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The Sharing Game 

 Suppose agents 1 and 2 are two children 

 Someone offers them two cookies, but only if they can agree how to share 

them 

 Agent 1 chooses one of the following options: 

 Agent 1 gets 2 cookies, agent 2 gets 0 cookies 

 They each get 1 cookie 

 Agent 1 gets 0 cookies, agent 2 gets 2 cookies 

 Agent 2 chooses to accept or reject the split: 

 Accept => they each get their cookies(s) 

 Otherwise, neither gets any 
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Extensive Form 

 The sharing game is a game in extensive form 

 A game representation that makes the temporal structure explicit 

 Doesn’t assume agents act simultaneously  

 Extensive form can be converted to normal form 

 So previous results carry over  

 But there are additional results that depend on the temporal structure 

 In a perfect-information game, the extensive form is a game tree: 

 Choice (or nonterminal) node: place where an agent chooses an action 

 Edge: an available action or move 

 Terminal node: a final outcome 

 At each terminal node h, each 

agent i has a utility ui(h) 
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Notation from the Book (Section 4.1) 

 H = {nonterminal nodes} 

 Z = {terminal nodes} 

 If h is a nonterminal node, then 

  (h) = the player to move at h 

 (h) = {all available actions at h} 

  (h,a) = node produced by action a at node h 

 h’s children or successors = { (h,a) : a  (h)} 

 If h is a node (either terminal or nonterminal), then 

 h’s history = the sequence of actions leading from the root to h  

 h’s descendants  

= all nodes in the subtree rooted at h 

 The book doesn’t give the nodes names 

 The labels tell which agent 

makes the next move 
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Pure Strategies 
 Pure strategy for agent i in a perfect-information game: 

 Function telling what action to take at every node where it’s i’s choice 

• i.e., every node h at which  (h) = i 

 The book specifies pure strategies as lists of actions 

 Which action at which node? 

 Either assume a canonical ordering on the nodes,  

or use different action names at different nodes 

Sharing game: 

 Agent 1 has 3 pure strategies: S1 = {2-0, 1-1, 0-2} 

 Agent 2 has 8 pure strategies:  

 S2 = {(yes, yes, yes),  (yes, yes, no), 

  (yes, no, yes),  (yes, no, no), 

  (no, yes, yes),  (no, yes, no), 

  (no, no, yes),  (no, no, no)} 
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Extensive form vs. 

normal form 

 Every game tree corresponds to an 

equivalent normal-form game 

 The first step is to get all of the agents’ 

pure strategies 

 Each pure strategy for i must specify an action at 

every node where it’s i’s move 

 Example: the game tree shown here 

 Agent 1 has four pure strategies: 

• s1 = {(A, G), (A, H), (B, G), (B, H)} 

› Mathematically, (A, G) and (A, H) are different strategies, 

even though action A makes the G-versus-H choice 

irrelevant 

 Agent 2 also has four pure strategies: 

• s2 = {(C, E), (C, F), (D, E), (D, F)} 
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Extensive form vs. 

normal form 

 Once we have all of the pure strategies, 

we can rewrite the game in normal form 

 

 Converting to normal form 

introduces redundancy 

 16 outcomes in the payoff matrix, 

versus 5 outcomes in the game tree 

 Payoff (3,8) occurs 

• once in the game tree 

• four times in the payoff matrix 

 This can cause an exponential blowup 

A B 

C D 

G H 

E F 

(3,8) (8,3) 

(2,10) (1,0) 

(5,5) 1 

2 2 

1 



Nash Equilibrium 

 Theorem. Every perfect-information game 

in extensive form has a pure-strategy Nash 

equilibrium 

 This theorem has been attributed to 

Zermelo (1913), but there’s some 

controversy about that 

 Intuition: 

 Agents take turns, and everyone sees 

what’s happened so far before making 

a move 

 So never need to introduce randomness 

into action selection to find an 

equilibrium 

 In our example, there are three pure-

strategy Nash equilibria 
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Nash Equilibrium 

 The concept of a Nash equilibrium can be 

too weak for use in extensive-form games 

 Recall that our example has three 

pure-strategy Nash equilibria: 

 {(A,G), (C,F)} 

 {(A,H), (C,F)} 

 {(B,H), (C,E)}  

 Here is {(B,H), (C,E)} with 

the game in extensive form 
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Nash Equilibrium 

 If agent 1 used (B,G) instead of (B,H) 

 Then agent 2’s best response 

would be (C,F), not (C,E) 

 Thus {(B,G), (C,E)} is not a Nash Equilibrium. 

 When agent 1 plays B 

 The only reason for agent 2 to choose E is if 2 knows 

that agent 1 has already committed to H rather than G 

 This behavior by agent 1 is a threat:  

 By committing to choose H, which is harmful to agent 2, 

agent 1 can make agent 2 avoid that part of the tree 

 Thus agent 1 gets a payoff of 5 instead of 2  

 But is agent 1’s threat credible? 

 If agent 2 plays F, would agent 1 really play H rather than G? 

 It would reduce agent 1’s own utility 
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Summary 

 Extensive-form games 

 relation to normal-form games 

 Nash equilibria 

 

 In extensive-form games, the game tree is often too big to search completely 

 E.g., game tree for chess: about 10150 nodes 

 


