CMSC 474, Introduction to Game Theory

10. Epsilon-Nash Equilibria

Mohammad T. Hajiaghayi University of Maryland

Outline

- Chapter 2 discussed two solution concepts:
 - Pareto optimality and Nash equilibrium
- Chapter 3 discusses several more:
 - Maxmin and Minmax
 - Dominant strategies
 - Correlated equilibrium
 - > Trembling-hand perfect equilibrium (complicated definition)
 - > ε-Nash equilibrium
 - > Evolutionarily stable strategies

ε-Nash Equilibrium

- Reflects the idea that agents might not change strategies if the gain would be very small
- Let ε > 0. A strategy profile s = (s₁,..., s_n) is an ε-Nash equilibrium if for every agent *i* and for every strategy s_i' ≠ s_i,

 $u_i(s_i, \mathbf{s}_{-i}) \ge u_i(s_i', \mathbf{s}_{-i}) - \varepsilon$

- ε -Nash equilibria exist for every $\varepsilon > 0$
 - Every Nash equilibrium is an ε-Nash equilibrium, and is surrounded by a region of ε-Nash equilibria
- This concept can be computationally useful
 - Algorithms to identify ε-Nash equilibria need consider only a finite set of mixed-strategy profiles (not the whole continuous space)
 - > Because of finite precision, computers generally find only ε -Nash equilibria, where ε is roughly the machine precision

Problems with ε-Nash Equilibrium

- For every Nash equilibrium, there are ε-Nash equilibria that approximate it, but the converse isn't true
 - > There are ε -Nash equilibria that aren't close to any Nash equilibrium
- Example: the game at right has just one Nash equilibrium: (D, R)
 - > Use IESDS to show it's the only one:
 - For agent 1, D dominates U, so remove U
 - Then for agent 2, R dominates L
- (D, R) is also an ε -Nash equilibrium
- But there's another ε -Nash equilibrium: (U, L)
 - > Neither agent can gain more than ε by deviating
 - > But its payoffs aren't within ε of the Nash equilibrium

	L	R
U	1, 1	0, 0
D	$1 + \epsilon/2, 1$	500, 500

Problems with ε-Nash Equilibrium

- Some ε-Nash equilibria are very unlikely to arise
- Same example as before
 - > Agent 1 might not care about a gain of $\varepsilon/2$, but might reason as follows:
 - Agent 2 may expect agent 1 to to play *D*, since *D* dominates *U*
 - So agent 2 is likely to play R
 - If agent 2 plays *R*, agent 1 does *much* better by playing *D* rather than *U*
- In general, ε-approximation is much messier in games than in optimization problems

	L	R
U	1, 1	0, 0
D	$1 + \epsilon/2, 1$	500, 500

Summary

- > Maxmin and minmax strategies, and the Minimax Theorem
 - Matching Pennies, Two-Finger Morra
- > dominant strategies
 - Prisoner's Dilemma, Which Side of the Road, Matching Pennies
 - Iterated elimination of dominated strategies (IESDS)
- rationalizability
 - the *p*-Beauty Contest
- correlated equilibrium
 - Battle of the Sexes
- epsilon-Nash equilibria
- > evolutionarily stable strategies
 - Body-Size game, Hawk-Dove game