CMSC 474, Introduction to Game Theory
14. Sub-game Perfect Equilibrium

Mohammad T. Hajiaghayi
University of Maryland



Definition of Subgame-Perfect Equilibrium

e Given a perfect-information extensive-form game G, the subgame of G
rooted at node h iIs the restriction of G to the descendants of h

e Now we can define a refinement of the Nash equilibrium that eliminates
noncredible threats

® A subgame-perfect equilibrium (SPE) is a strategy profile s such that for
every subgame G’ of G, the restriction of s to G’ is a Nash equilibrium of G’

> Since G itself Is is a subgame of G, every SPE is also a Nash
equilibrium

e Every perfect-information extensive-form game has at least 1 SPE

> Can prove this by induction on the height of the game tree



Example

Recall that we have three Nash equilibria:
{(A. G), (C, F)}
{(A, H), (C,F)}
{(B, H), (C,E)} :

ik
Consider this subgame:

> Foragent 1, SRl
G strictly dominates H
> Thus H can’t be part of a Nash equilibrium

This excludes {(A, H), (C, F)} and {(B, H), (C, E)}
Just one subgame-perfect equilibrium
> {(AG), (C F)}

(5.5)

/X

1
e

(2,10)

(1,0)



Backward Induction

e To find subgame-perfect equilibria, we can use backward induction

e Identify the Nash equilibria in the

bottom-most nodes 1(3,8)
: A B
> Assume they’ll be played If the /\
game ever reaches these nodes 2(3,8) 2 (2,10)
e For each node h, recursively compute N s 5
a vector v, = (Vyy, ..., Vip) that gives
every agent’s equilibrium utility Sl el ) x(2,10)
G H
> At each node h, A

- If i is the agent to move, then i’s (2,10) (1,0)
equilibrium action is to move to a child h' of h
for which 1’s equilibrium utility v,; Is highest



Backward Induction

e To find subgame-perfect equilibria, we can use backward induction

e Identify the Nash equilibria in the
bottom-most nodes 1(3,8)

: A B
> Assume they’ll be played if the /\

game ever reaches these nodes 2(3,8) 2 (2,10)
HI SO
procedure backward-induction(h) 3.8) (83) (55) 1(2.10)
if h < Z then return u(h) ﬂ
bestv = (—o, ..., —0)
(2,10) (1,0)

forall a € y(h) do
v = backward-induction(o(h,a))

If v[p(h)] > bestv[p(h)] then bestv = v
return bestv



The Centipede Game

1,0
/%

e The players move in alternation
> Player 1 makes the first move

> Each player can go
either Left or Right

@ At each terminal node, the numbers are ,/@\

how many pieces of chocolate you’ll get

> Next to each nonterminal node,
I’ve put the SPE payoffs in red



A Problem with Backward Induction

1,0
Can extend the centipede
game to any length

The only SPE is for each
agent always to move Left
But this isn’t intuitively appealing

Seems unlikely that one
would want to choose Left

near the start of the game
> If the agents continue the game
for several moves, they’ll both /@\

get higher payoffs

In lab experiments, subjects continue to
choose Right until near the end of the game



Constant-Sum Centipede Game

3,2
P

e Now consider a constant-sum version
of the centipede game

® Ateverynode, u,=5-u,

e
S
ke



Constant-Sum Centipede Game

3, 2
i
2,3

3, 2 ’
L R
e | need two more volunteers

to play a constant-sum version 2 3 4, 1
of the centipede game L R
e Ateverynode, u,=5-u, 24

4,1 ’
e Instead of having increasing payoffs for v R
both players, the sum of their payoffs is
always the same 1,4 2
® In this case, backward induction gives
much more accurate results
5,0



The Minimax Algorithm
3,2
e [n constant-sum games,
only need to compute
agent 1°s SPE utility, u;
* U,=C—U,
e From the Minimax Theorem,

> at each node,

agent 1’s minmax value
= agent 1’s maxmin value
= agent 1’s SPE utility

procedure minimax(h) 12 /@\
a c (Uil (h,a)) /®\

If h € Z then return u,(h)
else if p(h) = 1 then return max

else return min, _. i, U;(o(h,a)) 5,0 0.5



Summary

e Extensive-form games

> relation to normal-form games

> Nash equilibria

> subgame-perfect equilibria

> backward induction
« The Centipede Game

> backward induction in constant-sum games
« minimax and negamax algorithms

e In extensive-form games, the game tree is often too big to search completely
> E.g., game tree for chess: about 10%%° nodes



