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The Chocolate Dilemma 

 Only one Nash equilibrium: (Take1,Take1) 

 For each player, Take1 is dominant 

• For every possible strategy that the 

other player might have, Take1 will 

maximize your expected payoff 

 So if the payoff matrix really does represent the players’ preferences 

• i.e., each player prefers to maximize 

his/her number of chocolates, regardless 

of how it affects the other player 

 Then we would expect both players to choose Take1 

 

 This doesn’t necessarily predict how people will behave 

 Here are some responses to the survey 

 

Take1 
Take

3 

Take1 1, 1 4, 0 

Take3 0, 4 3, 3 



Chocolate-Dilemma Survey Results 
 21 people answered the survey questions 
 

In each of the following circumstances, which action would you choose? 
% 

Take1 
% 

Take2 

  1. The other player is a stranger whom you'll never meet again. 52.4 47.6 

  2. The other player is an enemy. 90.5 9.5 

  3. The other player is a friend. 4.8 95.2 

  4. The other player is a computer program instead of a human. 71.4 28.6 

  5. You haven't eaten in two days. 71.4 28.6 

  6. Take1 means you take two chocolates instead of just one. 90.5 9.5 

  7. You and the other player can discuss what choices to make. 9.5 90.5 

  8. You will be playing the game repeatedly with the same person. 4.8 95.2 

  9. 
Thousands of people are playing the game. None of you knows which of 
the others is the one you're playing with. 

52.4 47.6 

10. 
Thousands of people are playing the game. "Take3" means the three 
chocolates go to a collection that will be divided equally among everyone. 

28.6 71.4 

11. 
The bag is filled with money. "Take1" means you take $2500 and you can 
keep it. "Take3" means you take $3000 but it will go to the other player. 

95.2 4.8 



Another Example 

 Road Networks (not in the book) 

 Suppose 1,000 drivers wish to travel from S (start) to D (destination) 

 Two possible paths: 

• SAD  and  SBD 

 The road from S to A is long: t = 50 minutes 

• But it’s also very wide: 
 t = 50 no matter how many cars 

 Same for road from B to D 

 Road from A to D is shorter but is narrow 

• Time = (number of cars)/25 

 Nash equilibrium: 

 500 cars go through A, 500 cars through B 

 Everyone’s time is 50 + 500/25 = 70 minutes 

 If a single driver changes to the other route then there are 501 cars on 
that route, so his/her time goes up 

S 

D 

t = 

cars/25 

t = cars/25 

t = 

50 

t = 50 

B 

A 



Braess’s Paradox 

 Add a very short and wide road from B to A: 

 0 minutes to traverse, no matter how many cars 

 Nash equilibrium: 

 All 1000 cars go SBAD  

 Time for SB is 1000/25 = 40 minutes 

 Total time is 80 minutes 

 To see that this is an equilibrium: 

 If driver goes SAD, his/her cost is 50 + 40 = 90 minutes 

 If driver goes SBD, his/her cost is 40 + 50 = 90 minutes 

 Both are dominated by SBAD 

 To see that it’s the only Nash equilibrium: 

 For every traffic pattern, SBAD dominates SAD and 
SBD 

 Choose any traffic pattern, and compute the times a driver would get on 
all three routes 

S 

D 

t = 

cars/25 

t = cars/25 

t = 

50 

t = 50 

B 

A 
t = 0 



Discussion 

 In the example, adding the extra road increased 

the travel time from 70 minutes to 80 minutes 

 This suggests that carelessly adding 

road capacity can actually be hurtful 

 But are the assumptions realistic? 

 For AB, t = 0 regardless of how many cars 

 Road length = 0? Then SA and SB must go to the same location, so 

how can their travel times be so different? 

 For SA, t = 50 regardless of how many cars 

 is it a 1000-lane road? 

 For 1000 cars, does “t = cars/25” really mean 40 minutes per car? 

 The cars can’t all start at the same time 

 If they go one at a time, could have 40 minutes total but 1/25 minute/car 

 So can this really happen in practice?  

S 

D 

t = 

cars/25 

t = cars/25 

t = 

50 

t = 50 

B 

A 
t = 0 



Braess’s Paradox in Practice 

 1969, Stuttgart, Germany – when a new road to city the center was opened, 

traffic got worse; and it didn’t improve until the road was closed 

 1990, Earth day, New York – closing 42nd street improved traffic flow 

 1999, Seoul, South Korea – closing a tunnel improved traffic flow 

 2003, Seoul, South Korea – traffic flow was improved by closing a 6-lane 

motorway and replacing it with a 5-mile-long park 

 2010, New York – closing parts of Broadway has improved traffic flow 

 Sources 

 http://www.umassmag.com/transportationandenergy.htm  

 http://www.cs.caltech.edu/~adamw/courses/241/lectures/brayes-j.pdf  

 http://www.guardian.co.uk/environment/2006/nov/01/society.travelsenvironmentalimpact  

 http://www.scientificamerican.com/article.cfm?id=removing-roads-and-traffic-lights 

 http://www.lionhrtpub.com/orms/orms-6-00/nagurney.html  

 

 

http://www.umassmag.com/transportationandenergy.htm
http://www.cs.caltech.edu/~adamw/courses/241/lectures/brayes-j.pdf
http://www.cs.caltech.edu/~adamw/courses/241/lectures/brayes-j.pdf
http://www.cs.caltech.edu/~adamw/courses/241/lectures/brayes-j.pdf
http://www.cs.caltech.edu/~adamw/courses/241/lectures/brayes-j.pdf
http://www.guardian.co.uk/environment/2006/nov/01/society.travelsenvironmentalimpact
http://www.scientificamerican.com/article.cfm?id=removing-roads-and-traffic-lights
http://www.scientificamerican.com/article.cfm?id=removing-roads-and-traffic-lights
http://www.scientificamerican.com/article.cfm?id=removing-roads-and-traffic-lights
http://www.scientificamerican.com/article.cfm?id=removing-roads-and-traffic-lights
http://www.scientificamerican.com/article.cfm?id=removing-roads-and-traffic-lights
http://www.scientificamerican.com/article.cfm?id=removing-roads-and-traffic-lights
http://www.scientificamerican.com/article.cfm?id=removing-roads-and-traffic-lights
http://www.scientificamerican.com/article.cfm?id=removing-roads-and-traffic-lights
http://www.scientificamerican.com/article.cfm?id=removing-roads-and-traffic-lights
http://www.lionhrtpub.com/orms/orms-6-00/nagurney.html
http://www.lionhrtpub.com/orms/orms-6-00/nagurney.html
http://www.lionhrtpub.com/orms/orms-6-00/nagurney.html
http://www.lionhrtpub.com/orms/orms-6-00/nagurney.html
http://www.lionhrtpub.com/orms/orms-6-00/nagurney.html


Questions 

 Nash equilibrium: 

 All 1000 cars go SBAD  

 Total time is 80 minutes 

 If all of the drivers agreed not to use BA, 
they could all get to D in 70 minutes 

 But each driver can reduce his/her driving time (at the expense of the 
other drivers) by defecting and using BA 

 If you were one of the drivers, what would you do? 

 Compare this with what you would 

do in the Chocolate Dilemma 

 In what ways are the two situations similar? 

 In what ways are they different? 

take 3 take 1 

take 3 3, 3 0, 4 

take 1  4, 0 1, 1 

S 

D 

t = 

cars/25 

t = cars/25 

t = 

50 

t = 50 

B 

A 
t = 0 



Comments 

 Braess’s paradox can also occur in other kinds of networks 

 Queuing networks 

 Communication networks 

 

 In principle, it can occur in Internet traffic 

 Though I don’t have enough evidence to know how much of a problem 

it is 



Strict Nash Equilibrium 

 A Nash equilibrium s = (s1, . . . , sn) is strict if for every i, 

si is the only best response to s−i 

• i.e., any agent who unilaterally changes strategy will do worse 

 Recall that if a best response is unique, it must be pure 

 It follows that in a strict Nash equilibrium, all of the strategies are pure 

 But if a Nash equilibrium is pure, it isn’t necessarily strict 

 

 Which of the following Nash equilibria are strict? Why? 

C D 

C 3, 3 0, 5 

D 5, 0 1, 1 

Left Right 

Left 1, 1 0, 0 

Right 0, 0 1, 1 

Left Right 

Left 1, 1 0, 0 

Right 0, 0 1, 1 

Center 0, 0 1, ½ 

C D 

C 3, 3 0, 4 

D 4, 0 1, 1 



Weak Nash Equilibrium 

 If a Nash equilibrium s isn’t strict, then it is weak 

 At least one agent i has more than one best response to s–i 

 If a Nash equilibrium includes a mixed strategy, then it is weak 

 If a mixture of k => 2 actions is a best response to s–i , then any other 

mixture of the actions is also a best response 

 If a Nash equilibrium consists only of pure 

strategies, it might still be weak 

 

 Weak Nash equilibria are less stable 

than strict Nash equilibria 

 If a Nash equilibrium is weak, then at 

least one agent has infinitely many best 

responses, and only one of them is in s 

Left Right 

Left 1, 1 0, 0 

Right 0, 0 1, 1 

Center 0, 0 1, ½ 


