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Finding Mixed-Strategy Nash Equilibria 

 In general, it’s tricky to compute mixed-strategy Nash equilibria 

 But easier if we can identify the support of the equilibrium strategies 

 In 2x2 games, we can do this easily  

 We especially use theorem below proved the previous week 

     Theorem A: Always there exists a pure best response si  to s–i 

 Corollary B: If (s1, s2)  is a pure Nash equilibrium only among pure 

strategies, it should be a Nash equilibrium among mixed strategies as well 

 Now let (s1, s2) be a Nash equilibrium 

 If both s1, s2  have supports of size one, it should be one of the cells of the 

normal-form matrix and we are done by Corollary B  

 Thus assume at least one of s1, s2  has a support of size two. 



Finding Mixed-Strategy Nash Equilibria 

 Now if the support of one of s1, s2 , say s1, is of size one, i.e., it is pure, then 

s2  should be pure as well, unless both actions of player 2 have the same 

payoffs; in this case any mixed strategy of both actions can be Nash 

equilibrium. 

 Thus in the rest we assume both supports have size two. 

 Thus to find s1  assume agent 1 selects action a1  with probability p and 

action a'1 with probability 1-p.  

 Now since s2  has a support of size two, its support must include both 

of agent 2’s actions, and they must have the same expected utility 

• Otherwise agent 2’s best response would be just one of them and its 

support has size one. 

 Hence find p such that u2(s1, a2) = u2(s1, a'2), i.e., solve the equation to 

find p (and thus s2) 

 Similarly, find s2 such that u1(a1, s2) = u1(a'1, s2)  



Finding Mixed-Strategy Nash Equilibria 

Example: Battle of the Sexes 

 We already saw pure Nash equilibria. 

 If there’s a mixed-strategy equilibrium, 

 both strategies must be mixtures 

of {Opera, Football} 

 each must be a best response to the other 

 Suppose the husband’s strategy is sh = {(p, Opera), (1–p, Football)} 

 Expected utilities of the wife’s actions: 

      uw(Opera, sh) = 2p;        uw(Football, sh) = 1(1 − p) 

 If the wife mixes the two actions, they must have the same expected utility 

 Otherwise the best response would be to always use the action whose 

expected utility is higher 

 Thus   2p = 1 – p,    so    p = 1/3 

 So the husband’s mixed strategy is sh = {(1/3, Opera), (2/3, Football)} 

 

 

Husband 

Wife 

Oper

a 
Football 

Opera 2, 1 0, 0 

Football 0, 0 1, 2 



Finding Mixed-Strategy Nash Equilibria 

 Similarly, we can show the wife’s 

mixed strategy is 

 sw = {(2/3, Opera), (1/3, Football)} 

 So  the mixed-strategy Nash 

equilibrium is (sw , sh), where  

  sw = {(2/3, Opera), (1/3, Football)} 

  sh = {(1/3, Opera), (2/3, Football)} 

 Questions: 

 Like all mixed-strategy Nash equilibria, (sw , sh) is weak 

• Both players have infinitely many other best-response strategies 

• What are they? 

 How do we know that (sw , sh) really is a Nash equilibrium? 

• Indeed the proof is by the way that we found Nash equilibria (sw , sh)  
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Finding Mixed-Strategy Nash Equilibria 

 sw = {(2/3, Opera), (1/3, Football)} 

  sh = {(1/3, Opera), (2/3, Football)} 

 Wife’s expected utility is 

 2(2/9) + 1(2/9) + 0(5/9) = 2/3 

 Husband’s expected utility is also 2/3 

 

 It’s “fair” in the sense that both players 

have the same expected payoff 

 But it’s Pareto-dominated by both 

of the pure-strategy equilibria 

 In each of them, one agent gets 1 and the other gets 2 

 Can you think of a fair way of choosing actions that produces a higher 

expected utility? 

Husband 

Wife 

Oper

a 
Football 

Opera 2, 1 0, 0 

Football 0, 0 1, 2 

2/3 • 1/3 = 2/9 2/3 • 2/3 = 4/9 

1/3 • 1/3 = 1/9 1/3 • 2/3 = 2/9 



Finding Mixed-Strategy Nash Equilibria 

Matching Pennies  

 Easy to see that in this game, no pure strategy 

could be part of a Nash equilibrium 

 For each combination of pure strategies, 

one of the agents can do better by changing 

his/her strategy 

 Thus there isn’t a strict Nash equilibrium since it would be pure. 

 

 But again there’s a mixed-strategy equilibrium 

 Can be derived the same way as in the Battle of the Sexes 

• Result is (s,s), where s = {(½, Heads), (½, Tails)} 

 we say more about it in Chapter 3 

 

 

Heads Tails 

Heads  1, –1 –1,  1 

Tails –1,  1  1, –1 



Another Interpretation of Mixed Strategies 

 Suppose agent i has a deterministic method for picking a strategy, but it 

depends on factors that aren’t part of the game itself 

 If i plays a game several times, i may pick different strategies 

 If the other players don’t know how i picks a strategy, they’ll be uncertain 

what i’s strategy will be 

 Agent i’s mixed strategy is everyone else’s assessment of how likely i 

is to play each pure strategy 

 Example: 

 In a series of soccer penalty kicks, the kicker could kick left or right in 

a deterministic pattern that the goalie thinks is random 

 



Complexity of Finding Nash Equilibria 

 We’ve discussed how to find Nash equilibria in some special cases 

 Step 1: look for pure-strategy equilibria 

• Examine each cell of the matrix 

• If no cell in the same row is better for agent 1, and 

  no cell in the same column is better for agent 2 

  then the cell is a Nash equilibrium 

 Step 2: look for mixed-strategy equilibria 

• Write agent 2’s strategy as {(q, b), (1–q, b')}; 

look for q such that a and a' have the same expected utility 

• Write agent 1’s strategy as {(p, a), (1–p, a')}; 

look for p such that b and b' have the same expected utility 

  More generally for two-player games with any number of actions 

for each player, if we know support of each, we can find a mixed-Nash           

equilibrium in polynomial-time by solving linear equations (via linear program). 

 What about the general case? 

b b' 

a u1, v1 u2, v2 

a' u3, v3 u4, v4 

2x2 games 



Complexity of Finding Nash Equilibria 

 General case: n players, m actions per player, payoff matrix has mn cells 

(not in the book) 

 Brute-force approach: 

 Step 1: Look for pure-strategy equilibria 

• At each cell of the matrix,  

› For each player, can that player do 

better by choosing a different action? 

• Polynomial time 

 Step 2: Look for mixed-strategy equilibria 

• For every possible combination of supports for s1, …, sn 

› Solve sets of simultaneous equations 

• Exponentially many combinations of supports 

• Can it be done more quickly? 



Complexity of Finding Nash Equilibria 

 Two-player games 

 Lemke & Howson (1964): solve a set of simultaneous equations that 

includes all possible support sets for s1, …, sn 

• Some of the equations are quadratic => worst-case exponential time 

 Porter, Nudelman, & Shoham (2004) 

• AI methods (constraint programming) 

 Sandholm, Gilpin, & Conitzer (2005) 

• Mixed Integer Programming (MIP) problem 

 n-player games 

 van der Laan, Talma, & van der Heyden (1987) 

 Govindan, Wilson (2004) 

 Porter, Nudelman, & Shoham (2004) 

 Worst-case running time still is exponential in the size of the payoff matrix 



Complexity of Finding Nash Equilibria 

 There are special cases that can be done in polynomial time in the size of 

the payoff matrix 

 Finding pure-strategy Nash equilibria 

• Check each square of the payoff matrix 

 Finding Nash equilibria in zero-sum games 

• Linear programming 

 For the general case, 

 It’s unknown whether there are polynomial-time algorithms to do it 

 It’s unknown whether there are polynomial-time algorithms to compute 

approximations 

 But we know both questions are PPAD-complete (but not NP-

complete) even for two-player games (with some definition of PPAD 

     introduced by Christos Papadimitriou in 1994) 

 This is still one of the most important open problems in computational 

complexity theory 



Summary of Past Three Sessions 

 Pareto optimality  

 Prisoner’s Dilemma, Which Side of the Road 

 Best responses and Nash equilibria  

 Battle of the Sexes, Matching Pennies 

 Real-world example (not in the book) 

 Braess’s paradox for road networks 

 Finding pure-strategy and mixed-strategy Nash equilibria 

 Methods for special cases 

 Not in the book: 

 Brief discussion of computational complexity 


