CMSC 474, Introduction to Game Theory

3. Important Normal-Form Games

Mohammad T. Hajiaghayi University of Maryland

Common-payoff Games

Common-payoff game:

- > For every action profile, all agents have the same payoff
- Also called a pure coordination game or a team game
 - Need to coordinate on an action that is maximally beneficial to all

• Which side of the road?

- 2 people driving toward each other in a country with no traffic rules
- Each driver independently decides
 whether to stay on the left or the right
- Need to coordinate your action with the action of the other driver

	Left	Right
Left	1, 1	0, 0
Right	0, 0	1, 1

A Brief Digression

- Mechanism design: set up the rules of the game, to give each agent an incentive to choose a desired outcome
- E.g., the law says what side of the road to drive on
 - > Sweden on September 3, 1967:

Zero-sum Games

These games are purely competitive

• Constant-sum game:

- > For every action profile, the sum of the payoffs is the same, i.e.,
- > there is a constant c such for every action profile $\mathbf{a} = (a_1, ..., a_n)$,

•
$$u_1(\mathbf{a}) + \ldots + u_n(\mathbf{a}) = c$$

- For any constant-sum game can be transformed into an equivalent game in which the sum of the payoffs is always 0
 - \triangleright Positive affine transformation: subtract c/n from every payoff
- Thus constant-sum games are usually called **zero-sum** games

Examples

Matching Pennies

- Two agents, each has a penny
- Each independently chooses to display Heads or Tails
 - If same, agent 1 gets both pennies
 - Otherwise agent 2 gets both pennies

1	OD WE	TRU	
	1	3	
LIBERTY	A	20	08
1			

	Heads	Tails
Heads	1, -1	-1, 1
Tails	-1, 1	1, -1

Penalty kicks in soccer

- > A kicker and a goalie
- Kicker can kick left or right
- Goalie can jump to left or right
- Kicker scores if he/she kicks to one side and goalie jumps to the other

Another Example:Rock-Paper-Scissors

- Two players. Each simultaneously picks an action: *Rock, Paper,* or *Scissors*.
- The rewards:

The matrices:

Nonzero-Sum Games

A game is nonconstant-sum (usually called nonzero-sum)
 if there are action profiles a and b such that

•
$$u_1(\mathbf{a}) + \ldots + u_n(\mathbf{a}) \neq u_1(\mathbf{b}) + \ldots + u_n(\mathbf{b})$$

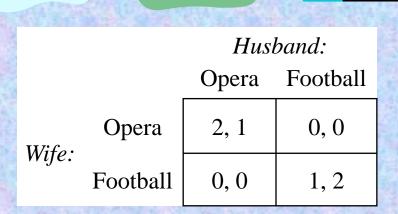
> e.g., the Prisoner's Dilemma

	C	D
C	3, 3	0, 5
D	5, 0	1, 1

Battle of the Sexes

Two agents need to coordinate their actions, but they have different preferences

- Original scenario:
 - husband prefers football, wife prefers opera
- > Another scenario:
 - Two nations must act together to deal with an international crisis, and they prefer different solutions



Symmetric Games

- In a **symmetric** game, every agent has the same actions and payoffs
 - If we change which agent is which, the payoff matrix will stay the same
- For a 2x2 symmetric game, it doesn't matter whether agent 1 is the row player or the column player
 - > The payoff matrix looks like this:
- In the payoff matrix of a symmetric game, we only need to display u_1
 - If you want to know another agent's payoff, just interchange the agent with agent 1

Which side of the road?

	Left	Right
Left	1, 1	0, 0
Right	0, 0	1, 1

ı	a_1	a_2
a_1	w, w	<i>x</i> , <i>y</i>
a_2	<i>y</i> , <i>x</i>	z, z

	a_1	a_2
a_1	W	x
a_2	у	z.

Strategies in Normal-Form Games

- Pure strategy: select a single action and play it
 - Each row or column of a payoff matrix represents both an action and a pure strategy
- **Mixed strategy**: randomize over the set of available actions according to some probability distribution
 - > $s_i(a_i)$ = probability that action a_i will be played in mixed strategy s_i
- The **support** of $s_i = \{ \text{actions that have probability} > 0 \text{ in } s_i \}$
- A pure strategy is a special case of a mixed strategy
 - support consists of a single action
- A strategy s_i is **fully mixed** if its support is A_i
 - > i.e., nonzero probability for every action available to agent i
- Strategy profile: an *n*-tuple $\mathbf{s} = (s_1, ..., s_n)$ of strategies, one for each agent

Expected Utility

- A payoff matrix only gives payoffs for pure-strategy profiles
- Generalization to mixed strategies uses expected utility
 - First calculate probability of each outcome, given the strategy profile (involves all agents)
 - > Then calculate average payoff for agent *i*, weighted by the probabilities
 - \triangleright Given strategy profile $\mathbf{s} = (s_1, ..., s_n)$
 - expected utility is the sum, over all action profiles, of the profile's utility times its probability:

$$u_i(\mathbf{s}) = \mathop{all}_{\mathbf{a} \mid \mathbf{A}} u_i(\mathbf{a}) \Pr[\mathbf{a} \mid \mathbf{s}]$$

i.e.,

$$u_{i}(s_{1},...,s_{n}) = \underset{(a_{1},...,a_{n})\hat{I}}{\mathring{a}} u_{i}(a_{1},...,a_{n}) \underset{j=1}{\overset{n}{\triangleright}} s_{j}(a_{j})$$

Let's Play another Game

- Choose a number in the range from 0 to 100
 - Write it on a piece of paper
 - Also write your name (this is optional)
 - > Fold your paper in half, so nobody else can see your number
 - Pass your paper to the front of the room
- The winner(s) will be whoever chose a number that's closest to the average of all the numbers
 - > I'll tell you the results later
 - > The winner(s) will get some prize

Summary of Past Three Sessions

- Basic concepts:
 - > normal form, utilities/payoffs, pure strategies, mixed strategies
- How utilities relate to rational preferences (not in the book)
- Some classifications of games based on their payoffs
 - > Zero-sum
 - Rock-paper-scissors, Matching Pennies
 - > Non-zero-sum
 - Chocolate Dilemma, Prisoner's Dilemma,
 Which Side of the Road?, Battle of the Sexes
 - Common-payoff
 - Which Side of the Road?
 - > Symmetric
 - All of the above except Battle of the Sexes