CMSC 474, Introduction to Game Theory 8. Maxmin and Minmax Strategies

Mohammad T. Hajiaghayi University of Maryland

Outline

- Chapter 2 discussed two solution concepts:
 - Pareto optimality and Nash equilibrium
- Chapter 3 discusses several more:
 - Maxmin and Minmax
 - Dominant strategies
 - Correlated equilibrium
 - > Trembling-hand perfect equilibrium
 - ε-Nash equilibrium
 - Evolutionarily stable strategies

Worst-Case Expected Utility

For agent *i*, the worst-case expected utility of a strategy s_i is the minimum over all possible combinations of strategies for the other agents:

$$\min_{\mathbf{s}_{-i}} u_i(s_i, \mathbf{s}_{-i})$$

- Example: Battle of the Sexes
 - > Wife's strategy $s_w = \{(p, \text{Opera}), (1 p, \text{Football})\}$
 - > Husband's strategy $s_h = \{(q, \text{Opera}), (1 q, \text{Football})\}$
 - > $u_w(p,q) = 2pq + (1-p)(1-q) = 3pq p q + 1$
 - > For any fixed p, $u_w(p,q)$ is linear in q
 - e.g., if $p = \frac{1}{2}$, then $u_w(\frac{1}{2},q) = \frac{1}{2}q + \frac{1}{2}$
 - > $0 \le q \le 1$, so the min must be at q = 0 or q = 1
 - e.g., $\min_q (\frac{1}{2}q + \frac{1}{2})$ is at q = 0
 - > $\min_{q} u_w(p,q) = \min(u_w(p,0), u_w(p,1)) = \min(1-p, 2p)$

Husband Wife	Opera	Football
Opera	2, 1	0, 0
Football	0, 0	1, 2

We can write $u_w(p,q)$ instead of $u_w(s_w, s_h)$

Maxmin Strategies

Also called maximin

- A maxmin strategy for agent *i*
 - > A strategy s_1 that makes *i*'s worst-case expected utility as high as possible: arg max min u(s, s)

 $\arg\max_{s_i}\min_{\mathbf{s}_{-i}} u_i(s_i, \mathbf{s}_{-i})$

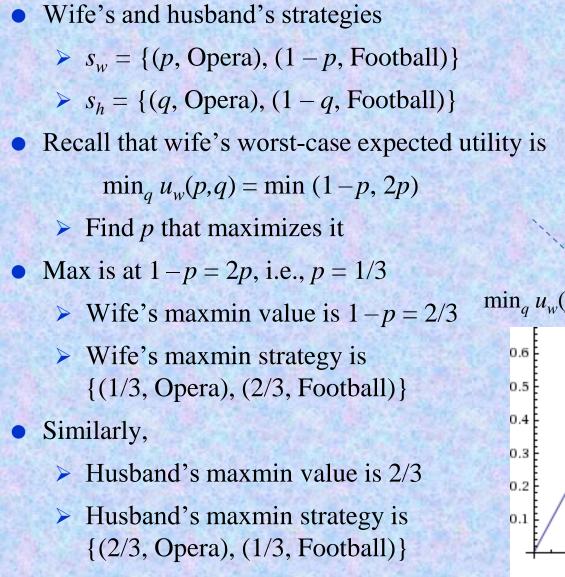
- This isn't necessarily unique
- > Often it is mixed
- Agent *i*'s **maxmin value**, or **security level**, is the maxmin strategy's worst-case expected utility:

 $\max_{s_i} \min_{\mathbf{s}_{-i}} u_i(s_i, \mathbf{s}_{-i})$

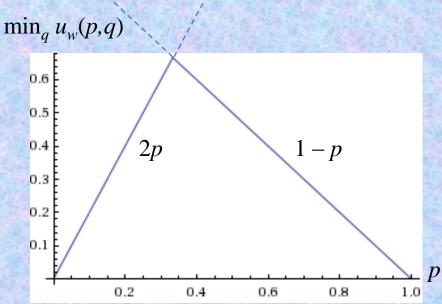
• For 2 players it simplifies to

 $\max_{s_1} \min_{s_2} u_1(s_1, s_2)$

Example



Husband Wife	Opera	Football
Opera	2, 1	0, 0
Football	0, 0	1, 2



• Why might an agent *i* want to use a maxmin strategy?

Answers

• Why might an agent *i* want to use a maxmin strategy?

- Useful if *i* is cautious (wants to maximize his/her worst-case utility) and doesn't have any information about the other agents
 - whether they are rational
 - what their payoffs are
 - whether they draw their action choices from known distributions
- Useful if *i* has reason to believe that the other agents' objective is to minimize *i*'s expected utility
 - e.g., 2-player zero-sum games (we discuss this later in his session)
- Solution concept: maxmin strategy profile
 - > all players use their maxmin strategies

Example

- Maxmin strategy profile for the Battle of the Sexes
 - > The maxmin strategies are
 - > $s_w = \{(1/3, \text{Opera}), (2/3, \text{Football})\}$
 - > $s_h = \{(2/3, \text{Opera}), (1/3, \text{Football})\}$
- If they use those strategies, then

11 × 12	Husband Wife	Opera	Football
10.00 ×	Opera	2, 1	0, 0
14	Football	0, 0	1, 2

- > $u_w = 2(1/3)(2/3) + 1(2/3)(1/3) = 4/9 + 2/9 = 2/3$
- > $u_h = 1(1/3)(2/3) + 2(2/3)(1/3) = 2/9 + 4/9 = 2/3$
- Both players get exactly their maxmin values
- Compare with their Nash equilibrium strategies (with the same expected utilities):
 - > $s_w = \{(2/3, \text{Opera}), (1/3, \text{Football})\}$
 - > $s_h = \{(1/3, \text{Opera}), (2/3, \text{Football})\}$

Minmax Strategies (in 2-Player Games)

• Minmax strategy and minmax value

Duals of their maxmin counterparts

Suppose agent 1 wants to punish agent 2, regardless of how it affects agent 1's own payoff

Agent 1's minmax strategy against agent 2

Also called **minimax**

> A strategy s_1 that minimizes the expected utility of 2's best response to s_1 $\arg\min_{s_1} \max_{s_2} u_2(s_1, s_2)$

• Agent 2's minmax value is 2's maximum expected utility if agent 1 plays his/her minmax strategy:

 $\min_{s_1} \max_{s_2} u_2(s_1, s_2)$

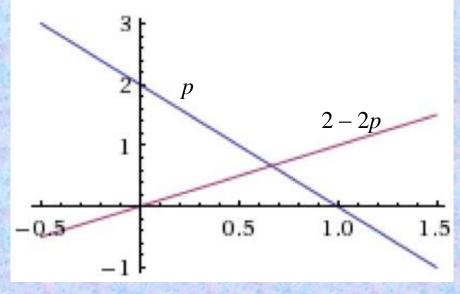
• Minmax strategy profile: both players use their minmax strategies

Example

Wife's and husband's strategies
 s_w = {(p, Opera), (1 - p, Football)}
 s_h = {(q, Opera), (1 - q, Football)}

DATE AL	Husband Wife	Opera	Football
100	Opera	2, 1	0, 0
Sec. 1	Football	0, 0	1, 2

- $u_h(p,q) = pq + 2(1-p)(1-q) = 3pq 2p 2q + 2$
- Given wife's strategy p, husband's expected utility is linear in q
 - > e.g., if $p = \frac{1}{2}$, then $u_h(\frac{1}{2},q) = -\frac{1}{2}q + 1$
- Max is at q = 0 or q = 1
 - $\max_{q} u_{h}(p,q) = (2-2p, p)$
- Find *p* that minimizes this
- Min is at $-2p + 2 = p \rightarrow p = 2/3$
- Husband/s minmax value is 2/3
- Wife's minmax strategy is {(2/3, Opera), (1/3, Football)}



Minmax Strategies in *n*-Agent Games

- In *n*-agent games (n > 2), agent *i* usually can't minimize agent *j*'s payoff by acting unilaterally
- But suppose all the agents "gang up" on agent j
 - > Let \mathbf{s}^*_{-j} be a mixed-strategy profile that minimizes *j*'s maximum payoff, i.e., $\mathbf{s}^*_{-j} = \arg\min_{\mathbf{s}} \mathop{\bigotimes}_{j} u_j (s_j, \mathbf{s}_{-j}) \mathop{\bigotimes}_{q}^{\mathbf{0}}$
 - > For every agent $i \neq j$, a minmax strategy for *i* is *i*'s component of \mathbf{s}_{j}^{*}
- Agent j's minmax value is j's maximum payoff against \mathbf{s}_{-j}^* $\max_{s_i} u_j(s_j, \mathbf{s}_{-j}^*) = \min_{\mathbf{s}_{-j}} \max_{s_j} u_j(s_j, \mathbf{s}_{-j})$

• We have equality since we just replaced \mathbf{s}_{-i}^* by its value above

Minimax Theorem (von Neumann, 1928)

Theorem. Let G be any finite two-player zero-sum game. For each player i,

- > *i*'s expected utility in any Nash equilibrium
 - = i's maxmin value
 - = i's minmax value
- > In other words, for every Nash equilibrium (s_1^*, s_2^*) ,

$$u_1(s_1^*, s_2^*) = \min_{s_1} \max_{s_2} u_1(s_1, s_2) = \max_{s_1} \min_{s_2} u_1(s_1, s_2)$$

- Note that since $u_{2=}$ - u_1 the equation does not mention u_2

• **Corollary.** {Nash equilibria} = {maxmin strategy profiles}

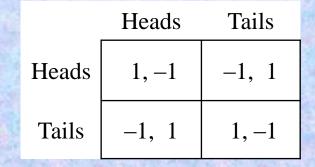
= {minmax strategy profiles}

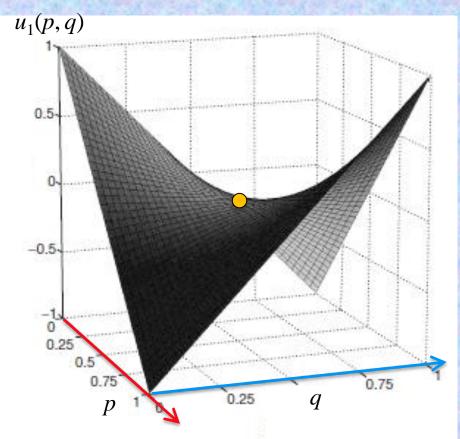
- Note that this is **not necessary true** for **non-zero-sum** games as we say for Battle of Sexes in previous slides
- Terminology: the value (or minmax value) of G is agent 1's minmax value

Agent 1's strategy: display heads with probability p
Agent 2's strategy: display heads with probability q u₁(p, q) = p q + (1 - p)(1 - q) - p(1 - q) - q(1 - p)

= 1 - 2p - 2q + 4pq $u_2(p, q) = -u_1(p, q)$

- Want to show that
 - {Nash equilibria}
 - = {maxmin strategy profiles}
 - = {minmax strategy profiles}
 - $= \{ (p = \frac{1}{2}, q = \frac{1}{2}) \}$





Find Nash equilibria

 $u_1(p, q) = 1 - 2p - 2q + 4pq$ $u_2(p, q) = -u_1(p, q)$

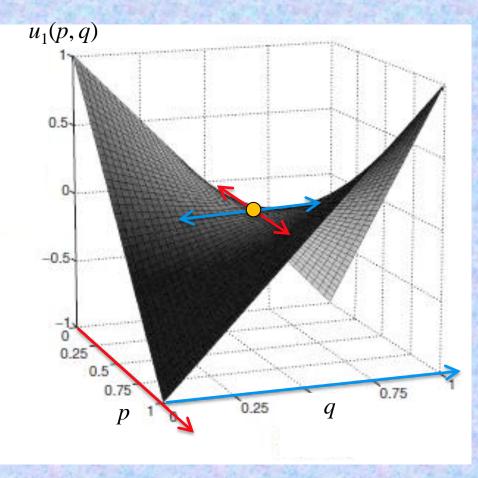
- If $p = q = \frac{1}{2}$, then $u_1 = u_2 = 0$
- If agent 1 changes to $p \neq \frac{1}{2}$ and agent 2 keeps $q = \frac{1}{2}$, then
 - > $u_1(p, \frac{1}{2}) = 1 2p 1 + 2p = 0$
- If agent 2 changes to $q \neq \frac{1}{2}$ and agent 1 keeps $p = \frac{1}{2}$, then

> $u_2(\frac{1}{2}, q) = -(1 - 2q - 1 + 2q) = 0$

Thus $p = q = \frac{1}{2}$ is a Nash equilibrium

Are there any others?

	Heads	Tails
Heads	1, -1	-1, 1
Tails	-1, 1	1, -1



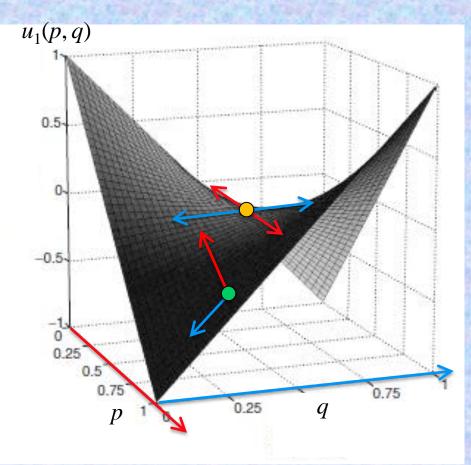
Show there are no other Nash equilibria

 $u_1(p, q) = 1 - 2p - 2q + 4pq$ $u_2(p, q) = -u_1(p, q)$

- Consider any strategy profile (p, q)where $p \neq \frac{1}{2}$ or $q \neq \frac{1}{2}$ or both
 - Several different cases, depending on the exact values of p and q
 - In every one of them, either agent 1 can increase u₁ by changing p, or agent 2 can increase u₂ by changing q, or both

So there are no other Nash equilibria

		Heads	Tails
	Heads	1, -1	-1, 1
U	Tails	-1, 1	1, -1



Find all maxmin strategy profiles

 $u_1(p, q) = 1 - 2p - 2q + 4pq$ $u_2(p, q) = -u_1(p, q)$

- If agent 1's strategy is $p = \frac{1}{2}$ then regardless of 2's value of q, $u_1(\frac{1}{2}, q) = 1 - 2q - 1 + 2q = 0$
- If agent 1's strategy is $p > \frac{1}{2}$ then 2's best response is q = 0

(see the diagram)

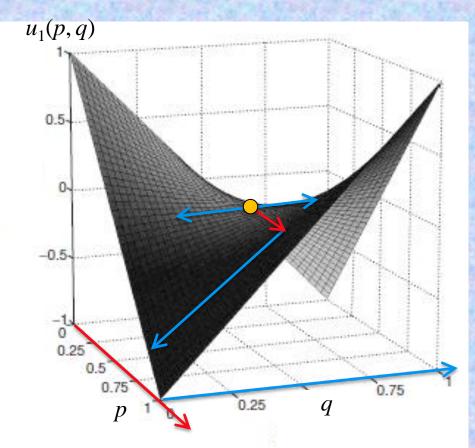
 $u_1(p, 0) = 1 - 2p < 0$

If agent 1's strategy is $p < \frac{1}{2}$ then 2's best response is q = 1 $u_1(p, 1) = -1 + 2p < 0$

Thus 1 has one maxmin strategy: $p = \frac{1}{2}$

Similarly, 2 has one maxmin strategy: $q = \frac{1}{2}$

	Heads	Tails
Heads	1, -1	-1, 1
Tails	-1, 1	1, -1



Find all minmax strategy profiles

 $u_1(p, q) = 1 - 2p - 2q + 4pq$ $u_2(p, q) = -u_1(p, q)$

- If agent 1's strategy is $p = \frac{1}{2}$ then regardless of 2's value of q, $u_2(\frac{1}{2}, q) = -(1 - 2q - 1 + 2q) = 0$
- If agent 1's strategy is $p > \frac{1}{2}$ then 2's best response is q = 0

(see the diagram)

 $u_2(p, 0) = -(1 - 2p) > 0$

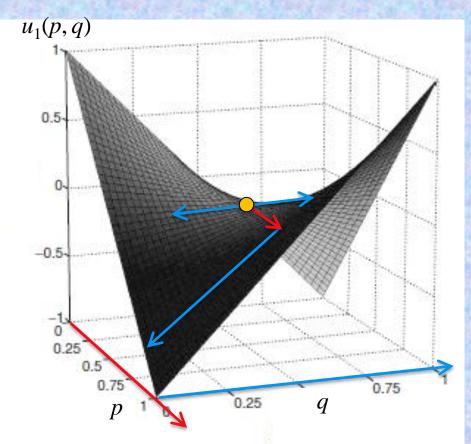
If agent 1's strategy is p < ¹/₂
 then 2's best response is q = 1

 $u_2(p, 1) = -(-1 + 2p) > 0$

Thus 1 has one minmax strategy: $p = \frac{1}{2}$

Similarly, 2 has one minmax strategy: $q = \frac{1}{2}$

	Heads	Tails
Heads	1, -1	-1, 1
Tails	-1, 1	1, -1



Finding Strategies for Zero-Sum Games

 In zero-sum games, minmax/maxmin strategies are Nash equilibrium strategies

> So just look for Nash equilibria (as we saw the way before)