CMSC 474, Introduction to Game Theory

2. Normal-Form Games

Mohammad T. Hajiaghayi
University of Maryland

Example: Let's Play a Game

- I need two volunteers to play a short game
 - Preferably two people who don't know each other
 - > You'll have a chance to get some chocolate

Example: Let's Play a Game

- I need two volunteers to play a short game
 - Preferably two people who don't know each other
 - > You'll have a chance to get some chocolate
- Come to the front of the room
 - > Face opposite directions, don't talk to each other
- You may choose one of two actions
 - Don't let the other player know which one, until I say so

Example: Let's Play a Game

- I need two volunteers to play a short game
 - Preferably two people who don't know each other
 - > You'll have a chance to get some chocolate
- Come to the front of the room
 - > Face opposite directions, don't talk to each other
- You may choose one of two actions
 - Don't let the other player know which one, until I say so
- The Chocolate Dilemma*
 - > Take 1 piece of chocolate, and you may keep it
 - > Take 3 pieces of chocolate, and they'll go to the other player

^{*} http://theoryclass.wordpress.com/2010/03/05/the-chocolate-dilemma/

- Please go to http://www.surveymonkey.com/s/RYLDSRX and tell which Chocolate Dilemma action you would choose in each of these situations:
 - > The other player is a stranger whom you'll never meet again.
 - > The other player is an enemy.
 - > The other player is a friend.
 - > The other player is a computer program instead of a human.
 - You haven't eaten in two days.
 - "Take1" means you take two chocolates instead of just one.
 - You and the other player can discuss what choices to make.
 - > You will be playing the game repeatedly with the same person.
 - Thousands of people are playing the game. None of you knows which of the others is the one you're playing with.
 - > Thousands of people are playing the game. "Take3" means the three chocolates go to a collection that will be divided equally among everyone.
 - ➤ The bag is filled with money. "Take1" means you take \$2500 and you can keep it. "Take3" means you take \$3000 but it will go to the other player.

Some game-theoretic answers

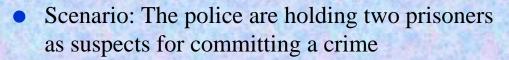
- Suppose that—
 - > Each player just wants to maximize how many chocolates he/she gets
 - Neither player cares about anything other than that
 - Both players understand all of the possible outcomes
 - All this is common knowledge to both players
- Then each player will take 1 piece of chocolate
 - If they can talk to each other beforehand, it won't change the outcome
 - Repeat any fixed number of times => same outcome
 - > Repeat an unbounded number of times => they might take 3 instead
- Is this realistic? We discuss it further later

Games in Normal Form

- A (finite, *n*-person) **normal-form game** includes the following:
 - 1. An ordered set N = (1, 2, 3, ..., n) of **agents** or **players**:
 - 2. Each agent i has a finite set A_i of possible actions
 - An **action profile** is an *n*-tuple $\mathbf{a} = (a_1, a_2, ..., a_n)$, where $a_1 \in A_1$, $a_2 \in A_2, ..., a_n \in A_n$
 - The set of all possible action profiles is $\mathbf{A} = A_1 \times \cdots \times A_n$
 - 3. Each agent *i* has a real-valued **utility** (or **payoff**) function $u_i(a_1, \ldots, a_n) = i$'s payoff if the action profile is (a_1, \ldots, a_n)
- Most other game representations can be reduced to normal form
- Usually represented by an n-dimensional payoff (or utility) matrix
 - for each action profile, shows the utilities of all the agents

	take 3	take 1
take 3	3,3	0, 4
take 1	4,0	1, 1

The Prisoner's Dilemma



- For each prisoner, the police have enough evidence for a 1 year prison sentence
- > They want to get enough evidence for a 4 year prison sentence
- > They tell each prisoner,
 - "If you testify against the other prisoner, we'll reduce your prison sentence by 1 year"
- > C = Cooperate (with the other prisoner): refuse to testify against him/her
- \triangleright D = Defect: testify against the other prisoner

	C	D		
C	-1, -1	-4, 0		
D	0, –4	-3,-3		

- ➤ Both prisoners cooperate => both go to prison for 1 year
- \triangleright Both prisoners defect => both go to prison for 4-1=3 years
- One defects, other cooperates => cooperator goes to prison for 4 years; defector goes free

Prisoner's Dilemma

We used this:

$$\begin{array}{c|cc}
C & D \\
C & -1, -1 & -4, 0 \\
D & 0, -4 & -3, -3
\end{array}$$

Equivalent:

	take 3	take 1
take 3	3,3	0, 4
take 1	4,0	1, 1

Game theorists usually use this:

$$\begin{array}{c|cc}
C & D \\
C & a, a & b, c \\
D & c, b & d, d
\end{array}$$

• General form:

$$c > a > d > b$$
$$2a \ge b + c$$

Utility Functions

- Idea: the preferences of a rational agent must obey some constraints
- Constraints:

Orderability (sometimes called **Completeness**):

$$(A > B) \lor (B > A) \lor (A \sim B)$$

Transitivity:

$$(A > B) \land (B > C) \Rightarrow (A > C)$$

- Agent's choices are based on rational preferences
 ⇒ agent's behavior is describable as maximization of expected utility
- Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944).
- Given preferences satisfying the constraints above, there exists a real-valued function *u* such that

$$u(A) \ge u(B) \iff A \ge B$$
 (*)

u is called a utility function

Utility Scales

- Rational preferences are invariant with respect to positive affine (or positive linear) transformations
- Let

$$u'(x) = c \ u(x) + d$$

where c and d are constants, and c > 0

- \triangleright Then u' models the same set of preferences that u does
- Normalized utilities:
 - \triangleright define u such that $u_{\text{max}} = 1$ and $u_{\text{min}} = 0$

Utility Scales for Games

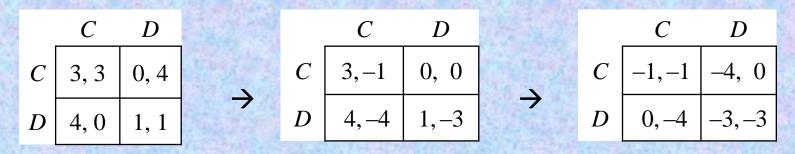
- Suppose that all the agents have rational preferences, and that this is common knowledge* to all of them
- Then games are insensitive to positive affine transformations of one or more agents' payoffs
 - \triangleright Let c and d be constants, c > 0
 - For one or more agents i, replace every payoff x_{ij} with $cx_{ij} + d$
 - > The game still models the same sets of rational preferences

	a_{21}	a_{22}	a_{21} $cx_{11}+d_1x_{21}$		a_{21} a_{22}		a_{21}		a_{22}	
a_{11}	x_{11}, x_{21}	x_{12}, x_{22}	a_{11}	$cx_{11}+d, x_{21}$	$cx_{12}+d, x_{22}$		a_{11}	$cx_{11}+d, ex_{21}+f$	$cx_{12}+d, ex_{22}+f$	
a_{12}	x_{13}, x_{23}	x_{14}, x_{24}	a_{12}	$cx_{13}+d, x_{23}$	$cx_{14}+d, x_{24}$	100	a_{12}	$cx_{13}+d, ex_{23}+f$	$cx_{14}+d, ex_{24}+f$	

^{*}Common knowledge is a complicated topic; I'll discuss it later

Examples

• Are these transformations positive affine?



• How about these?

	\boldsymbol{C}	D			\boldsymbol{C}	D			\boldsymbol{C}	D
C	3, 3	0, 4	→	C	3, 3	0, 5	>	C	3, 3	0, 5
D	4, 0	1, 1		D	4, 0	1, 1		D	5, 0	1, 1

Decision Making Under Risk

- Which of the following lotteries would you choose?
 - > A: 100% chance of receiving \$3000
 - > B: 80% chance of receiving \$4000; 20% chance of receiving nothing

Decision Making Under Risk

- Which of the following lotteries would you choose?
 - > C: 100% chance of losing \$3000
 - > D: 80% chance of losing \$4000; 20% chance of losing nothing

Decision Making Under Risk

- Which of the following lotteries would you choose?
 - > A: 100% chance of receiving \$3000
 - > B: 80% chance of receiving \$4000; 20% chance of receiving nothing
- Which of the following lotteries would you choose?
 - C: 100% chance of losing \$3000
 - > D: 80% chance of losing \$4000; 20% chance of losing nothing
- Kahneman & Tversky, 1979:
 - \triangleright EV(A) = \$3000 < EV(B) = \$3200, but most people would choose A
 - For prospects involving gains, we're risk-averse
 - \rightarrow EV(C) = -\$3000 > EV(D) = -\$3200, but most people would choose D
 - For prospects involving losses, we're risk-prone
 - http://www.econport.org/econport/request?page=man_ru_advanced_prospect