
CMSC 474, Introduction to Game Theory

14. Sub-game Perfect Equilibrium

Mohammad T. Hajiaghayi

University of Maryland



Definition of Subgame-Perfect Equilibrium

 Given a perfect-information extensive-form game G, the subgame of G

rooted at node h is the restriction of G to the descendants of h

 Now we can define a refinement of the Nash equilibrium that eliminates 

noncredible threats

 A subgame-perfect equilibrium (SPE) is a strategy profile s such that for 

every subgame G of G, the restriction of s to G is a Nash equilibrium of G

 Since G itself is is a subgame of G, every SPE is also a Nash 

equilibrium

 Every perfect-information extensive-form game has at least 1 SPE 

 Can prove this by induction on the height of the game tree



Example

 Recall that we have three Nash equilibria:

{(A, G), (C, F)}

{(A, H), (C, F)}

{(B, H), (C, E)}

 Consider this subgame:

 For agent 1, 

G strictly dominates H

 Thus H can’t be part of a Nash equilibrium

 This excludes {(A, H), (C, F)} and {(B, H), (C, E)}

 Just one subgame-perfect equilibrium

 {(A, G), (C, F)}

A B

C D

G H

E F

(3,8) (8,3)

(2,10) (1,0)

(5,5) 1

2 2

1



Backward Induction

 To find subgame-perfect equilibria, we can use backward induction

 Identify the Nash equilibria in the

bottom-most nodes

 Assume they’ll be played if the

game ever reaches these nodes

 For each node h, recursively compute

a vector vh = (vh1, …, vhn) that gives

every agent’s equilibrium utility

 At each node h,

• If i is the agent to move, then i’s

equilibrium action is to move to a child h' of h

for which i’s equilibrium utility vh'i is highest

A B

C D

G H

E F

(3,8) (8,3)

(2,10) (1,0)

(5,5) 1

2 2

1 (3,8)

(3,8) (2,10)

(2,10)



Backward Induction

 To find subgame-perfect equilibria, we can use backward induction

 Identify the Nash equilibria in the

bottom-most nodes

 Assume they’ll be played if the

game ever reaches these nodes

procedure backward-induction(h)

if h  Z then return u(h)

bestv = (–, …, –)

forall a  (h) do

v = backward-induction( (h,a))

if v[ (h)] > bestv[ (h)] then bestv = v

return bestv

A B

C D

G H

E F

(3,8) (8,3)

(2,10) (1,0)

(5,5) 1

2 2

1 (3,8)

(3,8) (2,10)

(2,10)



The Centipede Game

 The players move in alternation

 Player 1 makes the first move

 Each player can go

either Left or Right

 At each terminal node, the numbers are 

how many pieces of chocolate you’ll get

 Next to each nonterminal node,

I’ve put the SPE payoffs in red



A Problem with Backward Induction

 Can extend the centipede

game to any length

 The only SPE is for each

agent always to move Left

 But this isn’t intuitively appealing

 Seems unlikely that one

would want to choose Left

near the start of the game

 If the agents continue the game

for several moves, they’ll both

get higher payoffs 

 In lab experiments, subjects continue to 

choose Right until near the end of the game



Constant-Sum Centipede Game

 Now consider a constant-sum version

of the centipede game

 At every node, u2 = 5 – u1



Constant-Sum Centipede Game

 I need two more volunteers

to play a constant-sum version

of the centipede game

 At every node, u2 = 5 – u1

 Instead of having increasing payoffs for 

both players, the sum of their payoffs is 

always the same

 In this case, backward induction gives 

much more accurate results



The Minimax Algorithm

 In constant-sum games, 

only need to compute

agent 1’s SPE utility, u1

• u2 = c – u1

 From the Minimax Theorem,

 at each node, 

agent 1’s minmax value

= agent 1’s maxmin value

= agent 1’s SPE utility

procedure minimax(h)

if h  Z then return u1(h) 

else if  (h) = 1 then return maxa  (h) u1( (h,a))

else return mina  (h) u1( (h,a))

5, 0

3, 2

2, 3

4, 1

1, 4

3, 2

2, 3

4, 1

1, 4

5, 0

1

2

1

2

1

L

L

L

L

L

0, 5

R

R

R

R

R



Summary

 Extensive-form games

 relation to normal-form games

 Nash equilibria

 subgame-perfect equilibria

 backward induction

• The Centipede Game

 backward induction in constant-sum games

• minimax and negamax algorithms

 In extensive-form games, the game tree is often too big to search completely

 E.g., game tree for chess: about 10150 nodes


