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Finding Mixed-Strategy Nash Equilibria 

 In general, it’s tricky to compute mixed-strategy Nash equilibria 

 But easier if we can identify the support of the equilibrium strategies 

 In 2x2 games, we can do this easily  

 We especially use theorem below proved the previous week 

     Theorem A: Always there exists a pure best response si  to s–i 

 Corollary B: If (s1, s2)  is a pure Nash equilibrium only among pure 

strategies, it should be a Nash equilibrium among mixed strategies as well 

 Now let (s1, s2) be a Nash equilibrium 

 If both s1, s2  have supports of size one, it should be one of the cells of the 

normal-form matrix and we are done by Corollary B  

 Thus assume at least one of s1, s2  has a support of size two. 



Finding Mixed-Strategy Nash Equilibria 

 Now if the support of one of s1, s2 , say s1, is of size one, i.e., it is pure, then 

s2  should be pure as well, unless both actions of player 2 have the same 

payoffs; in this case any mixed strategy of both actions can be Nash 

equilibrium. 

 Thus in the rest we assume both supports have size two. 

 Thus to find s1  assume agent 1 selects action a1  with probability p and 

action a'1 with probability 1-p.  

 Now since s2  has a support of size two, its support must include both 

of agent 2’s actions, and they must have the same expected utility 

• Otherwise agent 2’s best response would be just one of them and its 

support has size one. 

 Hence find p such that u2(s1, a2) = u2(s1, a'2), i.e., solve the equation to 

find p (and thus s2) 

 Similarly, find s2 such that u1(a1, s2) = u1(a'1, s2)  



Finding Mixed-Strategy Nash Equilibria 

Example: Battle of the Sexes 

 We already saw pure Nash equilibria. 

 If there’s a mixed-strategy equilibrium, 

 both strategies must be mixtures 

of {Opera, Football} 

 each must be a best response to the other 

 Suppose the husband’s strategy is sh = {(p, Opera), (1–p, Football)} 

 Expected utilities of the wife’s actions: 

      uw(Opera, sh) = 2p;        uw(Football, sh) = 1(1 − p) 

 If the wife mixes the two actions, they must have the same expected utility 

 Otherwise the best response would be to always use the action whose 

expected utility is higher 

 Thus   2p = 1 – p,    so    p = 1/3 

 So the husband’s mixed strategy is sh = {(1/3, Opera), (2/3, Football)} 

 

 

Husband 

Wife 

Oper

a 
Football 

Opera 2, 1 0, 0 

Football 0, 0 1, 2 



Finding Mixed-Strategy Nash Equilibria 

 Similarly, we can show the wife’s 

mixed strategy is 

 sw = {(2/3, Opera), (1/3, Football)} 

 So  the mixed-strategy Nash 

equilibrium is (sw , sh), where  

  sw = {(2/3, Opera), (1/3, Football)} 

  sh = {(1/3, Opera), (2/3, Football)} 

 Questions: 

 Like all mixed-strategy Nash equilibria, (sw , sh) is weak 

• Both players have infinitely many other best-response strategies 

• What are they? 

 How do we know that (sw , sh) really is a Nash equilibrium? 

• Indeed the proof is by the way that we found Nash equilibria (sw , sh)  
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Opera 2, 1 0, 0 

Football 0, 0 1, 2 



Finding Mixed-Strategy Nash Equilibria 

 sw = {(2/3, Opera), (1/3, Football)} 

  sh = {(1/3, Opera), (2/3, Football)} 

 Wife’s expected utility is 

 2(2/9) + 1(2/9) + 0(5/9) = 2/3 

 Husband’s expected utility is also 2/3 

 

 It’s “fair” in the sense that both players 

have the same expected payoff 

 But it’s Pareto-dominated by both 

of the pure-strategy equilibria 

 In each of them, one agent gets 1 and the other gets 2 

 Can you think of a fair way of choosing actions that produces a higher 

expected utility? 

Husband 

Wife 

Oper

a 
Football 

Opera 2, 1 0, 0 

Football 0, 0 1, 2 

2/3 • 1/3 = 2/9 2/3 • 2/3 = 4/9 

1/3 • 1/3 = 1/9 1/3 • 2/3 = 2/9 



Finding Mixed-Strategy Nash Equilibria 

Matching Pennies  

 Easy to see that in this game, no pure strategy 

could be part of a Nash equilibrium 

 For each combination of pure strategies, 

one of the agents can do better by changing 

his/her strategy 

 Thus there isn’t a strict Nash equilibrium since it would be pure. 

 

 But again there’s a mixed-strategy equilibrium 

 Can be derived the same way as in the Battle of the Sexes 

• Result is (s,s), where s = {(½, Heads), (½, Tails)} 

 we say more about it in Chapter 3 

 

 

Heads Tails 

Heads  1, –1 –1,  1 

Tails –1,  1  1, –1 



Another Interpretation of Mixed Strategies 

 Suppose agent i has a deterministic method for picking a strategy, but it 

depends on factors that aren’t part of the game itself 

 If i plays a game several times, i may pick different strategies 

 If the other players don’t know how i picks a strategy, they’ll be uncertain 

what i’s strategy will be 

 Agent i’s mixed strategy is everyone else’s assessment of how likely i 

is to play each pure strategy 

 Example: 

 In a series of soccer penalty kicks, the kicker could kick left or right in 

a deterministic pattern that the goalie thinks is random 

 



Complexity of Finding Nash Equilibria 

 We’ve discussed how to find Nash equilibria in some special cases 

 Step 1: look for pure-strategy equilibria 

• Examine each cell of the matrix 

• If no cell in the same row is better for agent 1, and 

  no cell in the same column is better for agent 2 

  then the cell is a Nash equilibrium 

 Step 2: look for mixed-strategy equilibria 

• Write agent 2’s strategy as {(q, b), (1–q, b')}; 

look for q such that a and a' have the same expected utility 

• Write agent 1’s strategy as {(p, a), (1–p, a')}; 

look for p such that b and b' have the same expected utility 

  More generally for two-player games with any number of actions 

for each player, if we know support of each, we can find a mixed-Nash           

equilibrium in polynomial-time by solving linear equations (via linear program). 

 What about the general case? 

b b' 

a u1, v1 u2, v2 

a' u3, v3 u4, v4 

2x2 games 



Complexity of Finding Nash Equilibria 

 General case: n players, m actions per player, payoff matrix has mn cells 

(not in the book) 

 Brute-force approach: 

 Step 1: Look for pure-strategy equilibria 

• At each cell of the matrix,  

› For each player, can that player do 

better by choosing a different action? 

• Polynomial time 

 Step 2: Look for mixed-strategy equilibria 

• For every possible combination of supports for s1, …, sn 

› Solve sets of simultaneous equations 

• Exponentially many combinations of supports 

• Can it be done more quickly? 



Complexity of Finding Nash Equilibria 

 Two-player games 

 Lemke & Howson (1964): solve a set of simultaneous equations that 

includes all possible support sets for s1, …, sn 

• Some of the equations are quadratic => worst-case exponential time 

 Porter, Nudelman, & Shoham (2004) 

• AI methods (constraint programming) 

 Sandholm, Gilpin, & Conitzer (2005) 

• Mixed Integer Programming (MIP) problem 

 n-player games 

 van der Laan, Talma, & van der Heyden (1987) 

 Govindan, Wilson (2004) 

 Porter, Nudelman, & Shoham (2004) 

 Worst-case running time still is exponential in the size of the payoff matrix 



Complexity of Finding Nash Equilibria 

 There are special cases that can be done in polynomial time in the size of 

the payoff matrix 

 Finding pure-strategy Nash equilibria 

• Check each square of the payoff matrix 

 Finding Nash equilibria in zero-sum games 

• Linear programming 

 For the general case, 

 It’s unknown whether there are polynomial-time algorithms to do it 

 It’s unknown whether there are polynomial-time algorithms to compute 

approximations 

 But we know both questions are PPAD-complete (but not NP-

complete) even for two-player games (with some definition of PPAD 

     introduced by Christos Papadimitriou in 1994) 

 This is still one of the most important open problems in computational 

complexity theory 



Summary of Past Three Sessions 

 Pareto optimality  

 Prisoner’s Dilemma, Which Side of the Road 

 Best responses and Nash equilibria  

 Battle of the Sexes, Matching Pennies 

 Real-world example (not in the book) 

 Braess’s paradox for road networks 

 Finding pure-strategy and mixed-strategy Nash equilibria 

 Methods for special cases 

 Not in the book: 

 Brief discussion of computational complexity 


