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Outline

 Chapter 2 discussed two solution concepts:

 Pareto optimality and Nash equilibrium

 Chapter 3 discusses several more:

 Maxmin and Minmax

 Dominant strategies

 Correlated equilibrium

 Trembling-hand perfect equilibrium

 e-Nash equilibrium

 Evolutionarily stable strategies



Dominant Strategies

 Let si and si be two strategies for agent i

 Intuitively, si dominates si if agent i does better with si than with si

for every strategy profile s−i of the remaining agents

Mathematically, there are three gradations of dominance:

 si strictly dominates si if for every s−i ,

ui (si, s−i) > ui (si, s−i)

 si weakly dominates si if for every s−i ,

ui (si, s−i) ≥ ui (si, s−i)

and for at least one s−i ,

ui (si, s−i ) > ui (si, s−i ) 

 si very weakly dominates si if for every s−i ,

ui (si, s−i ) ≥ ui (si, s−i)



Dominant Strategy Equilibria

 A strategy is strictly (resp., weakly, very weakly) dominant for an agent 

if it strictly (weakly, very weakly) dominates any other strategy for that 

agent

 A strategy profile (s1, . . . , sn) in which every si is dominant for agent i

(strictly, weakly, or very weakly) is a Nash equilibrium

• Why?

 Such a strategy profile forms an equilibrium in strictly (weakly, very 

weakly) dominant strategies



Examples

 Example: the Prisoner’s Dilemma

 http://www.youtube.com/watch?v=ED9gaAb2BEw

 For agent 1, D is strictly dominant

 If agent 2 uses C, then

• Agent 1’s payoff is higher with D than with C

 If agent 2 uses D, then

• Agent 1’s payoff is higher with D than with C

 Similarly, D is strictly dominant for agent 2

 So (D,D) is a Nash equilibrium in strictly dominant strategies

 How do strictly dominant strategies relate to strict Nash equilibria?

C D

C 3, 3 0, 5

D 5, 0 1, 1

C D

C 3, 3 0, 5

D 5, 0 1, 1

http://www.youtube.com/watch?v=ED9gaAb2BEw


Example: Matching Pennies

 Matching Pennies

 If agent 2 uses Heads, then

• For agent 1, Heads is better than Tails

 If agent 2 uses Tails, then

• For agent 1, Tails is better than Heads

 Agent 1 doesn’t have a dominant strategy

=> no Nash equilibrium in dominant strategies

 Which Side of the Road

 Same kind of argument as above

 No Nash equilibrium in dominant strategies

Heads Tails

Heads 1, –1 –1, 1

Tails –1, 1 1, –1

Left Right

Left 1, 1 0, 0

Right 0, 0 1, 1



L

D 5, 1

Elimination of Strictly Dominated Strategies

 A strategy si is strictly (weakly, very weakly) dominated for an agent i

if some other strategy si strictly (weakly, very weakly) dominates si

 A strictly dominated strategy can’t be a best

response to any move, so we can eliminate it

(remove it from the payoff matrix)

 This gives a reduced game 

 Other strategies may now be strictly dominated,

even if they weren’t dominated before

 IESDS (Iterated Elimination of Strictly Dominated Strategies):

 Do elimination repeatedly until no more eliminations are possible

 When no more eliminations are possible, we have

the maximal reduction of the original game

L R

U 3, 3 0, 5

D 5, 1 1, 0

L R

D 5, 1 1, 0



 If you eliminate a strictly dominated strategy, the reduced 

game has the same Nash equilibria as the original one

 Thus

{Nash equilibria of the original game}

= {Nash equilibria of the maximally reduced game} 

 Use this technique to simplify finding Nash equilibria

 Look for Nash equilibria on the maximally reduced game

 In the example, we ended up with a single cell

 The single cell must be a unique Nash equilibrium

in all three of the games

IESDS

L R

U 3, 3 0, 5

D 5, 1 1, 0

L R

D 5, 1 1, 0

L

D 5, 1



IESDS

 Even if si isn’t strictly dominated by a pure

strategy, it may be strictly dominated by a

mixed strategy

 Example: the three games shown at right

 1st game:

• R is strictly dominated by L (and by C)

• Eliminate it, get 2nd game

 2nd game:

• Neither U nor D dominates M

• But {(½, U), (½, D)} strictly dominates M

› This wasn’t true before we removed R

• Eliminate it, get 3rd game

 3rd game is maximally reduced 

L C R

U 3, 1 0, 1 0, 0

M 1, 1 1, 1 5, 0

D 0, 1 4, 1 0, 0

L C

U 3, 1 0, 1

M 1, 1 1, 1

D 0, 1 4, 1

L C

U 3, 1 0, 1

D 0, 1 4, 1



If there is intelligent life on other planets, in a majority of 

them, they would have discovered correlated equilibrium 

before Nash  equilibrium.

----Roger Myerson

Correlated Equilibrium: Pithy Quote



 Not every correlated equilibrium is a Nash equilibrium but 

every Nash equilibrium is a correlated equilibrium

We have a traffic light: a fair randomizing device that tells one 

of the agents to go and the other to wait.

 Benefits:

 easier to compute than Nash, e.g., it is polynomial-time 

computable

 fairness is achieved

 the sum of social welfare exceeds that of any Nash 

equilibrium

Correlated Equilibrium: Intuition



Correlated Equilibrium

 Recall the mixed-strategy equilibrium

for the Battle of the Sexes

 sw = {(2/3, Opera), (1/3, Football)}

 sh = {(1/3, Opera), (2/3, Football)}

 This is “fair”: each agent is equally likely to get his/her preferred activity

 But 5/9 of the time, they’ll choose different activities => utility 0 for both

 Thus each agent’s expected utility is only 2/3

 We’ve required them to make their choices independently

 Coordinate their choices (e.g., flip a coin) => eliminate cases where they 

choose different activities

 Each agent’s payoff will always be 1 or 2; expected utility 1.5

 Solution concept: correlated equilibrium

 Generalization of a Nash equilibrium

Husband

Wife

Oper

a
Football

Opera 2, 1 0, 0

Football 0, 0 1, 2



Correlated Equilibrium

 Let G be an n-agent game

 Let v1, …, vn be random variables, one for each agent

 For each i, let Di be the domain (the set of possible values) of vi

 Let π be a joint distribution over v1, …, vn

 π(d1, …, dn) = Pr [v1=d1, …, vn=dn]

 “Nature” uses π to choose values d = (d1, …, dn) for v = (v1, …, vi)

 “Nature” tells each agent i the value of vi (privately)

 An agent can condition his/her action on the value of vi

 An agent’s strategy is a deterministic mapping σi : Di → Ai (note that 

we might have σi(d1) =σi (d2) for d1 not equal to d2 )

• As book says mixed strategies wouldn’t give any greater generality 

 A strategy profile is σ = (σ1, …, σn)

 The games we’ve been considering before now are a degenerate case in 

which the random variables v1, …, vn are independent



Correlated Equilibrium

 G is an n-player game

 v = (v1, …, vn) are random variables with domains D = (D1, …, Dn) 

• Joint distribution π(d) = π(d1, …, dn) = Pr [v1=d1, …, vn=dn]

 σ = (σ1, …, σn) is a strategy profile

• Each strategy σi is a mapping from Di to Ai

 Then the expected utility for agent i is

ui(σ) = d π(d) ui(σ(d)),

i.e.,

 (v, π, σ) is a correlated equilibrium if for every agent i and strategy σi,

ui(σ)  ≥  ui(σi, σ–i)

i.e., ui(σ1, …, σi–1, σi, σi+1, …, σn)  ≥  ui(σ1, …, σi–1, σi, σi+1, …, σn)   

ui(s1,...,s n ) = p d1,...,dn( )ui s1 d1( ),...,s n dn( )( )
d1 ,...,dn

å



Correlated Equilibrium
Theorem. For every Nash equilibrium s = (s1, …, sn), there’s a corresponding 

correlated equilibrium σ = (σ1, . . . , σn)

 “Corresponding” means they produce the same distribution on outcomes 

Basic idea of the proof: for each i, set up vi and σi to mimic si

 v1, …, vn independently distributed

 Each vi has domain Ai and probability distribution si

 Each σi is the identity function (i.e., do the action that you’re told to do)

 When the agents play the strategy profile σ, the distribution over outcomes is 

identical to that under s

 No agent i can benefit by deviating from σi, so σ is a correlated equilibrium

 But not every correlated equilib. is equivalent to a Nash equilib.e.g.,Battle of Sexes

 Intuitively, correlated equilibrium is computable in polynomial time since it has 

only a single randomization over outcomes, whereas in NE this is constructed as a 

product of independent probabilities.




