CMSC 474, Introduction to Game Theory

4. Analyzing Normal-Form Games

Mohammad T. Hajiaghayi
University of Maryland

Some Comments about Normal-Form Games

- Only two kinds of strategies in the normal-form game representation:
 - > Pure strategy: just a single action
 - > Mixed strategy: probability distribution over pure strategies
 - i.e., choose an action at random from the probability distribution
- The normal-form game representation may see very restricted

No such thing as a conditional strategy (a.g. pross the box if the temperature is above 70)	C	3, 3	0, 5
(e.g., cross the bay if the temperature is above 70)No temperature or anything else to observe	D	5, 0	1, 1
	WE 2	1.0	

D

- However much more complicated games can be mapped into normal-form games
 - Each pure strategy is a description of what you'll do in *every* situation you might ever encounter in the game
- In later sessions, we see more examples

How to reason about games?

- In single-agent decision theory, look at an optimal strategy
 - > Maximize the agent's expected payoff in its environment
- With multiple agents, the best strategy depends on others' choices
- Deal with this by identifying certain subsets of outcomes called solution concepts
- This second chapter of the book discusses two solution concepts:
 - Pareto optimality
 - Nash equilibrium
- Chapter 3 will discuss several others

Pareto Optimality

- A strategy profile s Pareto dominates a strategy profile s' if
 - > no agent gets a worse payoff with s than with s', i.e., $u_i(s) \ge u_i(s')$ for all i,
 - > at least one agent gets a better payoff with s than with s', i.e., $u_i(s) > u_i(s')$ for at least one i
- A strategy profile s is **Pareto optimal** (or **Pareto efficient**) if there's no strategy profile s' that Pareto dominates s
 - > Every game has at least one Pareto optimal profile
 - Always at least one Pareto optimal profile in which the strategies are pure

Examples

	C	D
C	3, 3	0, 5
D	5, 0	1, 1

The Prisoner's Dilemma

- (D,C) is Pareto optimal: no profile gives player 1 a higher payoff
- (C, D) is Pareto optimal: no profile gives player 2 a higher payoff
- (C, C) is Pareto optimal: no profile gives both players a higher payoff
- (D,D) isn't Pareto optimal: (C,C) Pareto dominates it

Which Side of the Road

- (Left,Left) and (Right,Right) are Pareto optimal
- In common-payoff games, all Pareto optimal strategy profiles have the same payoffs
 - ➤ If (Left,Left) had payoffs (2,2), then (Right,Right) wouldn't be Pareto optimal

	Left	Right
Left	1, 1	0, 0
Right	0, 0	1, 1

Best Response

- Suppose agent i knows how the others are going to play
 - Then *i* has an ordinary optimization problem: maximize expected utility
- We'll use \mathbf{s}_{-i} to mean a strategy profile for all of the agents except i

$$\mathbf{s}_{-i} = (s_1, ..., s_{i-1}, s_{i+1}, ..., s_n)$$

• Let s_i be any strategy for agent i. Then

$$(s_i, \mathbf{s}_{-i}) = (s_1, ..., s_{i-1}, s_i, s_{i+1}, ..., s_n)$$

• s_i is a **best response** to \mathbf{s}_{-i} if for every strategy s_i' available to agent i,

$$u_i(s_i, \mathbf{s}_{-i}) \geq u_i(s_i', \mathbf{s}_{-i})$$

- There is always at least one best response
- A best response s_i is **unique** if u_i $(s_i, \mathbf{s}_{-i}) > u_i$ (s_i', \mathbf{s}_{-i}) for every $s_i' \neq s_i$

Best Response

- Given \mathbf{s}_{-i} , there are only two possibilities:
 - (1) *i* has a pure strategy s_i that is a unique best response to s_{-i}
 - (2) *i* has infinitely many best responses to \mathbf{s}_{-i}

Proof. Suppose (1) is false. Then there are two possibilities:

- Case 1: s_i isn't unique, i.e., ≥ 2 strategies are best responses to \mathbf{s}_{-i}
 - > Then they all must have the same expected utility
 - Otherwise, they aren't all "best"
 - > Thus any mixture of them is also a best response
- Case 2: s_i isn't pure, i.e., it's a mixture of k > 2 actions
 - > The actions correspond to pure strategies, so this reduces to Case 1
- Theorem: Always there exists a pure best response s_i to s_{-i}

Proof. In both (1) and (2) above, there should be one pure best response.

Example

- Suppose we modify the Prisoner's Dilemma to give Agent 1 another possible action:
 - Suppose 2's strategy is to play action C
 - What are 1's best responses?
 - Suppose 2's strategy is to play action D
 - > What are 1's best responses?

	C	D
C	3, 3	0, 5
D	5, 0	1, 1
\boldsymbol{E}	3, 3	1, 3

Nash Equilibrium

- $\mathbf{s} = (s_1, ..., s_n)$ is a **Nash equilibrium** if for every i, s_i is a best response to s_{-i}
 - > Every agent's strategy is a best response to the other agents' strategies
 - > No agent can do better by *unilaterally* changing his/her strategy
- Theorem (Nash, 1951): Every game with a finite number of agents and actions has at least one Nash equilibrium
- In Which Side of the Road,
 (Left,Left) and (Right,Right) are Nash equilibria

	Left	Right
Left	1, 1	0, 0
Right	0, 0	1, 1

- In the Prisoner's Dilemma, (D,D) is a Nash equilibrium
 - ➤ Ironically, it's the only pure-strategy profile that isn't Pareto optimal

	\boldsymbol{C}	D
C	3, 3	0, 5
D	5, 0	1, 1