CMSC 474, Introduction to Game Theory

11. Evolutionary Stability

Mohammad T. Hajiaghayi
University of Maryland
Chapter 2 discussed two solution concepts:
 - Pareto optimality and Nash equilibrium

Chapter 3 discusses several more:
 - Maxmin and Minmax
 - Dominant strategies
 - Correlated equilibrium
 - Trembling-hand perfect equilibrium (complicated definition)
 - ε-Nash equilibrium
 - Evolutionarily stable strategies
Evolutionary Stability

- This concept comes from evolutionary biology
- Start with a population of some species
 - For us species are those agents playing a particular strategy s
- Add a small population of “invaders” species
 - For us invaders are those agents playing a different strategy t
 - Assume t invades s at level p, i.e., p is the fraction that uses t
 - $(1-p) =$ the fraction that uses s
- If s’s fitness against the mixture of both species is higher than t’s, then t’s proportion will shrink and s’s will grow (thus s is "stable")
 - Fitness for species is the ability to both survive and reproduce
 - For us, fitness of a species= its expected payoff from interacting with a random member of the population, namely with species t with probability p and with species s with probability $1-p$
Evolutionary Stability

- Write a payoff matrix for the two species against each other
 - Symmetric 2-player game, so we only need to look at agent 1’s payoffs
- A strategy’s **fitness** is its expected payoff against a randomly chosen agent
 - fitness(s) = $(1–p)a + pb$
 - fitness(t) = $(1–p)c + pd$
- s is **evolutionarily stable against** t if there is an $\varepsilon > 0$ such that for every $p < \varepsilon$, fitness(s) > fitness(t)
 - i.e., $(1–p)a + pb > (1–p)c + pd$
- As $p \to 0$, $(1–p)a + pb \to a$ and $(1–p)c + pd \to c$
 - For sufficiently small p, the inequality holds if $a > c$, or if $a = c$ and $b > d$
- Thus s is evolutionarily stable against t iff either of the following holds:
 - $a > c$
 - $a = c$ and $b > d
Example: the Body-Size Game

- Consider two different sizes of beetles competing for food
 - When beetles of the same size compete, they get equal shares
 - When large competes with small, large gets most of the food
 - Large beetles get less fitness benefit from any given amount of food
 - Some of it is diverted into maintaining their expensive metabolism

- Is a population of small beetles evolutionarily stable against large beetles?
- Is a population of large beetles evolutionarily stable against small ones?

- Source:
Evolutionary Stability

- More generally, suppose s is a mixed strategy
- Represents a population composed of several species
- We’ll talk about s’s evolutionary stability against all other mixed strategies
- s is an evolutionarily stable strategy (ESS) iff for every mixed strategy $t \neq s$, either of the following holds:
 - $u(s,s) > u(t,s)$
 - $u(s,s) = u(t,s)$ and $u(s,t) > u(t,t)$
 (note that $u_1 = u_2$ since the game is symmetric)
- s is weakly evolutionarily stable iff for every mixed strategy $t \neq s$, either of the following stability conditions holds:
 1. $u(s,s) > u(t,s)$
 2. $u(s,s) = u(t,s)$ and $u(s,t) \geq u(t,t)$
 - Includes cases where s and t have the same fitness
 - So the population that uses t neither grows nor shrinks
Example

- The Hawk-Dove game
 - 2 animals contend for a piece of food
 - Each animal may be either a hawk (H) or a dove (D)
 - The prize is worth 6 to each
 - Fighting costs each 5
 - When a hawk meets a dove, the hawk gets the prize without a fight: payoffs 6, 0
 - When 2 doves meet, they split the prize without a fight: payoffs 3, 3
 - When 2 hawks meet,
 - They fight, and each has a 50% chance of getting the prize
 - For each, the payoff is \(-5 + 0.5 \cdot 6 = -2\)
 - Unique Nash equilibrium \((s, s)\), where \(s = \{(3/5, H), (2/5, D)\}\)
 - i.e., 60% hawks, 40% doves
To confirm that s is also an ESS, show that for all $t \neq s$,
• $u_1(s,s) > u_1(t,s)$ OR
• $u_1(s,s) = u_1(t,s)$ and $u_1(s,t) > u_1(t,t)$
 where $s = \{(3/5, H), (2/5, D)\}$ and $t = \{(p, H), (1-p, D)\}$

For every fully-mixed strategy s, if (s,s) is a Nash equilibrium then $u_1(s,s) = u_1(t,s)$

Next, show $u_1(s,t) > u_1(t,t)$:
• $u_1(s,t) = (3/5)(-2p + 6(1-p)) + (2/5)(0p + 3(1-p))$
• $u_1(t,t) = p(-2p + 6(1-p)) + (1-p)(0p + 3(1-p))$

Let $\nu = u_1(s,t) - u_1(t,t)$

Easy to solve using http://wolframalpha.com
• Simplifies to $\nu = 5p^2 - 6p + 9/5$
• Unique minimum $\nu = 0$ when $p = 3/5$, i.e., $t = s$
• If $p \neq 3/5$ then $\nu > 0$, i.e., $u_1(s,t) > u_1(t,t)$
Evolutionary Stability and Nash Equilibria

- Recall that \(s \) is \textbf{evolutionarily stable} iff for every mixed strategy \(t \neq s \), either of the following holds:
 - \(u(s,s) > u(t,s) \) (1)
 - \(u(s,s) = u(t,s) \) and \(u(s,t) > u(t,t) \) (2)

Theorem. Let \(G \) be a symmetric 2-player game, and \(s \) be a mixed strategy. If \(s \) is an evolutionarily stable strategy, then \((s,s)\) is a Nash equilibrium of \(G \).

Proof. By definition, an ESS \(s \) must satisfy \(u(s,s) \geq u(t,s) \), i.e., \(s \) is a best response to itself, so it must be a Nash equilibrium.

Theorem. Let \(G \) be a symmetric 2-player game, and \(s \) be a mixed strategy. If \((s,s)\) is a strict Nash equilibrium of \(G \), then \(s \) is evolutionarily stable.

Proof. If \((s,s)\) is a strict Nash equilibrium, then \(u(s,s) > u(t,s) \).
 - This satisfies (1) above
Summary

- Maxmin and minmax strategies, and the Minimax Theorem
 - Matching Pennies, Two-Finger Morra
- dominant strategies
 - Prisoner’s Dilemma, Which Side of the Road, Matching Pennies
 - Iterated elimination of dominated strategies (IESDS)
- rationalizability
 - the p-Beauty Contest
- correlated equilibrium
 - Battle of the Sexes
- epsilon-Nash equilibria
- evolutionarily stable strategies
 - Body-Size game, Hawk-Dove game