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The Sharing Game 

 Suppose agents 1 and 2 are two children 

 Someone offers them two cookies, but only if they can agree how to share 

them 

 Agent 1 chooses one of the following options: 

 Agent 1 gets 2 cookies, agent 2 gets 0 cookies 

 They each get 1 cookie 

 Agent 1 gets 0 cookies, agent 2 gets 2 cookies 

 Agent 2 chooses to accept or reject the split: 

 Accept => they each get their cookies(s) 

 Otherwise, neither gets any 
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Extensive Form 

 The sharing game is a game in extensive form 

 A game representation that makes the temporal structure explicit 

 Doesn’t assume agents act simultaneously  

 Extensive form can be converted to normal form 

 So previous results carry over  

 But there are additional results that depend on the temporal structure 

 In a perfect-information game, the extensive form is a game tree: 

 Choice (or nonterminal) node: place where an agent chooses an action 

 Edge: an available action or move 

 Terminal node: a final outcome 

 At each terminal node h, each 

agent i has a utility ui(h) 
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Notation from the Book (Section 4.1) 

 H = {nonterminal nodes} 

 Z = {terminal nodes} 

 If h is a nonterminal node, then 

  (h) = the player to move at h 

 (h) = {all available actions at h} 

  (h,a) = node produced by action a at node h 

 h’s children or successors = { (h,a) : a  (h)} 

 If h is a node (either terminal or nonterminal), then 

 h’s history = the sequence of actions leading from the root to h  

 h’s descendants  

= all nodes in the subtree rooted at h 

 The book doesn’t give the nodes names 

 The labels tell which agent 

makes the next move 
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Pure Strategies 
 Pure strategy for agent i in a perfect-information game: 

 Function telling what action to take at every node where it’s i’s choice 

• i.e., every node h at which  (h) = i 

 The book specifies pure strategies as lists of actions 

 Which action at which node? 

 Either assume a canonical ordering on the nodes,  

or use different action names at different nodes 

Sharing game: 

 Agent 1 has 3 pure strategies: S1 = {2-0, 1-1, 0-2} 

 Agent 2 has 8 pure strategies:  

 S2 = {(yes, yes, yes),  (yes, yes, no), 

  (yes, no, yes),  (yes, no, no), 

  (no, yes, yes),  (no, yes, no), 

  (no, no, yes),  (no, no, no)} 
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Extensive form vs. 

normal form 

 Every game tree corresponds to an 

equivalent normal-form game 

 The first step is to get all of the agents’ 

pure strategies 

 Each pure strategy for i must specify an action at 

every node where it’s i’s move 

 Example: the game tree shown here 

 Agent 1 has four pure strategies: 

• s1 = {(A, G), (A, H), (B, G), (B, H)} 

› Mathematically, (A, G) and (A, H) are different strategies, 

even though action A makes the G-versus-H choice 

irrelevant 

 Agent 2 also has four pure strategies: 

• s2 = {(C, E), (C, F), (D, E), (D, F)} 
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Extensive form vs. 

normal form 

 Once we have all of the pure strategies, 

we can rewrite the game in normal form 

 

 Converting to normal form 

introduces redundancy 

 16 outcomes in the payoff matrix, 

versus 5 outcomes in the game tree 

 Payoff (3,8) occurs 

• once in the game tree 

• four times in the payoff matrix 

 This can cause an exponential blowup 
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Nash Equilibrium 

 Theorem. Every perfect-information game 

in extensive form has a pure-strategy Nash 

equilibrium 

 This theorem has been attributed to 

Zermelo (1913), but there’s some 

controversy about that 

 Intuition: 

 Agents take turns, and everyone sees 

what’s happened so far before making 

a move 

 So never need to introduce randomness 

into action selection to find an 

equilibrium 

 In our example, there are three pure-

strategy Nash equilibria 
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Nash Equilibrium 

 The concept of a Nash equilibrium can be 

too weak for use in extensive-form games 

 Recall that our example has three 

pure-strategy Nash equilibria: 

 {(A,G), (C,F)} 

 {(A,H), (C,F)} 

 {(B,H), (C,E)}  

 Here is {(B,H), (C,E)} with 

the game in extensive form 
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Nash Equilibrium 

 If agent 1 used (B,G) instead of (B,H) 

 Then agent 2’s best response 

would be (C,F), not (C,E) 

 Thus {(B,G), (C,E)} is not a Nash Equilibrium. 

 When agent 1 plays B 

 The only reason for agent 2 to choose E is if 2 knows 

that agent 1 has already committed to H rather than G 

 This behavior by agent 1 is a threat:  

 By committing to choose H, which is harmful to agent 2, 

agent 1 can make agent 2 avoid that part of the tree 

 Thus agent 1 gets a payoff of 5 instead of 2  

 But is agent 1’s threat credible? 

 If agent 2 plays F, would agent 1 really play H rather than G? 

 It would reduce agent 1’s own utility 
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Summary 

 Extensive-form games 

 relation to normal-form games 

 Nash equilibria 

 

 In extensive-form games, the game tree is often too big to search completely 

 E.g., game tree for chess: about 10150 nodes 

 


