeping track of the
current depth from the source. Each node will also keep track of the strength
of the path to it, computed as the minimum of the source’s rating of the node
and the node’s rating of its neighbor. The neighbor records the maximum
strength path leading to it. Once a path is found from the source to the
sink, the depth is set at the maximum depth allowable. Since the search is
proceeding in a Breadth First Search fashion, the first path found will be at
the minimum depth. The search will continue to find any other paths at the
minimum depth. Once this search is complete, the trust threshold (max) is
established by taking the maximum of the trust paths leading to the sink.
With the max value established, each node completes the calculations of a
weighted average by taking information from nodes that they have rated at or
above the max threshold. Those values are passed back to the neighbors who
queried for them, until the final result is computed at the source.

3.4 Accuracy of TidalTrust

As presented above, TidalTrust strictly adheres to the observed characteristics
of trust: shorter paths and higher trust values lead to better accuracy. However,
there are some things that should be kept in mind. The most important is
that networks are different. Depending on the subject (or lack thereof) about
which trust is being expressed, the user community, and the design of the
network, the effect of these properties of trust can vary. While we should still
expect the general principles to be the same−shorter paths will be better
than longer ones, and higher trusted people will agree with us more than less
trusted people−the proportions of those relationships may differ from what
was observed in the sample networks used in this research.

There are several algorithms that output trust inferences, but none of them
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produce values within the same scale that users assign ratings. Some trust al-
gorithms form the Public Key Infrastructure (PKI), such as Beth-Borcherding-
Klein (12), are more appropriate for comparison. Due to space limitations that
comparison is not included here, but can be found in (2). One direct compar-
ison to make is to compare the ∆ from TidalTrust to the ∆ from taking the
simple average of all ratings assigned to the sink as the recommendation. We
made this comparison using two real world networks. As shown in table2, the
TidalTrust recommendations outperform the simple average in both networks,
and these results are statistically significant with p < 0.01.

4 Basing Priority on Trust Values

Given a social network, an ordinary default theory T , and a source node Src in
the network, we can now now prioritize the defaults according to trust values.

procedure TrustPrioritize(W, D, Src, Prov):

Input:

(1) A set of initial formulae W

(2) A source node Src

(3) A set D = {δ1, ..., δn} of defaults,

(4) A function Prov : D → Nodes

Output:

A set of extensions

P := ∅

for every d, d′ ∈ D:

if TidalTrust(Src, Prov(d)) < TidalTrust(Src, Prov(d′)):

P = P ∪ {d < d′}

if Prov(d) = Src and Prov(d′) 6= Src:

P = P ∪ {d′ < d}

return ComputeExtensionsPL(W, D, P )

Fig. 5. Generating Priorities from Trust Values
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Fig. 6. The social network between John, Mary, Dave, Jane and Alice

4.1 Algorithm

The simple algorithm for generating extensions based on trust values is given
in Figure 4. Note that our method does not make any assumptions about the
specifics of the base default logic language PL. We do, however, assume the
following are available:

(1) A function ComputeExtensionsPL for computing the extensions of PL,
which takes a prioritized default theory as input.

(2) A source node, which in our case is the node according to which priorities
will be generated. Intuitively, this can be thought of as our ‘viewpoint’ in
the social network−we reason from the perspective of the source node.

If restricted to normal form, any prioritized default theory of (1) is always
guaranteed to have an extension. In addition, every prioritized normal default
extension is also a Reiter extension. Since we have not in any way changed
the semantics of the prioritized defaults, it is obvious that the same desirable
properties hold true for our approach. For this reason, we restrict ourselves to
normal defaults for the remainder of the paper.

4.2 Example: Using Trust for Choosing a Film

Suppose that we are dealing with a film knowledge base. A group of friends−John,
Mary, Dave, Jane and Alice−each input their film preferences, such as pre-
ferred genre or directors/actors, in the form of default rules. Their preferences
are as follows:
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W = {IndieF ilm(hce), SpanishF ilm(hce), DirectedBy(hce, Almodovar)}

D = {δjohn, δdave, δjane}

δjohn =
Comedy(x)

¬Watch(x)

δjane =
IndieF ilm(x) ∧ SpanishF ilm(x)

¬Watch(x)

δdave =
IndieF ilm(x) ∧DirectedBy(x, Almodovar)

Watch(x)

We assume that every Spanish film is a film, and similarly that every film
directed by anyone (in our case, Almodovar) is also a film.

In our scenario, John, Mary, Dave and Alice are part of a social network,
shown in Figure 6. The direct trust values between two nodes in the network
are given in bold, while inferred trust values are italicized and are shown as a
dotted edge.

Suppose that John is trying to decide whether or not he should watch the film
hce, the only film currently in our knowledge base. John’s only preference is
not to watch comedies, which does not apply to hce. Simply looking at the
defaults in D, a conflict arises. According to δjane, John should not watch the
movie since it is a Spanish film. On the other hand, according to δdave, John
should watch the film since it is directed by Almodovar.

Note that John did not directly rate Dave and Jane. John’s only connection
to the two is via Mary, who he highly trusts. Mary does not have any film
preferences, and so we cannot use her to resolve the conflict. According to
TidalTrust, John’s inferred trust values for Dave and Jane are 8 and 7, re-
spectively. Thus, the relevant priority yielded in this case is δjane < δdave,
which allows John to conclude that he should watch hce.

Consider the same scenario, except this time with Alice as the source node.
Unlike John, Alice has direct trust ratings for Dave and Jane, and unlike
Mary, Alice has stated that Jane is more trusted than Dave Therefore, there
will be an extension where Alice’s conclusion, based on the generated priorities
δdave < δjane, is not to watch hce. Clearly, this extension is not possible if we
pick John as the source node, differentiating between the two nodes’ relations
to the rest of the social network.
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5 Resolving Conflicting Priorities

In the algorithm as given (see Figure 4), we can easily have situations where
due to conflicting priorities, the generated prioritized default theory has no
extensions. This can be illustrated by an abstract example. Consider the social
network and default configuration in Figure 5, where A is assumed to be the
source node. As indicated, A has no preferences, so the set of its asserted
defaults (i.e. defaults that A endorses) is empty. Node B asserted the default
δ2, and both C and D assert the default δ1. The combined algorithm will then
generate, if A is assumed as the source node, the following priorities:

(1) δ1 < δ2 since A trusts B more than C, and,
(2) δ2 < δ1 since A trusts D more than C

Since (1) and (2) are clearly inconsistent, < is no longer a partial order, and
the resulting default theory will have no extensions. This can be avoided by
picking, for every default δ ∈ D, the most highly trusted node that asserted
it, and using this value in the computation of the priorities for a given source
node. In the current case, the most highly trusted node that asserted δ1 is
D. Thus, when computing the priorities for A, it is D’s trust value that is
considered, giving us the single correct priority δ2 < δ1.

6 Discussion and Conclusions

6.1 Priority of the Source Node

Cases can arise where the source node has a default that conflicts with another
node’s default. In our approach, we chose to prioritize the defaults of the source
higher than the defaults of other nodes in the social network. This is reflected
in the algorithm, where we explictly add to the default theory that the defaults
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associated with the source have higher priority than all others. We believe this
is the most appropriate choice for the case when dealing with social networks.

If the choice to explicitly prefer the source’s defaults is not made, then new
cases of conflict can arise. Consider the following abstract example. Suppose
we have a root node A with an edge AB. Assume that A has one default whose

consequent is ϕ(x), i.e. δA =
>

ϕ(x)
, and that B has one default δB =

>
¬ϕ(x)

.

Regardless of the value tAB (or the value of any other edges A might have)
we are guaranteed to have an extension where ϕ(x) holds. The reason is that
A does not necessarily have an explicit trust rating for itself, i.e. there is no
tAA value. Note that this is very different from the usual reason for why δA

and δB would generate two extensions in ordinary default logic. Therefore, in
systems where this value is not present or assumed, it seems there is no way
to determine the priority of δA compared with other defaults in the system.
This issue will arise whenever the source node has an applicable default whose
consequent might conflict with defaults of other nodes in the system.

In such cases, at least two simple resolutions are possible:

(1) Make the assumption that the source node has “infinite” credibility−i.e.
one always trusts oneself over all others, or alternatively,

(2) Make the assumption that when getting a recommendation from other
nodes, one should ignore one’s own preferences.

In our approach, the first choice was made. We contrast this with the case
where specificity is used as a measure of priority.

6.2 Priority and Specificity

In (1), priorities between defaults are induced by the specificity of their justifi-
cations. While this approach is useful, it cannot resolve every case. In our first
example where John is the source node, a specificity-based approach will not
decide between Dave’s default rule and Alice’s. In this case, our approach can
be used to supplement the priorities generated by specificity-based approach.

Going back to the issue raised by the preferences of the source in the film
example, we see that specificity might be altogether inappropriate. For exam-
ple, suppose that John is the source node and we know that in general his
preference not to watch any film that is a comedy. Let’s assume that we have
one given film, c, and that RomanticComedy(c) and RomanticComedy(x) →
Comedy(x). In this case, it does not make sense for John’s choice to not
watch c, based on his preference, to be defeated by another node X, where
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δX =
RomanticComedy(x)

Watch(x)
simply because δX is more specific. John’s pref-

erence, while defined more generally than that of node X, should still apply.

In the Tweety triangle, specificity clearly leads to the desirable extension.
In fact, whenever dealing with a set of defaults that are meant to classify
objects and their properties most accurately, the specificity-based approach
is generally more appropriate. However, as we have shown, such an approach
may fail if we use a set of defaults to express user preference.

6.3 Other approaches to priorities

We have focused on the method of prioritization of defaults in (1). Our mo-
tivation for focusing on the system of (1) has been two-fold: (i) the system
has straight-forward and simple semantics, which was clearer for the sake of
exposing our method, and (ii) it is focused on description logics, which are
naturally relevant to Semantic Web applications due to their correspondence
to subsets of OWL.

Following the classification of approaches to priorities offered in (3), we see
that priorities in this system have the following properties:

(1) Range over rules – the priority relation < is an irreflexive partial ordering
over the set D of defaults.

(2) Static – the priority relation < for a given default theory is fixed and
may not change in the course of reasoning.

(3) Meta-level – the priority relation < is given “outside” of the language of
default logic, as a separate component of the default theory.

(4) Prescriptive – the priority relation < specifies that defaults with higher
priority should be applied first.

Some have argued against the prescriptive priorities (see (13)), showing exam-
ples where they lead to counter-intuitive results. In these examples, defaults
that are ranked lower than others are sometimes applied first, because the
more highly prioritized defaults are not–in that stage of reasoning–applicable.
The descriptive approach to preferences aim to resolve such problems, by in-
terpreting the set of priorities as representing “a ranking on desired outcomes:
the desirable (or: preferred) situation is one where the most preferred defaults
are applied.” (3). One could easily apply our approach to these logics where
the priority relation is interpreted descriptively.

Similarly, many systems with different properties than the above (putting
aside descriptive v. prescriptive distinctions) have been investigated in the lit-
erature. For example, systems with dynamic priorities, and priorities in the
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object-language, are naturally appealing for their increased expressivity. In
such systems, applying our trust-induced priorities is less obvious. The reason
is that in these systems, the priority relations among defaults can be inferred,
and more importantly, might change in the course of reasoning (i.e. the pri-
orities are, like defaults themselves, defeasible.) While such systems can use
our trust-based method for generating the priorities to start with, it is unclear
what the interaction between the inferred priority and trusted one will be.
In other words, since one will be able to talk about priorities in the object-
language, conflicts between priorities recommended by the given knowledge
base (inferred priorities) and priorities induced by the trust values from the
social networks can arise.

6.4 Conclusions

In summary, we have presented a coupling between traditional default logic
with priorities and a method for inferring trust in web-based social networks.
We argue that the latter provides a good way to generate priorities for de-
fault rules. This approach makes it possible to make use of the many large
and readily available existing web-based social networks, thus grounding the
priorities in real web data. Such an approach differs from the more traditional
approaches to priority, where the priorites are taken as specifically tailored to
the set of defaults at hand.

While the more traditional approach is appropriate for closed knowledge repre-
sentation systems (where priorities are assumed as given or inputted manually)
our approach reuses existing web data, which makes the introduction of prior-
itized defaults into established web systems less demanding. Furthermore, we
emphasize that in a system where default rules use a different mechanism for
priorities (such as specificity), user preferences, encoded as a web-based social
network, can be used as an alternative. That is, when the first mechanism of
priority might be incomplete, the priorities generated from the social network
can be used to possibly fill in the gap. In addition, we have also shown a case
where a specificity-based approach is likely to be inappropriate, and where a
trust value based approach shows more promise.

7 Future Work

On the theoretical front, at least two issues are left open. The first, discussed
in an earlier section, is the application of our method to default logic systems
where the priorities are both dynamic and expressible in the object-language.
Such systems are more complex than the prioritized default logic explored
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here, and strategies for resolving conflicts between priorities as described the
object-language and priorities determined by trust will be needed.

A second theoretical issue arises from a limitation of our approach. Currently,
we assume that the priorities for the source node are determined solely by the
trust relations of that node in the social network. However, it is natural to
allow the source nodes in some domains to prioritize its own set of asserted
defaults. If this is allowed, another source of conflict is possible, between the
priorities of the source for its own set of defaults, and the priorities generated
by its trust relations to other nodes who are committed to rules of the same
set. For example, suppose that a source node Src is committed to both δ1

and δ2, and specifies that δ2 < δ1. Now assume that node tSrc,A = 5, and
tSrc,B = 9. If B is committed to δ2 and A to δ1, then applying our algorithm
as given will generate the conflicting preference δ1 < δ2, leading to a default
theory with no extension. It would be interesting for this case to apply work
on revising priorities and preference relations in default logics (such as (14)),
to allow the source node to intelligently pick between its own priorities and
that of its neighbors in the network.

On the practical front, the quality of the results obtained by prioritizing with
trust can be determined empirically when they are applied within applications.
One of the main networks we have used for testing is part of the FilmTrust
system. FilmTrust currently uses inferred trust values to compute predictive
movie ratings customized to each user based on who they trust. However, the
current system does not allow for users to specify any default rules about their
preferences. Such a default rule system fits well in the context of films.

As part of our future work, we will be deploying a rule system in the FilmTrust
system 3 , a social network about movies. These defaults will be used in two
ways. First, they can help tailor recommendations for the user who asserted
rules. They can also be used to filter recommendations for others who trust
the user who asserted the rules. In this application, it will be common for
defaults to conflict. In such cases, trust is an obvious option for determining
which rules to apply.

This will allow us to quantitatively and qualitatively measure the performance
of using trust for prioritizing defaults. Showing that the trust-prioritized de-
faults improve performance will validate how our approach can be used to
develop intelligent applications.

3 http://trust.mindswap.org/FilmTrust/
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