
On the Relationship between Functional Encryption,
Obfuscation, and Fully Homomorphic Encryption

Joël Alwen1, Manuel Barbosa2, Pooya Farshim3, Rosario Gennaro4,
S. Dov Gordon5, Stefano Tessaro6,7, and David A. Wilson7

1 ETH Zurich
2 HASLab – INESC TEC and Universidade do Minho

3 Fachbereich Informatik, Technische Universität Darmstadt
4 City University of New York

5 Applied Communication Sciences
6 University of California, Santa Barbara

7 MIT

Abstract. We investigate the relationship between Functional Encryption (FE)
and Fully Homomorphic Encryption (FHE), demonstrating that, under certain
assumptions, a Functional Encryption scheme supporting evaluation on two ci-
phertexts implies Fully Homomorphic Encryption. We first introduce the notion
of Randomized Functional Encryption (RFE), a generalization of Functional En-
cryption dealing with randomized functionalities of interest in its own right, and
show how to construct an RFE from a (standard) semantically secure FE. For this
we define the notion of entropically secure FE and use it as an intermediary step
in the construction. Finally we show that RFEs constructed in this way can be
used to construct FHE schemes thereby establishing a relation between the FHE
and FE primitives. We conclude the paper by recasting the construction of RFE
schemes in the context of obfuscation.

Keywords. Functional encryption, Randomized functionality, Obfuscation, Ho-
momorphic encryption.

1 Introduction

The goal of this work is to draw connections between FE and FHE. The moti-
vation is twofold. On the one hand, from a purely theoretical point of view it
is interesting to understand the relationship between these new concepts, both
of which promise to guide much future research in the area. On the other hand,
from a constructive point of view, we hope that by exploring this relationship we
can also discover connections that will help us progress towards new construc-
tions of FHE schemes, taking advantage of techniques used in constructing FE
schemes. This motivation is even stronger in light of very recent developments
in the area, which indicate that constructing efficient FE schemes supporting
complex functionalities may be within our reach in the near future. For exam-
ple, an FE for arbitrary functionalities has been recently proposed in [13], as
well as functional encryption for regular languages in [19]. Goldwasser et al. re-
cently demonstrated that FHE together with attribute-based encryption implies

FE [12]; here we study the opposite problem, asking what additional assump-
tions can be used to build FHE from FE.

To explain our high-level approach to accomplishing this goal, let us con-
sider the main differences between FE and FHE. For any function f(·), an FHE
scheme allows us to compute an encryption of f(x) from an encryption of x;
whereas an FE scheme allows us to compute, in the clear, f(x) from an encryp-
tion of x. Our intuition is that an FE scheme supporting functions of the type
Encf , where Encf (x) = Enc(f(x)) is a re-encryption of f(x), would be very
close to constructing an FHE scheme. However, an immediate problem inher-
ent to this approach is how to provide the tokens needed for the computation of
Encf , when f can be arbitrary. We will demonstrate that this can be done if one
considers FE schemes that support functions on two inputs f(x1, x2). In this
case, it is sufficient to publish the token for EncNAND(x1, x2) = Enc(¬(x1 ∧
x2)), as any Boolean function can be computed using a circuit of NAND gates.

When we set out to formally prove this intuition we stumbled across two ma-
jor definitional issues: First, the “re-encryption” functionality described above
is a “randomized” functionality, a case which is not treated in the original defini-
tions of FE [7,16]. Second, this approach to constructing FHEs from FEs relies
on a functionality that re-encrypts under the original encryption key. However,
this implies extending the syntax of functional encryption schemes to allow for
functionalities that take the domain parameters as an additional input (i.e., where
the functionality can depend on the master public key).

RANDOMIZED FUNCTIONAL ENCRYPTION. In Randomized Functional Encryp-
tion an encryptor is able to hide an input within a ciphertext in such a way
that authorized decryptors can only recover the result of applying a randomized
function to it. Intuitively, the encryption and/or decryption operations can take
additional randomness that is fed into the randomized function upon decryp-
tion, ensuring that the recovered image f(x) is distributed as if the randomized
function was calculated on fresh randomness r as f(x; r). This is a correct-
ness criterion. As for functional encryption, the security goal in RFE is to en-
sure that the decryption operation leaks no more about x than that which could
be inferred from the output of the randomized functionality with private ran-
domness.We introduce a natural indistinguishability-based notion of security for
randomized functional encryption to capture this intuition, and show that it suf-
fices to establish a relation to fully homomorphic encryption. Indeed, we show
that an IND-CPA-secure RFE supporting the NAND re-encryption functionality
EncNAND(x1, x2) described above can be used as a secure fully homomorphic
encryption scheme.

Randomized Functional Encryption is an interesting cryptographic prim-
itive in its own right. In the full version of this paper we show that various

existing public-key encryption schemes can actually be seen as particular in-
stances of this primitive, e.g., those supporting re-randomization of ciphertexts
and re-encryption. That said, our primary motivation in introducing the notion
of RFE is to enable the construction of FHE from FE, so we do not attempt
to fully explore the subtleties of RFE. In particular, we provide and use a very
strong indistinguishability notion for RFE which is likely too strong to admit
many interesting functionalities, but suffices for building FHE. We leave further
exploration of RFE to future work.

FROM FUNCTIONAL ENCRYPTION TO RFE AND FHE. We show how FE sch-
mes can be used to build RFE schemes, which, in turn, can be used to construct
a fully homomorphic encryption scheme, as described above. To this end, we
begin by extending the syntax and security definitions for functional encryption
schemes as follows: 1) we modify the syntax to allow functionalities to take mul-
tiple inputs,as well as the domain parameters as an extra input; 2) we introduce a
new indistinguishability notion of security for FE schemes that we call entropic
security in the spirit of the eponymous definition of Russel and Wang [18]; and
3) we extend the semantic security definition of Gorbunov, Vaikuntanathan, and
Wee [13] to accommodate our new syntactic extensions. We also discuss the re-
lation between the two security notions we propose, and show that, under certain
conditions, semantic security implies entropic security.

We then present a generic construction of an RFE scheme supporting a given
randomized functionality RFn of arity n, from an entropically secure FE sup-
porting a specific functionality Fn of the same arity. Interestingly, for binary
functionalities we require a PRF that resists a particular class of related-key at-
tacks [5,4] in order to prove the security of our construction. When combined
with the semantically secure FE construction of Gorbunov, Vaikuntanathan, and
Wee [13], our results for the unary case yield positive feasibility results for RFE
supporting complex functionalities.

Finally, we present two constructions of FHE from functional encryption.
The direct construction from an RFE supporting NAND re-encryption men-
tioned above gives us that entropically secure functional encryption supporting
a binary functionality (and taking also the domain parameters) implies FHE.
However, we cannot show that the required RFE scheme can be constructed by
assuming semantic security alone. Our second construction uses two RFEs and
a PKE, and it enables leveled homomorphic computation using an adaptation
of the bootstrapping technique of Gentry [11] to the functional setting. We can
relate the security of this construction to semantically secure functional encryp-
tion supporting functionalities of arity 2 (there is no need for the functionality to
take the domain parameters). As is typical of bootstrapping techniques, an extra

assumption akin to key-dependent message (KDM) security [11] allows us to
use this construction as an FHE scheme.

CONNECTION WITH OBFUSCATION. As our final contribution, we explore the
problem of obfuscating specific re-encryption functionalities, introducing new
notions extending those proposed in earlier works on re-encryption [14,9]. We
then explain how to use such obfuscated circuits to obtain RFE schemes suitable
for FHE constructions.

STRUCTURE OF THE PAPER. In Section 2 we recall the syntax and security of
FE schemes, and introduce a set of extensions that we require for our results. In
Section 3 we introduce randomized functional encryption. In Section 4 we in-
troduce the notion of entropic securityand, in Section 5, we present generic con-
structions of fully homomorphic encryption schemes from RFE schemes.Finally,
the connection with obfuscated re-encryption is explored in Section 6.

2 Functional Encryption

NOTATION. We start by settling the notation. We write x ← y for assigning
value y to variable x. We write x←$ X for sampling x from set X uniformly at
random. If A is a probabilistic algorithm we write y←$ A(x1, . . . , xn) for the
action of running A on inputs x1, . . . , xn with random coin chosen uniformly at
random, and assigning the result to y. We use “:” for appending to a list, and de-
note the empty string by ε. For random variable X we denote by [X] the support
of X, i.e., the set of all values that X takes with nonzero probability. All algo-
rithms in this paper are probabilistic polynomial-time. We say η(λ) is negligible
if |η(λ)| ∈ λ−ω(1). Finally in various security games we use the notation AO

and adversary A haveing oracle access to all oracles specified within the same
figure as the game.

We now formalize the syntax and security of an FE scheme, extending it with
respect to several features that were proposed in [7].

DETERMINISTIC FUNCTIONALITY. A deterministic functionality is an algo-
rithm Fn implementing an n-ary function f over a parameter space Fn.Prms,
a key space Fn.KeySp, and a plaintext space Fn.MsgSpn:

f : Fn.Prms× Fn.KeySp× Fn.MsgSpn −→ Fn.Rng .

We require that the key space contains a special key called the empty key de-
noted kε. The empty key abstracts the information that publicly leaks from a
ciphertext. This function in most natural cases would only depend on a single
argument, although one may envisage the more general case where it has arity

n. Throughout the paper we assume the messages in the message space are of
equal length, and whenever the empty key is not explicitly defined, it is assumed
that it returns the length of its first input.

SYNTAX. A functional encryption (FE) scheme FE for the functionality Fn (of
arity n) is specified by four algorithms as follows.

1. FE.Setup(1λ): This is the setup algorithm. On input the security parameter,
this algorithm outputs a master secret key Msk and master public key Mpk, a
key space, and a message space. We require that the set of all possible master
public keys output by the setup algorithm, the key space, and the message
space are identical to Fn.Prms, Fn.KeySp, and Fn.MsgSp respectively.

2. FE.TKGen(k,Msk): This is the token-generation algorithm. On input a key
k ∈ Fn.KeySp, and a master secret key Msk, it outputs a token TK. We
assume, without loss of generality, that the token for the empty functionality
is the empty string.

3. FE.Enc(m,Mpk): This is the encryption algorithm. On input a message m ∈
Fn.MsgSp and a master public key Mpk, it outputs a ciphertext c.

4. FE.Dec(c1, . . . , cn,TK,Mpk): This is the deterministic decryption (or eval-
uation) algorithm. On input n ciphertexts, a token TK, and a master public
key Mpk, it outputs a message m or a special failure symbol ⊥.

CORRECTNESS. We call scheme FE correct if, for (Msk,Mpk)←$ FE.Setup(1λ),
any m1, . . . ,mn ∈ Fn.MsgSp, randomly chosen ci ←$ FE.Enc(mi,Mpk) for
1 ≤ i ≤ n, any k ∈ Fn.KeySp, and randomly chosen TK←$ FE.TKGen(k,Msk),
Pr [FE.Dec(c1, . . . , cn,TK,Mpk) 6= Fn(Mpk, k,m1, . . . ,mn)] is negligible as
a function of λ.

SECURITY. We now discuss security notions for FE that match our syntactic
extensions to the primitive. Given the limitations of indistinguishability-based
notions already identified in [7,16] and further discussed in the full version of
this paper, we adopt a semantic (or simulation-based) security notion akin to
those in [7,16,13,3,6,2]. More precisely, we adopt of [13] extended to multiple
encryption queries. Our choice is due to the conceptual simplicity of the model
and to the general feasibility result we automatically obtain for unary function-
alities. We restrict our attention to TNA queries to avoid impossibility results
such as those presented in [7,6,2]. The definition formalizes the intuition that
in a secure FE scheme, no information beyond that which is leaked through
extracted tokens is available to an adversary. The fine details of the semantic
security model are not important to our results, as long as the model is strong
enough to imply an indistinguishability-based notion (Definition 8) that we in-
troduce later in the paper.

Definition 1 (Semantic security). Let games SS-RFE,A,D and SS-IFE,A,S,D be
as in Figure 1. Let FE be an (n-ary) functional encryption scheme. We say FE is
semantically secure if, for any adversaryA, there exists a simulator S such that
for all distinguishers D the following definition of advantage is negligible.

Advss-cpa
FE,A,S,D(λ) := Pr

[
SS-RFE,A,D(1λ)⇒ T

]
−Pr

[
SS-IFE,A,S,D(1λ)⇒ T

]
Game SS-RFE,A,D(1λ):
KList← [kε]; m←⊥
(Msk,Mpk)←$FE.Setup(1

λ)

α←$ AToken,Enc0(Mpk)
Return D(MList, α)

Game SS-IFE,A,S,D(1λ):
KList← [kε]; m←⊥
(Msk,Mpk)←$FE.Setup(1

λ)

α←$ AToken,Enc1(Mpk)
Return D(MList, α)

oracle Token(k):
TK←$ FE.TKGen(k,Msk)
KList← k : KList
Return TK

oracle Enc0(m):
c←$ FE.Enc(m,Mpk)
MList← m : MList
Return c

oracle Func(I, k,m1, . . . ,mn):
For (i, j) ∈ I do

mi ← MList[j]
Return Fn(Mpk, k,m1, . . . ,mn)

oracle Enc1(m):
c←$ SFunc(Mpk,KList)
MList← m : MList
Return c

Fig. 1: Games defining the semantic security of an FE scheme. A is legitimate if it does not
call Token after calling Encb. In the single-message model A can call Encb exactly once.
Simulator S is legitimate if it queries Func with k ∈ KList only.

THE Func ORACLE. Note that providing a ciphertext and a set of tokens to the
adversary in the real world allows the adversary to compute many images of the
functionality simply by encrypting fresh ciphertexts and decrypting (evaluating)
them along with the provided ciphertext. Our definition provides an oracle to
the simulator in the ideal world that gives it essentially the same power. Here I
denotes a set of index pairs (i, j) which indicates hidden message j should be
used in position i of the functionality. Note that in the single-message setting
and for unary functionalities, this oracle is equivalent to directly providing a list
of images to the simulator, as in the definition proposed in [13]

FEASIBILITY. The feasibility results presented in [13,16] directly carry over to
our definition for unary functionalities in the single-message model, where the
adversary may only request a single challenge ciphertext. This can be extended
to the multi-message model (for the TNA case) through a composition theorem,
but we do not discuss the details here due to space constraints. For the multi-
ary case, however, the feasibility problems resurface even in this more restricted
scenario. More precisely, a problem similar to that identified for noninteractive
noncommitting encryption [15] may arise. However, we do not know of any im-
possibility result that excludes the construction of an FE scheme for the specific

functionalities that we require for building FHE schemes and leave a detailed
treatment to future research.

3 Randomized Functional Encryption

In this section we propose a new cryptographic primitive that generalizes FE
to randomized functionalities. We start by formally introducing the syntax and
security of randomized functional encryption schemes. In the full version we
describe several examples of cryptographic primitives that can be seen as par-
ticular cases of RFE.

RANDOMIZED FUNCTIONALITY. A randomized functionality is a probabilistic
algorithm RFn implementing an n-ary function f that also takes a set of random
coins from a randomness space RFn.RndSp:

f : RFn.Prms× RFn.KeySp× RFn.MsgSpn × RFn.RndSp −→ RFn.Rng .

We assume the random coins are uniformly distributed over RFn.RndSp.

SYNTAX. A randomized functional encryption (RFE) scheme for the random-
ized functionality RFn (of arity n) is specified by four algorithms as follows.

1. RFE.Setup(1λ): This is the setup algorithm. On input the security parame-
ter, it outputs a master secret key Msk and a master public key Mpk, a key
space, and a message space. We require that the set of all possible master
public keys output by the setup algorithm, the key space, and the message
space are identical to RFn.Prms, RFn.KeySp, and RFn.MsgSp respectively.

2. RFE.TKGen(k,Msk): This is the token-generation algorithm. On input a
key k ∈ RFn.KeySp and a master secret key Msk, it outputs a token TK.

3. RFE.Enc(m,Mpk): This is the encryption algorithm. On input a message
m ∈ RFn.MsgSp and a master public key Mpk, it outputs a ciphertext c.

4. RFE.Dec(c1, . . . , cn,TK,Mpk): This is the (possibly probabilistic) decryp-
tion (or evaluation) algorithm. On input n ciphertexts, a token TK, and a
master public key Mpk, it outputs a message m or a special symbol ⊥.

CORRECTNESS. Intuitively, the correctness requirement imposes that the dis-
tribution of a decrypted value (over the random coins of the encryption and
decryption algorithms) is computationally indistinguishable from that obtained
by sampling the randomized functionality directly on the encrypted message.
We formalize this property next.

Definition 2 (Correctness). Let game CORRFE,A be as in Figure 2. Let RFE be
a randomized functional encryption scheme. We say RFE is correct if, for any
adversary A, the following definition advantage is negligible.

Advcor
RFE,A(λ) := 2 · Pr

[
CORRFE,A(1λ)⇒ T

]
− 1

Game CORRFE,A(1λ):
b←$ {0, 1}
(Mpk,Msk)←$RFE.Setup(1

λ)
b′ ←$ AO(Mpk,Msk)
Return (b = b′)

oracle Token(k):
TK←$ RFE.TKGen(k,Msk)
KList← (TK, k) : KList
Return TK

oracle Func(i1, . . . , in, j):
For ` = 1 to n do (m`, c`)← MList[i`]
(TK, k)← KList[j]
y0 ←$ RFE.Dec(TK, c1, . . . , cn)
y1 ←$ RFn(Mpk, k,m1, . . . ,mn)
Return yb

oracle Enc(m):
c←$ RFE.Enc(m,Mpk)
MList← (m, c) : MList

Fig. 2: Game defining the correctness of an RFE scheme. An adversary is legitimate if all Func
queries are distinct.

We emphasize that the adversary in the correctness game has access to Msk
(this is needed to model correctness for Msk-dependent messages), and that
it may force some of the ciphertexts to be repeatedly used in the input to the
decryption algorithm.

SECURITY. Our proposed notions of security for RFE are indistinguishability
based. We will formalize the definitions and then discuss why the models do not
necessarily suffer from the same limitations as IND-CPA security for FE.

Definition 3 (Indistinguishability). Let game IND-CPARFE,A be as shown in
Figure 3. We say RFE is IND-CPA secure if, for any adversary A, the following
definition of advantage is negligible.

Advind-cpa
RFE,A (λ) := 2 · Pr

[
IND-CPARFE,A(1λ)⇒ T

]
− 1

Game IND-CPARFE,A(1λ):
b←$ {0, 1}
(Msk,Mpk)←$RFE.Setup(1

λ)
b′ ←$ AO(Mpk)
Return (b = b′)

oracle LR(m0,m1):
c←$ RFE.Enc(mb,Msk)
Return c

oracle Token(k):
TK←$ RFE.TKGen(k,Msk)
Return TK

Fig. 3: Game defining the IND-CPA security of an RFE. In the TNA model A may not query
Token after LR.

We observe that, unless the functionality has special characteristics, the im-
ages recovered by the adversary may allow it to trivially win the game; for
instance, the above definition is unrealizable for nontrivial deterministic func-
tionalities. To deal with this, we will consider restricted classes of legitimate ad-
versaries that cannot “trivially” win the game. We start with a definition which
characterizes when image values can be used to win the IND-CPA game.

Definition 4 (Message-hiding RFE). Let game MHRFE,A be as in Figure 4. We
say RFE is message hiding if, for any adversary A , the following definition of
advantage is negligible.

Advmh
RFE,A(λ) := 2 · Pr

[
MHRFE,A(1λ)⇒ T

]
− 1

Game MHRFE,A(1λ):
b←$ {0, 1}
(Msk,Mpk)←$RFE.Setup(1

λ)
b′ ←$ AO(Mpk)
Return (b = b′)

oracle LR(m0,m1):
MList← (m0,m1) : MList

oracle Func(I,m1, . . . ,mn, k):
For (i, j) ∈ I do

(m0,m1)← MList[j]
mi ← mb

y←$ RFn(Mpk, k,m1, . . . ,mn)
Return y

oracle Token(k):
TK←$ RFE.TKGen(k,Msk)
KList← k : KList
Return TK

Fig. 4: Game defining the message-hiding property. An adversary A is legitimate if it queries
Func with k ∈ KList only. In the TNA model A may not query Token after querying LR.

The message-hiding property detects whether an adversary can distinguish
messages queried to the LR oracle by looking at images of the functionality.
Note that this may depend intrinsically on the way in which the domain param-
eters are sampled by the setup algorithm of the RFE scheme, and hence we have
honest parameter generation. We can now introduce variants of the IND-CPA
definition where we exclude trivial attacks by adversaries that win the game by
exploiting information leaked via the images. To this end, we formalize the no-
tion of an associated adversary B that mimicsA’s capabilities in the MH game.

Definition 5 (Associated adversary). Let RFE be an RFE scheme, and let A
be an adversary in the IND-CPARFE,A game. Let also B be an adversary in the
MHRFE,B game. Define the traces ofA and B to be (Mpk,MList,KList,TKList)
in their respective games, where TKList is the list of tokens returned by the
Token oracle. We say B is an adversary associated to A if the traces of A and
B are computationally indistinguishable. Weak associated adversary is defined
analogously, where TKList is omitted from the traces.

We now set legitimacy criteria for IND-CPA adversaries, excluding MH attacks.

Definition 6 (Legitimacy). Let RFE be a randomized functional encryption
scheme, and let A be an IND-CPARFE,A adversary. We say A is legitimate if
the advantage of any adversary B associated to A in the MHRFE,B game is
negligible.

Let us now introduce our weaker indistinguishability notions before dis-
cussing the legitimacy conditions.

Definition 7 (Restricted indistinguishability). Let RFE be a randomized func-
tional encryption scheme. The R-IND-CPA security of RFE requires the advan-
tage of any legitimate adversary A in the IND-CPA game to be negligible.

The following implications are easy to verify: IND-CPA =⇒ R-IND-CPA ;
R-IND-CPA+MH =⇒ IND-CPA . Note also that, if scheme RFE is IND-CPA
secure, then the supported functionality must be MH secure. (If the functionality
is not message hiding, then the adversary could trivially break the security of the
RFE scheme by simply distinguishing the images it recovers using legitimately
retrieved tokens). As we shall see later in the paper, our constructions of a ho-
momorphic scheme from an RFE impose that the adversary is unrestricted in
its challenge query. One way to achieve this is to concentrate on RFEs that are
provably message hiding. The potential limitations of this indistinguishability-
based definition are discussed in the full version of this paper.

4 Entropic security

We now turn our attention to a particular class of (standard) functional encryp-
tion schemes that we will use as a stepping-stone between the standard notions
of functional encryption and randomized functional encryption. We call such
functional encryption schemes entropically secure.

Intuitively, entropic security imposes that an adversary has a negligible ad-
vantage in distinguishing encryptions provided that a part of the encrypted mes-
sage is sampled uniformly at random. To this end, we must restrict our attention
to functionalities Fn for which the plaintext space Fn.MsgSp is partitioned as
Fn.MsgSpm × Fn.MsgSpr. For FE schemes supporting such functionalities, we
can define a natural adaptation of the IND-CPA model as follows.

Definition 8 (Entropic indistinguishability). Let game IND-ECPAFE,A be as
in Figure 5. Let FE be a functional encryption scheme with a portioned message
space. We say FE is IND-ECPA secure if for any adversary A, the following
definition of advantage is negligible.

Advind-ecpa
FE,A (λ) := 2 · Pr

[
IND-ECPAFE,A(1λ)⇒ T

]
− 1

Unlike the standard definition of IND-CPA, the above definition is meaning-
ful for functionalities of arbitrary arity. Note also that unless the functionality
has special characteristics the images recovered by the adversary may allow it
to trivially win the game. We therefore adopt a similar strategy to that presented

Game IND-CPAFE,A(1λ):
b←$ {0, 1}
(Msk,Mpk)←$FE.Setup(1

λ)
b′ ←$ AO(Mpk)
Return (b = b′)

oracle LR(m0,m1):
r←$ FE.MsgSpr
c←$ FE.Enc((mb, r),Msk)
Return c

oracle Token(k):
TK←$ FE.TKGen(k,Msk)
Return TK

Fig. 5: Game defining the IND-ECPA security of an FE scheme. In the TNA model A may not
query Token after querying LR.

for RFE security, define an entropic message-hiding property, and impose a le-
gitimacy condition on the adversary to obtain a weaker flavor of the definition.
We present these definitions in the full version of the paper. In entropic message
hiding, the two differences to the model presented for RFEs are the follow-
ing. Firstly, the LR oracle now samples part of the hidden message, as in the
IND-ECPA definition. Secondly, the Func oracle allows the adversary to eval-
uate the functionality choosing all the r inputs except those that correspond to
LR queries. This means that the EMH property (contrarily to message hiding
for RFEs, where fresh images are sampled on each query to Func) entails a
form of security under randomness reuse across the different functions k that
are queried by the adversary. Note also that for multi-ary functionalities the ad-
versary can maliciously choose part of the randomness components in the input
to Fn. Later in the paper we will see how to build entropically message-hiding
FEs. The definition of legitimacy is analogous to that presented for RFEs. We
call the resulting definition restricted entropic indistinguishability. We also note
that the legitimacy of an IND-ECPA adversary is a natural generalization of the
restriction imposed in the IND-CPA model for FEs that the functions queried to
the Token oracle must all collide on the challenge messages.

Constructing RFEs from FEs We now show how to construct RFEs for arbi-
trary functionalities starting from FE schemes. Technically, we will show that
specific entropically secure FE schemes suffice, and then establish a connection
to semantically secure FE.

The intuition behind our construction is the following. Suppose our goal is
to construct an RFE scheme for a functionality RFn of arity n. We begin by
defining a derandomized version of RFn, denoted Fn, of arity n, which we call
the deterministic functionality associated to RFn. We then show that the simple
generic construction in Figure 6 converts a functional encryption scheme FE into
a correct and secure RFE scheme for RFn, provided that the underlying scheme
FE is correct and entropically secure for Fn. Observe that the only modification
that is made to the original functional encryption scheme is that the encryption
algorithm samples extra randomness that is encrypted along with the message.
This naturally relates to entropic security, where we considered functionalities

where the message space was partitioned as MsgSp = MsgSpm ×MsgSpr. We
now formalize this intuition.

algo. RFE.Setup(1λ):
Return FE.Setup(1λ)

algo. RFE.Enc(m,Mpk):
r←$ Fn.MsgSpr
c←$ FE.Enc((m, r),Mpk)
Return c

algo. RFE.TKGen(k,Msk):
Return FE.TKGen(k,Msk)

algo. RFE.Dec(c1, . . . , cn,TK,Mpk):
Return FE.Dec(c1, . . . , cn,TK,Mpk)

Fig. 6: Generic construction of an RFE scheme from an FE scheme.

CORRECTNESS. We begin by defining what it means to correctly derandomize
a randomized functionality. We require that Fn and RFn are computationally
indistinguishable to an adversary with oracle access that can choose all message
inputs to Fn/RFn (except of course the components coming from Fn.MsgSpr).

Definition 9 (Derandomized functionality). Let game DRNDRFn,Fn,A be as
shown in Figure 7. Let RFn be an n-ary randomized functionality. Let Fn be a
deterministic functionality with the same arity, parameter space, and key space
as those of RFn. Suppose further that the message space of Fn is partitioned
as Fn.MsgSp = RFn.MsgSp × Fn.MsgSpr. We say Fn correctly derandomizes
RFn if, for any adversary A, the following definition of advantage is negligible.

Advdrnd
RFn,Fn,A(λ) := 2 · Pr

[
DRNDRFn,Fn,A(1λ)⇒ T

]
− 1

Game DRNDRFn,Fn,A(1λ):
b←$ {0, 1}
b′ ←$ AO(1λ)
Return (b = b′)

oracle Rand(m):
r←$ Fn.MsgSpr
List← (m, r) : List

oracle Func(Mpk, i1, . . . , in, k):
For ` = 1 to n do (m`, r`)← List[i`]
y0 ← Fn(Mpk, k, (m1, r1), . . . , (mn, rn))
y1 ←$ RFn(Mpk, k,m1, . . . ,mn)
Return yb

Fig. 7: Game defining correct derandomization of RFn by Fn. An adversary is legitimate if all
Func queries are distinct.

Observe that the derandomized functionality must simulate independent sam-
plings of RFn, whilst reusing the same input randomness. We now state the cor-
rectness result. The proof is a direct reduction and is given in the full version.

Proposition 1. Let RFn and Fn be a randomized and a deterministic function-
ality, respectively. Suppose that Fn correctly derandomizes RFn. Then, any cor-
rect FE supporting Fn yields, by the construction in Figure 6, a correct RFE
scheme supporting RFn.

BUILDING DERANDOMIZED FUNCTIONALITIES. We now consider how unary
and binary functionalities can be derandomized. (The techniques used to deal
with the binary case naturally extend to arity greater than 2.) For each random-
ized functionality that we want to support in the generic RFE construction of
Figure 6, we define an associated deterministic functionality as follows.

Definition 10 (Associated deterministic functionality). Let RFn be a ran-
domized functionality.

Unary RFn: Let PRF : PRF.KeySp × RFn.KeySp −→ RFn.RndSp be a
pseudorandom function. The associated unary deterministic functionality Fn is

Fn(Mpk, k, (m, r)) := RFn (Mpk, k,m;PRFr(k)) .

The key space and the parameter space of Fn match those of RFn and the mes-
sage space of Fn is RFn.MsgSp×Fn.MsgSpr where Fn.MsgSpr := PRF.KeySp.

Binary RFn: Let PRF : PRF.KeySp×({0, 1}2λ×RFn.KeySp) −→ RFn.RndSp
be a pseudorandom function with PRF.KeySp forming an abelian group with
operation ◦. The associated binary deterministic functionality Fn is defined as

Fn(Mpk, k, (m1, r1, s1), (m2, r2, s2)) := RFn (Mpk, k,m1,m2;PRFr1◦r2(s1||s2, k)) .

The key space and the parameter space of Fn match those of RFn and the mes-
sage space of Fn is RFn.MsgSpm×Fn.MsgSpr where Fn.MsgSpr := PRF.KeySp×
{0, 1}λ.

We first show that an associated deterministic functionality, as defined as
above, satisfies the correctness derandomization criterion. The proof of the fol-
lowing theorem is a direct reduction and can be found in the full version.

Theorem 1 (Derandomization via PRFs). Let RFn be a unary or a binary
randomized functionality. Let Fn be the associated deterministic functionality
to RFn that uses the pseudorandom function PRF. Suppose that PRF satisfies
the standard notion of PRF security. Then Fn correctly derandomizes RFn.

SECURITY. We can now discuss the security of the construction. The next theo-
rem shows that an FE scheme supporting the associated deterministic function-
ality to RFn suffices to obtain a secure RFE with an analogous security level.

Theorem 2 (Security of the RFE construction). Let RFn be a randomized
functionality and let Fn be its associated deterministic functionality. Let FE be
a functional encryption scheme supporting Fn. Then if FE is IND-ECPA secure,
the RFE scheme RFE resulting from the generic construction in Figure 6 is

IND-CPA secure. A similar result holds for the restricted indistinguishability
game if the PRF is Φ-RKA secure, where

Φ := {φLi : (K1, · · · ,Kn) 7→ Ki ◦ L | L ∈ PRF.KeySp} ∪
{φ?i,j : (K1, · · · ,Kn) 7→ Ki ◦ Kj | i, j ∈ N ∧ i ≤ j} .

The proof is a direct reduction. However, for the restricted case, one needs
to prove that the resulting IND-ECPA adversary is legitimate. The most chal-
lenging part of this argument consists of establishing that any successful EMH
adversary against FE gives rise to a successful MH adversary against RFE. The
intuition is as follows. The RKA security of the PRF ensures that its outputs
look random even if one of the inputs to the functionality is maliciously chosen.
This allows us to make a transition from the entropically message-hiding game
to another game where the random coins of RFn are generated via a truly ran-
dom function. The reduction to the legitimacy then consists of proving that any
adversary succeeding in this game would either be breaking the MH property, or
triggering the unlikely event of guessing input s, when this is sampled uniformly
at random. Details of the proof may be found in the full version.

Constructing entropically secure FE In this section we discuss how to con-
struct entropically secure FEs from semantically secure functional encryption
schemes. In our constructions we will be relying on FE schemes supporting
functionalities that do not depend on the domain parameters, as this is the stan-
dard FE notion from [7,13] (modulo the arity extension). Therefore we first dis-
cuss how to construct a functionality that may depend on the parameters from
one with a larger key space that no longer does. This then leads us to a natural
transformation of FE schemes converting an FE scheme supporting the con-
structed parameter-independent functionality to one which supports the original
parameter-dependent functionality. We show that this transformation preserves
semantic security, and conclude the section by showing that any semantically
secure FE scheme is also entropically secure.

REMOVING PARAMETER DEPENDENCY. Let Fn be a parameter-dependent func-
tionality. We define a parameter-independent functionality as

Fn(ε , (Mpk, key),m1, · · · ,mn) := Fn(Mpk, key,m1, · · · ,mn) .

Therefore, the key space of Fn is Fn.Prms × Fn.KeySp. Let us look at a con-
crete example useful for our purposes. Consider an FE scheme in which we
would like to support the following binary deterministic parameter-dependent
functionality:

FnNAND (pk, kNAND, (b1, (r1, s1)), (b2, (r2, s2))) :=
PKE.Enc(¬(b1 ∧ b2), pk;PRFr1◦r2(s1||s2, kNAND)) ,

where PKE is an encryption scheme and kNAND is the only key supported by the
functionality. The converted functionality has key space identical to the public
key space of the PKE, and is given by

FnNAND (ε , (pk, kNAND), (b1, (r1, s1)), (b2, (r2, s2))) :=
PKE.Enc(¬(b1 ∧ b2), pk;PRFr1◦r2(s1||s2, kNAND)) .

We present our transformation in Figure 8, where we build scheme FE for
FnNAND from scheme FE for FnNAND. Note that although FENAND permits
extracting tokens for encryption under all public keys in the underlying PKE
scheme, FENAND samples a single public key at set-up, which it publishes along
with the master public key. The fact that the public key is sampled honestly
means that not only we can rely on the security properties of the PKE, but also
that we can include (pk, sk) in the master key for FENAND. This means that the
holder of the master public key is capable of recovering encrypted messages
from FnNAND images, a feature that we will use later on.

algo. FENAND.Gen(1
λ):

(pk, sk)←$ PKE.Gen(1λ)

(Msk′,Mpk′)←$ FENAND.Setup(1
λ)

Mpk← (Mpk′, pk)
Msk← (Msk′, sk, pk)
Return (Msk,Mpk)

algo. FENAND.TKGen(Msk, kNAND):
(Msk′, sk, pk)← Msk

TK←$ FENAND.TKGen(kpk,Msk′)
Return TK

algo. FENAND.Enc(m1,m2,Mpk):
(Mpk′, pk)← Mpk

c←$FENAND.Enc(m1,m2,Mpk′)
Return c

algo. FENAND.Dec(c,TK,Mpk):
(Mpk′, pk)← Mpk

Return FENAND.Dec(c,TK,Mpk′)

Fig. 8: Scheme FENAND for FnNAND based on scheme FENAND for FnNAND.

The following result establishes that the above transformation yields a cor-
rect and secure FE scheme. The proof can be found in the full version. The
intuition is that FENAND uses only a subset of the functionality of FENAND, and
so the simulator implied by the hypothesis can be used to establish the semantic
security of the construction.

Proposition 2. If scheme FENAND is correct (for FnNAND) and semantically
secure, then scheme FENAND is correct for FnNAND and semantically secure.

An important aspect of this result is that it goes through for the case in which
the semantic security adversary places a single extraction query. This is impor-
tant for feasibility, as the construction in [13] of FE schemes for general func-
tionalities imposes the restriction that the semantic security adversary places a

bounded number of such queries. Looking ahead, the FHE constructions we will
present rely on FEs supporting functionalities with a single key.

FROM SEMANTIC TO ENTROPIC SECURITY. We now show that semantic se-
curity is strong enough to imply entropic security. Given that our definition of
semantic security is restricted to the TNA scenario, we obtain entropic security
in a similar setting. Luckily, entropic security under TNA attacks suffices for
the results in the next section.

Theorem 3. Let FE be a (deterministic) functional encryption scheme. Then if
FE is semantically secure, it is also entropically secure in the TNA model.

The intuition of the proof (given in the full version) is as follows. Any
IND-ECPA attacker can be recast as a semantic security attacker that wins the
real-world game with the same probability. The key observation is that the
ideal world environment matches to entropic message hiding game, when this
is played by an associated adversary to the original IND-ECPA attacker. How-
ever, the legitimacy condition on the attacker implies that this associated ad-
versary cannot be successful, and that the real-world advantage (and hence the
IND-ECPA advantage) must also be negligible.

Putting the above results together we obtain a path to constructing an RFE
scheme for a randomized functionality RFn as follows. 1) Construct Fn, the
associated deterministic functionality to RFn; 2) Construct scheme FE that is
correct for Fn; 3) Prove that FE is semantically secure, and hence, by the above
theorem, it is R-IND-ECPA secure; 4) Let RFE be the randomized scheme as-
sociated to FE. By Theorem 2 it is R-IND-CPA secure; 5) Finally, to achieve
security against unrestricted adversaries (IND-CPA security), establish that RFE
is message hiding. We will be using this strategy in the following section.

5 Relating Homomorphic and Functional Encryption Schemes

We saw earlier in the paper that homomorphic public-key encryption can be seen
as a particular instance of a randomized functional encryption scheme. We now
combine this observation with our results from the previous section to formalize
a relation between FHE and FE.

FHE FROM ENTROPICALLY SECURE FE. We restrict our attention to homo-
morphic public-key encryption schemes that support encrypting bits (rather than
strings) and which allow the homomorphic computation of an arbitrary number
of NAND gates. We note that since NAND is complete, we can support the
evaluation of arbitrary functions by first representing the function as a circuit of
NAND gates and using bit-wise encryption on the inputs.

We start from an RFE scheme supporting the following binary randomized
functionality RFn, which we call NAND re-encryption, and is given by

RFn(Mpk, kNAND, b1, b2) := RFE.Enc(¬(b1 ∧ b2),Mpk) .

This functionality has message space {0, 1} and it supports a single key kNAND
(in addition to the empty key). We also assume, for the sake of correctness, that
RFE supports a special decryption operation Dec(Msk, c) akin to that of PKEs.

Our first construction of a fully homomorphic encryption scheme is as fol-
lows. The key generation algorithm generates RFE domain parameters and fur-
ther extracts the token for kNAND, which is added to the public key. Encryption is
simply RFE encryption, and decryption is carried out using the special algorithm
Dec(Msk, c). Evaluation of a single NAND gate on two ciphertexts is carried out
by running RFE.Dec(c1, c2,TKkNAND

). Furthermore, the correctness of the un-
derlying RFE scheme ensures that one can keep computing over the encrypted
results, as the evaluated ciphertext will be with overwhelming probability in the
co-domain of the RFE encryption circuit. In this way one can evaluate circuits
of arbitrary size. Finally, it is easy to see that the IND-CPA security of the re-
sulting FHE directly reduces to the IND-CPA security of the RFE scheme for
single-message, TNA attacks, where by definition the adversary is unrestricted.
We also observe that, by construction, this FHE is compact and function hiding.
This is because the result of any computation is indistinguishable from a fresh
encryption of the result of the computation, even to the holder of the decryption
key. This construction and Theorems 1 and 2 immediately yield the following
result.

Theorem 4. Entropically secure FE with respect to unrestricted adversaries in
the single message, TNA model and supporting the deterministic functionality
associated with NAND re-encryption implies fully homomorphic encryption.

We note that the underlying FE must be entropically secure against unre-
stricted adversaries. However, as we are dealing with bit-wise encryption, this
is really the minimal assumption that one could have: the scheme should be
secure when the adversary is allowed to choose challenge messages m0 6= m1.

FHE FROM SEMANTICALLY SECURE FE. The previous construction reveals an
interesting relation between entropically secure FE, RFE, and FHE. However, it
does not give a relation between semantically secure FE and FHE. It would be
tempting to try to build an RFE scheme such as the one described above from
semantically secure FE, using Theorem 3 to obtain security against restricted
adversaries, and then proving that the resulting RFE is message hiding to obtain
unrestricted security. However, this approach fails: the fact that the randomized
functionality is defined using the same RFE scheme that supports it introduces

a circular dependency that we cannot overcome. Intuitively, assuming that self-
re-encryption is message hiding amounts to assuming that RFE construction is
secure to begin with. (Note that in Theorem 4 this circular argument is broken
by explicitly assuming security against unrestricted adversaries.)

We present an alternative, slightly more involved construction to overcome
the above difficulty. We require two RFE schemes supporting the following bi-
nary functionalities, each having a single key (in addition to the empty key).

RFENAND supports NAND re-encryption, with the caveat that re-encryption tar-
gets a standard public-key encryption scheme. More precisely,

RFnNAND((Mpk, pk), kNAND, b1, b2) := PKE.Enc(¬(b1 ∧ b2), pk) .

We also impose that the master secret key for RFENAND includes the secret key
sk corresponding to pk.

RFEboot enables a functional analogue of the bootstrapping technique of Gen-
try [11]. It permits functionally decrypting a ciphertext under PKE and re-
encrypting it under RFENAND:

RFnboot ((Mpk,MpkNAND), kboot, c, sk) :=
RFENAND.Enc(PKE.Dec(c, sk),MpkNAND) .

We also impose that the master secret key for RFEboot includes the master secret
key MskNAND corresponding to MpkNAND.

We observe that these RFE schemes can be constructed from parameter-inde-
pendent FE schemes as discussed in Section 4. Indeed, RFENAND can be con-
structed directly from the FENAND construction in Figure 6. Also, from Theo-
rems 2 and 3, these RFEs will be R-IND-CPA secure in the TNA model if the
underlying FE schemes are semantically secure. To establish IND-CPA security,
it suffices to prove the message-hiding property. We address this for RFENAND,
as a similar argument follows for RFEboot. The following result follows from
the observation that the message-hiding game reduces to the IND-CPA security
of the underlying PKE scheme.

Theorem 5. If the underlying PKE is IND-CPA secure, then the RFE scheme
supporting RFnNAND that results from plugging the FE scheme in Figure 8 in
the generic construction in Figure 6 is message hiding.

Using these RFE schemes, we construct an FHE scheme as follows. To en-
crypt or decrypt, one simply perform the equivalent operation using a pk for the

underlying PKE. Evaluation of a single NAND gate proceeds as follows. The
two ciphertexts are independently re-encrypted under RFEboot, and then they
are independently functionally decrypted and re-encrypted under RFENAND us-
ing TKboot. To enable this operation, sk is encrypted under Mpkboot and pub-
lished in the public key, as is customary in bootstrapped constructions. Given
any two PKE ciphertexts, one can therefore convert them into encryptions un-
der RFENAND from which one can evaluate a NAND gate and re-encrypt again
under the PKE. We obtain a ciphertext that is indistinguishable from a fresh
encryption, which means that the construction is compact and function hiding.

The construction is correct if the underlying RFE schemes are correct. For
security, note that one can easily reduce the IND-CPA security of the resulting
FHE scheme to that of RFEboot if the secret key encrypted under cboot does
not correspond to the public key pk used inside RFENAND. This is typical in
bootstrapping techniques [11], and the additional assumption that the construc-
tion securely encrypts key-dependent messages (i.e., that it is KDM secure)
is necessary to use the scheme with the same pk. On the other hand, without
relying on this assumption, this result implies a leveled homomorphic encryp-
tion scheme [11], allowing a bounded number of cascaded NAND computations
through multiple independent instances of RFEboot. The last theorem in the pa-
per follows from this discussion.

Theorem 6. Semantically secure FE schemes supporting the deterministic func-
tionalities associated to RFnNAND and RFnboot imply fully homomorphic en-
cryption, under a key-dependent message security assumption.

6 Relation to Obfuscated Re-Encryption

FUNCTIONAL RE-ENCRYPTION IN THE CIRCUIT MODEL. For concreteness,
we consider the functional re-encryption notions of Section 5 in the random-
ized circuit model. Specifically, we consider a family of re-encryption circuits
Rf = {Rf

sk,pk′
}, called the f -re-encryption functionality from PKE to PKE′,

which decrypts each input (which is a ciphertext encrypted with PKE) using
key sk, applies the function f to the resulting values, and outputs the encryption
of the result under key pk′ using PKE′. (In the full version, we consider the gen-
eral discussion of functionalities that do not necessarily re-encrypt with fresh
randomness, but here we restrict ourselves to such “canonical” functionalities.)
Intuitively, a “secure” obfuscation of this circuit should serve as an evaluation
key for a functional re-encryption scheme for function f .

OBFUSCATION FOR f -RE-ENCRYPTION. We define new notions of secure ob-
fuscation as specifically applied to a f -re-encryption functionality Rf . Follow-
ing earlier work on obfuscation [20,10,1,14,8], we want the obfuscated circuit

to perform the same computation as the original circuit without revealing any
information beyond its input-output behavior.

Our notion differs from the one proposed by Chandran et al [9], while still
following the same average-case viewpoint. We attempt to capture at the same
time the fact that the obfuscated re-encryption functionality does not reveal any
information beyond black-box access to the functionality and the fact that black-
box access to the functionality does not reveal any information about the mes-
sages being encrypted. Still, our notion is connected to (and in many cases im-
plied by) the notion defined in these earlier work, as we explain below.

Definition 11 (Re-encryption Obfuscation). Let Obf be a PPT algorithm whose
input and output are both circuits. We say Obf securely obfuscates the f -re-
encryption functionalityRf from PKE to PKE′ if the following properties hold:

Correctness: For any circuit C = Rf
sk,pk′

∈ Rf and for all inputs x, the statis-
tical distance ∆(Obf(C)(x), C(x)) is negligible .

Simulatability: There exists a PPT simulator S such that for all PPT distin-
guishers D and security parameter λ,

|Pr[D(pk, pk′,Obf(Rf
sk,pk′

)) = 1]− Pr[D(pk, S(pk)) = 1]| < negl(λ)

where (sk, pk)←$ Gen(1λ), (pk′, sk′)←$ Gen′(1λ), and the probabilities are
taken over the coins of Gen and S.

We stress that the definition provides a very strong guarantee, in that it says that
an attacker, given pk, pk′ and the obfuscation Obf(Rf

sk,pk′
) does not learn any-

thing beyond the public key pk of the source scheme. In particular, the simulator
simulates the public key pk′. Note that the obfuscation may be a randomized cir-
cuit itself, and that the correctness requirements assumes honest evaluation of
the circuit, i.e., using honestly generated random coins. In the full version, we
also consider a stronger simulatability requirement, where pk′ is generated hon-
estly and the simulator does not learn sk′.

RELATION TO EARLIER DEFINITIONS OF OBFUSCATION. As mentioned above,
previous works on re-encryption [14,9] consider a different notion of average-
case obfuscation which appears at first incomparable to ours, in which the simu-
lator must simulate Obf(Rf

sk,pk′
), given black-box access toRf

sk,pk′
and knowing

the public keys pk, pk′. Formally, when translated to our setting, the requirement
of these earlier works is as follows:

Virtual Black-boxness: There exists a PPT simulator S such that for all PPT
distinguishers D and security parameter λ,

|Pr[DR
f

sk,pk′ (pk, pk′,Obf(Rf
sk,pk′

)) = 1]]−

Pr[DR
f

sk,pk′ (pk, pk′, S
Rf

sk,pk′ (pk, pk′) = 1]| < negl(λ)

where (sk, pk)←$ Gen(1λ), (pk′, sk′)←$ Gen′(1λ), and the probabilities are
taken over the coins of Gen and S.

This definition of strong virtual black-boxness implies our obfuscation no-
tion above for natural re-encryption functionalities, hence making it a somewhat
stronger notion. More concretely, we say that the f -re-encryption functionality
Rf = {Rf

sk,pk′
} is simulatable if there exists a simulator S′ such that for all

PPT distinguishers D, we have

|Pr[(DR
f

sk,pk′ (pk, pk′) = 1]− Pr[DS′(pk,pk′)(pk, pk′) = 1]| < negl(λ) .

For example, the canonical re-encryption functionality is simulatable by seman-
tic security, provided we can efficiently test if a ciphertext input to the function-
ality is decryptable given pk only. In the full version, we prove the following:

Lemma 1. Assume that the obfuscator satisfies the virtual black-boxness prop-
erty and the f -re-encryption functionality Rf is private. Then, the obfuscator
satisfies the simulatability property.

RELATION TO FUNCTIONAL ENCRYPTION. The main result of this section con-
nects the notions of obfuscated re-encryption with functional encryption.

Lemma 2. Any securely obfuscatable functional re-encryption scheme for func-
tion f where the underlying public-key scheme(s) are semantically secure im-
plies an IND-CPA-secure randomized functional encryption scheme with a sin-
gle non-empty key for f -re-encryption.

Proof (Sketch). We consider RFE defined as follows:

1. RFE.Setup(1λ): Run PKE.Gen(1λ) and PKE′.Gen(1λ) to obtain (pk, sk)
and (pk′, sk′). Let Mpk = (pk, pk′) and Msk = sk. Let the message space
of RFE be the message space of PKE, and the key space contain kf (and kε).

2. RFE.TKGen(kf ,Msk): Return Obf(Rf
sk,pk′

).
3. RFE.Enc(m,Mpk): Return PKE.Enc(m, pk).
4. RFE.Dec(c1, . . . , cn,TK,Mpk): Return Obf(Rf

sk,pk′
)(c1, . . . , cn); that is, the

output of the obfuscated circuit applied to the ciphertexts.

Details about the security proof are deferred to the full version. ut

Combined with the results of Section 5, we therefore conclude that se-
cure obfuscators for circuits computing RFnNAND and RFnboot imply a fully-
homomorphic encryption scheme. Such obfuscations can be constructed based
on the LWE assumption, starting from the encryption scheme of Regev [17]. We
defer the details of this construction to the full version.

Acknowledgments

Tessaro and Wilson wish to thank Shafi Goldwasser for insightful feedback.
Their work was partially supported by NSF Contract CCF-1018064 and is based
on research sponsored by DARPA under agreement numbers FA8750-11-C-
0096 and FA8750-11-2-0225. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwithstanding any copy-
right notation thereon. The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of DARPA or the U.S.
Government.

References

1. Ben Adida and Douglas Wikström. How to Shuffle in Public. In Salil P. Vadhan, editor, TCC
2007, vol. 4392 of LNCS, pp. 555–574. Springer, February 2007.

2. Shweta Agrawal, Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Func-
tional encryption: new perspectives and lower bounds. Cryptology ePrint Archive, Report
2012/468, 2012.

3. Manuel Barbosa and Pooya Farshim. On the semantic security of functional encryption
schemes. In Kaoru Kurosawa, editor, PKC 2013, vol. 7778 of LNCS, pp. 143–161. Springer,
2013.

4. Mihir Bellare and David Cash. Pseudorandom functions and permutations provably secure
against related-key attacks. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO
2010, vol. 6223 of LNCS, pp. 666–684. Springer, 2010.

5. Mihir Bellare and Tadayoshi Kohno. A theoretical treatment of related-key attacks: RKA-
PRPs, RKA-PRFs, and applications. In Eli Biham, editor, EUROCRYPT 2003, vol. 2656 of
LNCS, pp. 491–506. Springer, 2004

6. Mihir Bellare and Adam O’Neill. Semantically-secure functional encryption: possibility re-
sults, impossibility results and the quest for a general definition. Cryptology ePrint Archive,
Report 2012/515, 2012.

7. Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: definitions and chal-
lenges. In Yuval Ishai, editor, TCC 2011, vol. 6597 of LNCS, pp. 253–273. Springer, 2011.

8. Ran Canetti, Guy N. Rothblum, and Mayank Varia. Obfuscation of Hyperplane Membership.
In Daniele Micciancio, editor, TCC 2010, vol. 5978 of LNCS, pp. 72-89. Springer, February
2010.

9. Nishanth Chandran, Melissa Chase, and Vinod Vaikuntanathan. Functional re-encryption
and collusion-resistant obfuscation. In Ronald Cramer, editor, TCC 2012, vol. 7194 of LNCS,
pp. 404–421. Springer, 2012.

10. Yevgeniy Dodis and Adam Smith. Correcting Errors Without Leaking Partial Information.
In Harold N. Gabow and Ronald Fagin, editors, STOC 2005, pp. 654–663. ACM Press, May
2005.

11. Craig Gentry. A fully homomorphic encryption scheme. Ph.D. thesis, Stanford University,
2009.

12. Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and Nickolai
Zeldovich. Succinct functional encryption and applications: reusable garbled circuits and
beyond. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, STOC ’13, pp.
555–564. ACM, 2013.

13. Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption with
bounded collusions via multi-party computation. In Reihaneh Safavi-Naini and Ran Canetti,
editors, CRYPTO 2012, vol. 7417 of LNCS, pp. 162–179. Springer, 2012.

14. Susan Hohenberger, Guy N. Rothblum, Abhi Shelat, and Vinod Vaikuntanathan. Securely
Obfuscating Re-encryption. In Salil P. Vadhan, editor, TCC 2007, volume 4392 of LNCS,
pp. 233–252. Springer, February 2007.

15. Jesper Nielsen. Separating random oracle proofs from complexity theoretic proofs: the non-
committing encryption case. In Moti Yung, editor, CRYPTO 2002, vol. 2442 of LNCS, pp.
111–126. Springer, 2002.

16. Adam O’Neill. Definitional issues in functional encryption. Cryptology ePrint Archive,
Report 2010/556, 2010.

17. Oded Regev. On Lattices, Learning with Errors, Random Linear Codes, and Cryptography.
In Harold N. Gabow and Ronald Fagin, editors, STOC 2005, pp. 84–93. ACM Press, May
2005.

18. Alexander Russell and Hong Wang. How to Fool an Unbounded Adversary with a Short Key.
In Lars R. Knudsen, editors EUROCRYPT 2002, vol. 2332 of LNCS, pp. 133–148. Springer,
2002.

19. Brent Waters. Functional encryption for regular languages. In Reihaneh Safavi-Naini and
Ran Canetti, editors, CRYPTO 2012, vol. 7417 of LNCS, pp. 218–235. Springer, 2012.

20. Hoeteck Wee. On Obfuscating Point Functions. In Harold N. Gabow and Ronald Fagin,
editors, STOC 2005, pp. 523–532. ACM Press, May 2005.

	On the Relationship between Functional Encryption, Obfuscation, and Fully Homomorphic Encryption

